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Seismic exposure of buildings presents difficult engineering challenges. The principles of
seismic design involve structures that sustain damage and still protect inhabitants. Precise
and accurate knowledge of the residual capacity of damaged structures is essential
for informed decision-making regarding clearance for occupancy after major seismic
events. Unless structures are permanently monitored, modal properties derived from
ambient vibrations are most likely the only source of measurement data that are available.
However, such measurement data are linearly elastic and limited to a low number of
vibration modes. Structural identification using hysteretic behavior models that exclusively
relies on linear measurement data is a complex inverse engineering task that is further
complicated by modeling uncertainty. Three structural identification methodologies that
involve probabilistic approaches to data interpretation are compared: error-domain model
falsification, Bayesian model updating with traditional assumptions as well as modified
Bayesian model updating. While noting the assumptions regarding uncertainty definitions,
the accuracy and robustness of identification and subsequent predictions are compared.
A case study demonstrates limits on non-linear parameter identification performance and
identification of potentially wrong prediction ranges for inappropriate model uncertainty
distributions.

Keywords: non-linear data interpretation, systematic model error, robust model extrapolation, prediction uncer-
tainty, error-domain model falsification, Bayesian model updating, aftershock predictions

INTRODUCTION

Earthquakes still pose a major threat to the integrity of existing buildings. Although significant
progress has been made on earthquake-resistant design methodologies, large parts of the building
stock continue to sustain damage from earthquake actions. Structural damage to buildings after an
earthquake is inevitable, especially in the context of design specifications being generally limited to
the protection of building occupants rather than guaranteeing structural integrity in regionswith low
to medium earthquake hazard (Priestley, 2000). In addition, regions with low to medium seismicity
are often characterized by large amounts of buildings that have been designed without consideration
of the seismic limit state.

Current practice for building assessment after earthquakes exclusively relies on visual inspection.
However, large numbers of buildings need inspection in such a context. Combined with a potential
need for multiple inspections of the same buildings, important economic losses can result from
restricted access leading to loss of business opportunities and needs for provisional housing.
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Also, visual inspection has been shown to produce subjective
assessment results (Marshall et al., 2013; Galloway et al., 2014).

Evaluation of increased vulnerability during aftershocks of
buildings damaged by mainshocks of an earthquake sequence
is a known challenge, and it has recently received attention in
risk assessment during the design stage (Nazari et al., 2015). In
addition, updated vulnerability assessments for buildings char-
acterized by a given damage state after a mainshock have been
proposed (Réveillère et al., 2012; Jeon et al., 2015; Raghunandan
et al., 2015). Jalayer et al. (2011) proposed an updating approach
for aftershock probabilities to enhance post-earthquake reliability
assessment using single-degree-of-freedommodels. However, few
studies incorporate measurement interpretation to update vul-
nerability curves after the main shock. In addition, uncertainties
are generally limited to ground motion parameters, not behavior
modeling uncertainties.

Measurement-based structural identification has the potential
to improve upon current assessment techniques and to comple-
ment visual inspection. Measurement data can, thus, provide an
objective support for post-earthquake decision-making. In addi-
tion, identifying parameters of physical models allows engineers
to predict structural behavior during future earthquakes and can
support the design of retrofitting and strengthening.

Ambient vibrations are an attractive data source in a post-
earthquake context as small, sensitive and affordable sensors have
emerged. Ambient vibrations are non-destructive and can be
measured without any form of actuation and, therefore, ambient
vibration measurements are potentially cost-effective and time-
efficient. However, a well-known drawback of ambient vibration
measurements is the very low amplitude of excitation, resulting in
mostly linear responses. In addition, despite controversial results,
modal properties derived from ambient vibrations have been
shown in the past to be potential indicators of structural damage
(Mucciarelli et al., 2004; Clinton et al., 2006; Michel et al., 2011).
As a consequence, many proposals for structural identification
based on vibrations measurements for damage detection have
emerged (Chellini et al., 2010; Moaveni et al., 2010; Behmanesh
et al., 2017).

Structural identification based on Bayes’ theorem to identify
hysteretic models has been proposed (Muto and Beck, 2008; Wor-
den and Hensman, 2012; Green and Worden, 2015). However,
predicting non-linear behavior withmodels that have been identi-
fied using exclusively linearmeasurements involves extrapolation.
As structural models are a simplified and approximate represen-
tation of real structures, model error, defined as the discrepancy
between model predictions and observed behavior, cannot be
avoided. Such model error is epistemic and systematic, meaning
model error is often spatially correlated. The challenge of this type
of error for inverse engineering tasks, such as structural identifi-
cation, has been discussed (Tarantola, 2006; Fernández-Martínez
et al., 2013; Brynjarsdóttir and O’Hagan, 2014). However, in a
scenario that involves extrapolation, such as predicting non-linear
displacement demands with models that are identified using nat-
ural frequencies, themodel uncertainty differs from identification
to prediction. Few studies have been found to assess accuracy
and precision of identified non-linear structural models identified
based on linear measurements with respect to prediction intervals

for non-linear extrapolations. As single answers are ill-suited for
such inverse problems, prediction ranges involving bounds on
uncertainty are needed and proposed in this paper.

Asgarieh et al. (2017) assessed the influence of model error on
the calibration of non-linear parameters of a structural model.
However, no comparative study of identification methodologies
was proposed for identification of non-linear models with lin-
ear measurements. In addition, the consequences of erroneous
uncertainty definition were not evaluated.

In this paper, three structural identification methodologies
are compared. The background and underlying assumptions
related to Bayesian model updating (BMU) involving traditional
and modified likelihood function formulations as well as error-
domain model falsification (EDMF) methodologies are described
and compared. A methodology to derive non-linear structural
parameters from linear modal structural properties is provided.
These three structural identification methodologies are then
applied to a numerical case study and the robustness and precision
regarding parameter identification and behavior extrapolation are
compared.

BACKGROUND

Error-domain model falsification, traditional Bayesian model
updating (TBMU), and modified Bayesian model updating
(MBMU) are compared. These three methodologies result in
populations of solution through taking uncertainties into account.
However, the methodologies differ in their initial formulation,
starting points, assumptions related to the sources and forms of
uncertainty, as well as the implementation of uncertainties.

Error-Domain Model Falsification
Error-domain model falsification implements a model falsifica-
tion strategy that is based on the principles of scientific discov-
ery (Popper, 1959). Rather than validating or optimizing sin-
gle models, measurement data should ideally be used to falsify
inappropriate model instances (Robert-Nicoud et al., 2005). The
applicability of model falsification provides robust solutions to
inverse engineering problems that are complicated by significant
amounts ofmeasurement andmodel uncertainty (Tarantola, 2006;
Fernández-Martínez et al., 2013), particularly in the presence of
model bias (Pasquier and Smith, 2015a).

A population of model instances is created through discrete
samples of parameter combinations and, subsequently, used to
simulate structural behavior (Raphael and Smith, 1998). The
concept of simulating discrete populations of parameter com-
binations and discarding models that fail to predict measured
behavior according to probabilistic criteria has been formalized
by Goulet and Smith (2013) to develop a structural identification
methodology called EDMF.

Error-domain model falsification explicitly takes into account
measurement andmodeling uncertainties resulting frommultiple
sources that are estimated to be biased (Goulet et al., 2013). Resid-
uals between measured and predicted behavior are compared to
thresholds for each measured quantity. Therefore, the acceptance
region in the error-domain or residual-domain is a hypercube,
which results in a model identification process that is usually
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insensitive to wrong correlation estimates. Correlations between
uncertainties related to various measurements cannot be known
precisely, therefore, prediction accuracy is sacrificed in EDMF
in order to improve the robustness of prediction ranges. Also,
EDMF results in uniformprobabilities of candidatemodels, rather
than more detailed probability distributions, thus reflecting the
lack of knowledge of uncertainty forms in practical situations.
Reduced sensitivity to uncertainty correlations and uniform pre-
diction distributions increase robustness especially for predic-
tion tasks, where behavior is predicted for conditions that differ
from the measured configuration (Pasquier and Smith, 2015a).
Extrapolation is required for decision-making in asset manage-
ment for activities, such as repair, extension, and increasing
service-life.

Tens of full-scale applications in several countries have con-
firmed that EDMF is intuitively understood by practicing engi-
neers who need to interpret measurement data and field obser-
vations (Smith, 2016). This aspect is important for iterative data-
interpretation tasks when information becomes available gradu-
ally over long periods. In such situations, specialized consultants
cannot provide complete support. Engineers who are responsible
for assets need to be able to comprehend how data are inter-
preted so that iterations following changes and discovery of new
information can be carried out.

Error-domain model falsification, like any model-based struc-
tural identification methodology, relies on the comparison of pre-
dictions ofmodel instanceswithmeasurements. Intervals of possi-
ble parameter values are defined for the parameters θ= {θ1,. . .,θn}
of a physics-based model g(.) through engineering heuristics and
past experience. The parameter space is then sampled in order to
obtain a discrete initial population of model instances. Applica-
tions of EDMF rely on grid sampling, Latin hypercube sampling
and stochastic search to sample the parameter space (Robert-
Nicoud et al., 2005; Goulet et al., 2010; Pasquier et al., 2014;
Pasquier and Smith, 2015a).

For all nm measured quantities the predictions of the physics-
based model, g i(θ), are compared to the measurement, yi. Mea-
surement data are conditioned by measurement error, εy. In addi-
tion, physics-based models are simplified and idealized represen-
tations of complex open-world structures. Therefore, the model
prediction, g(θ), is conditioned by a significantmodel error, εg. For
full-scale applications, model errors have been observed to be an
order of magnitude higher than measurement error and are likely
to be biased (Pasquier and Smith, 2015b).

When error estimates, εy and εg, are accurate, the true parame-
ter values, θ*, can be obtained through Eq. 1.

gi(θ∗) + εg = yi + εy (1)

However, in open-world applications, modeling error andmea-
surement error cannot be estimated deterministically. Never-
theless, conservative estimates of the uncertainty resulting from
model and measurement error can be established through engi-
neering knowledge. Generally, such heuristic estimates of model
uncertainties, Ug, and measurement uncertainties, Uy, take the
form of bounded intervals. If there is additional information
regarding some uncertainty distributions, more elaborate distri-
butions can be used.

A joint probability density function (PDF), fUi(u), of the total
uncertainty fU is obtained by combiningmeasurement andmodel-
ing uncertainties. The total uncertainty fU reflects the engineering
estimate of acceptable levels of error on the residual between
measurement data and model predictions. Therefore, thresholds
are derived from the uncertainty to falsify inappropriate models.

In order to calculate the thresholds, a target identification
probability ϕd is fixed. The probability of false rejection of the
correct parameter combination is, thus, given by (1-ϕd) for cor-
rectly estimated uncertainty distributions. The thresholds, Tlow,i
and Thigh,i, delimitate the shortest interval that has a cumulative
probability equal to the fixed target probability as shown in Eq.
2. Residuals are compared to thresholds for all the nm measured
quantities, therefore, the Šidák correction for multiple hypothesis
testing is applied to the target probability (Šidák, 1967), see Eq. 2.

ϕd
1/nm =

∫ Thigh,i

Tlow,i

fUi(u)du (2)

The candidate model set (CMS) is defined by all parameter
combination instances of the initial model population that verify
Eq. 3 for all nm measured and predicted quantities.

∀i ∈ {1, . . . , nm} : Tlow,i ≤ g(θ) − yi ≤ Thigh,i (3)

The complete CMS is used to perform behavior predictions.
When structural behavior, qi, is predicted, the model uncertainty
is added to the prediction range to comply with Eq. 1, as shown in
Eq. 4. For interpolation tasks, themodel uncertainty Ug equals the
model error used for identification. If extrapolation is performed,
the model uncertainty needs to be re-evaluated.

qi = gi(θ) + Ug (4)

Traditional Bayesian Model Updating
Traditional Bayesian model updating is based on the Bayes theo-
rem of conditional probability. Multiple applications of BMUhave
been proposed in the past for static and dynamic measurement
data (Beck and Katafygiotis, 1998; Vanik et al., 2000; Katafygiotis
and Yuen, 2001; Cheung and Beck, 2009; Lam et al., 2017; Marsili
et al., 2017).

Based on the Bayes theorem of conditional probability, prior
knowledge of model parameters θ is updated using a vector of
measurement data y. The inference of an updated (or poste-
rior) PDF p(θ|y) is calculated using a likelihood function p(y|θ)
according to Eq. 5 that is based on Bayes’ conditional probability.

p(θ|y) =
p(y|θ)p(θ)

p(y) (5)

Traditional applications of BMU, also referred to as Bayesian
inference, use zero-mean normal (or Gaussian) PDF formulations
as likelihood function (see Eq. 6).

p(y|θ) ∝ exp
[
− (y − g(θ))′

Σ−1(y − g(θ))
2

]
(6)
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Most often, the covariance matrix Σ ϵ Rnm×nm that defines the
likelihood function and that is composed of the variances and
co-variances for each measurement is simplified. A recurrent
assumption is independence between measurements that results
in all non-diagonal terms equaling 0, according to the principle of
maximum entropy (Simoen et al., 2013; Ebrahimian et al., 2017).
A widespread technique is to parametrize the diagonal terms
σ2
i , in order to estimate the likelihood function using available

measurement data. In absence of modeling errors, such likelihood
functions may be adequate estimations of the total uncertainty
(Behmanesh et al., 2015).

The parameter space is sampled using Markov-chain Monte-
Carlo (MCMC) sampling (Papadimitriou et al., 1997; Beck and
Au, 2002), for which the sampling is guided using the likelihood
function.

Modified Bayesian Model Updating
Modified Bayesianmodel updating is a novel formulation of BMU
that avoids relying on zero-mean Gaussian likelihood functions.
Relying on likelihood functions that are non-informed (constant
probability) distributions is the most obvious difference between
TBMU and MBMU. In environmental engineering, relying on
uniform likelihood functions is sometimes referred to as gener-
alized likelihood uncertainty estimation (Beven and Binley, 1992;
Stedinger et al., 2008). By relying on a L∞-norm PDF (see Eq.
7), the likelihood function takes the form of bounds. In a similar
way to EDMF, a likelihood function that takes the form of bounds
is robust with respect to unknown and evolving correlations
betweenmeasured quantities (Pai and Smith, 2017). Also, MBMU
corrects for the number of measurements through applying the
Šidák correction in a similar way to EDMF. MCMC sampling
schemes are used similar to TBMU.

p(y|θ, κ) ∝ exp
[
−

(
1
κ

) ∣∣∣∣ (y − g(θ)) − µ

ItΣI

∣∣∣∣κ] (7)

STRUCTURAL IDENTIFICATION WITH
NON-LINEAR MODELS BASED ON MODAL
PROPERTIES

For structures that show non-linear behavior and where ultimate
limit states need to be assessed, non-linear structural identifica-
tion is needed. However, non-linear structural identification of
buildings is complicated by the fact that non-destructive tests
are limited to the linear range of structural behavior. Unless
time-histories are measured during extreme events, such as earth-
quakes, no measurement data in the non-linear range are avail-
able. Therefore, in this paper, modal properties that characterize
the linear behavior before and after an earthquake are used to
identify parameters of a non-linear behavior model. Hysteretic
non-linear time-series simulations are applied to link the building
state before and after an earthquake (see Figure 1).

Simulation of non-linear time-series requires knowledge of the
ground motion parameters that characterized the earthquake.
If such knowledge is unavailable due to a coarse seismological
network, multiple earthquakes need to be simulated in order to
reflect the uniqueness and spatial variability of earthquake signals.

FIGURE 1 | Updated stiffness for a moment-resisting spring undergoing
hysteretic non-linear moment-rotation cycles. (A) Initial state, (B) earthquake,
and (C) damaged state.

Error-domainmodel falsification as well as BMU involves mul-
tiple model simulations to identify model parameters. Simulat-
ing non-linear time-series for multiple model instances (typically
thousands of models) is computationally expensive. Therefore,
engineers rely on simplified models that are idealized representa-
tions of real structures. Lumped mass models or multiple-degree-
of-freedom (MDOF) models are simplified models to simulate
dynamic behavior of buildings. In such lumped mass models,
each floor is represented by a single degree-of-freedom at which
the mass of the floor is concentrated and that is linked to other
floors by one stiffness element that sums the contribution of
all structural elements. In simplified models, non-linear springs
are used for lumped plasticity representation. For instance, non-
linear hysteretic rotational springs are used at the base to model
non-linear behavior of moment-resisting structures.

Damage is observed to often cumulate at the base floor, where
shear forces and moments are highest. Reduction in stiffness that
is due to structural damage resulting from earthquake actions is,
thus, modeled by a reduction of the spring stiffness. A simplified
method to update the spring stiffness due to damage is the secant
stiffness to the maximum point reached during an earthquake.
This simplified stiffness updating provides a lower bound to the
damaged spring stiffness (see Figure 1).

Modal parameters that can be used for structural identification
are natural frequencies and mode-shapes. While measured and
predicted frequencies can be compared directly, the modal assur-
ance criterion (MAC) is used to compare modeled and predicted
mode-shapes (Allemang and Brown, 1982; Pastor et al., 2012). If
measurement error related to mode-shapes is expressed in terms
of modal displacement (Uy,i), a Monte-Carlo combination is used
to determine the corresponding MAC values, UMACm,i, for mode
m and uncertainty source i, see Eq. 8. Model errors expressed in
terms ofmodal displacement can be transformed intoMACvalues
using a similar procedure (Reuland et al., 2015). If multi-source
uncertainties are identified for mode-shapes, the nϵ sources are
combined using Eq. 9.

UMACm,i = MAC
(
ψm,y, ψm,y + Uy,i

)
(8)

UMAC,m = − (nε + 1) +
nε∑
i=1

UMACm,i (9)

APPLICATION TO A CASE STUDY

Accuracy and efficiency of the three structural identifica-
tion techniques are compared through an application using
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FIGURE 2 | Description of lumped mass models representing the baseline
(true) structure (A) as well as model g(.) for which parameters θ are identified
(B). Identification is performed on states before and after main earthquake.
Behavior during aftershock is predicted.

simulated measurements. Although simulated measurements are
not realistic with respect to material behavior models, material
homogeneity, and boundary conditions, application of structural
identification techniques for simulated measurements provides
conclusions regarding robustness of parameter identification and
non-linear predictions, as the true values are known. However,
simulated measurements provide upper bounds to the efficiency
of structural identification methodologies.

Model Definition
The baseline model that is considered to be the true structure
is a MDOF representation of a four-storey building. Plasticity is
lumped into non-linear hysteretic rotational springs at the base
and at each floor. The hysteretic behavior model for springs is the
modified Takeda model (Takeda et al., 1970). Lumped masses of
30 t characterize the floor, while a distributed mass of 7.725 t/m
characterizes vertical elements. The storey height is 3m. The ver-
tical elements have a stiffness of 412.5 MNm2. Also, the rotation
of the floors is partially restrained, therefore, the structure is not
perfectly moment-resisting. A representation of the true structure
is shown in Figure 2A. A global viscous Rayleigh-type damping is
assumed, with 6% damping at 4Hz and 5% damping at 8Hz.

In reality, models are simplified and approximate representa-
tions of reality. Therefore, the model instance g(.) that is used to
identify values of the parameter vector θ has a model bias with
respect to the true structure. The mass is lumped at the floors
and estimated to be 50 t per floor. The structure is assumed to be
perfectly moment-resisting, meaning no rotation restraint of the
lumpedmasses is considered. In addition, the plasticity is localized
with a non-linear hysteretic spring at the base level. The hysteretic
behavior is assumed to be defined by the Gamma-model (Lestuzzi
and Badoux, 2003). A global damping coefficient of 5% is assumed
for the structure. The structure that is identified using the three
investigated methodologies is shown in Figure 2B.

Parameters θ that are identified for model g(.) are the stiffness
EI as well as the parameters of the γ-model governing the behavior
of the rotational spring: stiffness (krot), yield moment (My), post-
yield stiffness (hard), and the gamma-factor (γ). Thus, in total five
parameters are identified based on simulated measurements (see

TABLE 1 | True values and prior distributions of the parameters to identify.

Parameter Unit Truth Prior distribution

Flexural stiffness (EI) MNm2 412.5 30–90
Rotational spring stiffness (krot) GNm/rad 65 10–100
Base yield moment (My) MNm 1.675 0.5–5.0
Post-yield rotational spring
stiffness (hard)

% 4.125 1–10

Gamma (γ) – – 0–0.5

Table 1). The remaining parameters defining the model g(.) are
assumed to be known and add to the model error. Initial ranges
for the parameter values are given in Table 1. Prior distributions
related to parameter knowledge are taken to be uniform, which
corresponds to a realistic scenario.

Ground Motion Characteristics
The simulated earthquake-aftershock sequence, for which pre-
dictions will be performed, are shown in Figure 3. The selected
main shock is the Alkion, Greece, earthquake from February 24th,
1981. The selected aftershock is the Izmit, Turkey, aftershock from
September 13th, 1999. The two ground motions are simulated
with a non-linear time-history analysis in a sequential way, with
1 s of zero-acceleration between the two signals. The true behavior
of the base spring is shown in Figure 3 for the main shock and the
aftershock.

Themeasurement uncertainty is simulated by randomly adding
an instance of the chosen measurement uncertainty to each
measured quantity. The measurement error related to natural
frequencies follows a normal n(0,1.5%) distribution while mea-
surement error onmodal displacements is estimated to be defined
by a n(0,5.0%) distribution.

Identification Scenarios
Three identification methodologies are compared in this paper
(see BACKGROUND): (i) TBMU with zero-mean independent
normal likelihood functions; (ii) MBMU with a non-zero-mean
uniform (generalized normal distribution with an L∞-norm)
biased likelihood function; and (iii) EDMF with thresholds that
are derived from biased uncertainty distributions. In inverse tasks,
such as structural identification, epistemic uncertainty resulting
from the discrepancy between model predictions and true struc-
tural behavior has an important influence.

There are two approaches to determine the model uncertainty
related to such discrepancies. Either engineering heuristics can
help to estimate conservative bounds on the model uncertainty,
or measurement data can be used to infer the uncertainty. In the
second case, supplementary parameters θi need to be identified.

A total of eight structural identification applications are com-
pared. The three structural identification methodologies are
implemented for three scenarios based on how uncertainties
are taken into account. A summary of the eight applications is
provided in Table 2.

Two uncertainty scenarios involve predefined uncertainty
ranges. First, model error is ignored (Scenarios S1 in Table 2)
and a zero-mean normal measurement uncertainty is defined
in accordance with the measurement errors that are added to
the true model in order to obtain simulated measurements (see
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FIGURE 3 | Simulation of Mainshock and Aftershock sequence using the true model for simulated measurements. For identification, mainshock and aftershock are
run for each model instance.

TABLE 2 | Eight identification scenarios are used for comparisons.

Identification
methodology

Uncertainty scenario

Measurement
uncertainty
only (S1)

Predefined model
uncertainty (S2)

Parametrized
uncertainty (S3)

Traditional Bayesian
model updating
(Zero-mean normal)

S1,TBMU S2,TBMU S3,TBMU

Modified Bayesian
model updating
(uniform)

S1,MBMU S2,MBMU S3,MBMU

Error-domain model
falsification
(uniform)

S1,EDMF S2,EDMF Does not apply

Scenarios are defined by the structural identification methodologies and the estimation of
uncertainty distributions.

GroundMotionCharacteristics). The seconduncertainty scenario
involves a distribution that combines measurement uncertainty
and model uncertainty (Scenarios S2 in Table 2). Model uncer-
tainty is defined as a uniform distribution that is derived based on
the truemodel error values. The truemodel error is defined by Eq.
10. Absolute uncertainty values that are used in the identification
process are obtained by multiplying relative model errors by the
model prediction with mean parameter values, g(θ̄). Therefore,
the discrepancy between truth and model predictions with true
parameter values, g(θ*), is divided by model predictions resulting
from mean parameter values in Eq. 10.

εmodel =
Truth − g(θ∗)

g(θ̄)
(10)

The third uncertainty scenario involves parametrization of
uncertainties. The initial ranges for relative uncertainty SD and
mean are 0–100%. EDMF relies on engineering judgment to esti-
mate combined uncertainty; therefore, uncertainty identification
is limited to BMUmethodologies.

Four separate model uncertainty distributions are derived for:
initial frequencies, initial MAC values, post-earthquake frequen-
cies, and post-earthquake MAC values. Model uncertainty dis-
tributions are obtained as a uniform distribution between the
minimum and the maximum error calculated for the three first
modes that are used for identification. Likelihood functions for
TBMU and MBMU that are derived from combining predefined
measurement and model uncertainties based on Eq. 10 for nat-
ural frequencies before and after the main shock are shown in
Figure 4. Falsification thresholds that are used in EDMF are
equivalent to the boundaries of the MBMU. The uncertainty
distribution that is calculated using the true model is not zero-
mean. Thus, a zero-mean normal distribution that is fitted using
such a biased distribution results in a wider distribution when
compared to the uniform likelihood function related to MBMU
(see Figure 4).

Three vibration modes are used for identification. There-
fore, in order to limit the number of uncertainty distributions,
single distributions are calculated for initial natural frequen-
cies, post-earthquake natural frequencies, initial mode-shapes,
and post-earthquake mode-shapes. Therefore, when uncertain-
ties are parametrized for BMU applications, additional param-
eters need to be identified. For TBMU, SD for four indepen-
dent zero-mean normal distributions are identified (S3,TBMU in
Table 2). For MBMU, eight additional uncertainty parame-
ters are identified, being the mean and SD of uniform likeli-
hood functions (S3,MBMU in Table 2). For numerical stability
reasons, uniform likelihood functions are approximated with
generalized Gaussian distributions with a norm (κ) of 250
(see Eq. 7).

Sampling of the Parameter Space
Markov-chain Monte-Carlo sampling is used for the applica-
tions of Bayesian model updating (TBMU and MBMU). A
Metropolis–Hastings algorithm (Hastings, 1970) is used to guide
the randomwalk through themulti-dimensional parameter space.
The convergence of the random walk method to the posterior
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FIGURE 4 | Likelihood functions for traditional Bayesian model updating (TBMU) (left) and modified Bayesian model updating (MBMU) (right) calculated using true
model error values (Scenario S2 in Table 2). (A) Zero-mean normal likelihood function for TBMU. (B) Non-zero-mean uniform likelihood function for MBMU.

distribution depends on the parameters that are chose for the
Metropolis–Hastings algorithm. For identification scenarios with
predefined uncertainty, 30,000 accepted samples are used. If
uncertainty is parametrized, the higher number of parameters is
accounted for by using 60,000 samples.

Grid sampling is used for EDMF. An initial model population
is generated by dividing the parameter space (see Table 1) with a
regular grid. The initial range of flexural stiffness is divided into
18 intervals, rotational spring stiffness into 12 intervals, base yield
moment and post-yield spring stiffness into eight intervals, and
Gamma-value into 5 intervals. Thus, the initial model population
is composed of 120,042 parameter combinations. Grid sampling
results in independent simulations for each parameter combi-
nation (no guided search or stochastic sampling), which favors
parallel computing schemes.

Identification Results
The first uncertainty scenario (see Table 2) involves ignoring
model uncertainty, and defining the total uncertainty using zero-
mean normal measurement uncertainty, N(0,1.5%). Although
the total uncertainty is underestimated, TBMU provides identi-
fication results (S1,TBMU). The 30,000 samples that are obtained
using MCMC sampling and that define the posterior proba-
bility of parameter values are shown in Figure 5. The iden-
tification result is precise, as the scatter is low compared to
the initial (or prior) parameter range. This is true for linear
parameters (Figure 5A) as well as for non-linear parameters
(Figure 5B). However, the identification result is biased from the
true parameter values. If model uncertainty, which is usually sys-
tematic and biased, is ignored, inaccurate identification results are
obtained.

Modified Bayesian model updating fails to provide a starting
point for MCMC sampling when model uncertainty is ignored
(S1,MBMU). For100,000 randomly selected starting points in the
parameter space, no parameter combination provides results that
return a likelihood other than 0. Therefore, it is concluded that
using MBMU, the model class, g(.), is rejected. Model class
rejection indicates either a wrong model, a wrong selection

FIGURE 5 | Posterior distribution of parameter values obtained using
traditional Bayesian model updating (TBMU) ignoring model uncertainty
(S1,TBMU in Table 2). The TBMU parameter identification result is precise, yet
biased and inaccurate. Modified Bayesian model updating and error-domain
model falsification falsified the entire model class. (A) Linear parameters. (B)
Non-linear parameters.

or estimation of model parameters, or an underestimation of
uncertainties.

Using EDMF, the initial model population sampled from the
parameter space using a regular grid is entirely falsified when
model uncertainty is ignores (S1,EDMF). In a similar way toMBMU,
this result indicates a misevaluation of the uncertainty or a wrong
model class. The capacity to falsify entire model classes increases
the robustness of structural identification by reducing the risk of
biased results.

The second uncertainty scenario involves predefined
uncertainty with correctly estimated measurement and model
uncertainty (S2 in Table 2). The identification results for linear
parameters that are obtained from the three studied identification
techniques are shown in Figure 6. The tails of the zero-mean
normal likelihood function of TBMU are widespread compared
with the bounds of the uniform likelihood function for MBMU
and EDMF (see Figure 4). Therefore, the identification results
that are obtained using TBMU (Figure 6A) are less precise
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FIGURE 6 | Identification results for linear parameters resulting from correctly estimated model uncertainty for S2,TBMU (A), S2,MBMU (B), and S2,EDMF (C), as defined in
Table 2. Modified Bayesian model updating (MBMU) and error-domain model falsification (EDMF) provide similarly accurate results.

FIGURE 7 | Identification results for non-linear parameters resulting from correctly estimated model uncertainty. Parametric uncertainty cannot be reduced
significantly. (A) Traditional Bayesian model updating. (B) Modified Bayesian model updating. (C) Error-domain model falsification (EDMF).

than EDMF and MBMU. MBMU provides accurate and precise
identification of linear parameters (Figure 6B).

Prediction of modal properties related to the initial state exclu-
sively depend on linear parameters, which are model stiffness
and rotational spring stiffness. Due to a small interval of identi-
fied values for structural stiffness compared to the initial range
(8%), grid sampling for EDMF is re-evaluated using a sequential
scheme: based on the results of the coarse grid (120,402 sample,
see The Measurement Uncertainty Is Simulated by Randomly
Adding an Instance of the Chosen Measurement Uncertainty to
EachMeasured Quantity. TheMeasurement Error Related to Nat-
ural Frequencies Follows a Normal N(0,1.5%) DistributionWhile
Measurement Error on Modal Displacements Is Estimated to Be
Defined by a N(0,5.0%) Distribution. Identification Scenarios),
the linear parameters are resampled in the region containing
candidate models, thereby increasing the total number of sam-
ples to 21,204 (Figure 6C). EDMF explicitly allows engineers to
sequentially add information and model instances (Pasquier and
Smith, 2016).

Identified parameter ranges for EDMF are contained within
identified ranges for MBMU. Unlike MBMU, which involves a
MCMC sampling scheme, EDMF relies on discrete grid sampling
of the parameter space. Therefore, MBMU gives a more refined
result of the identified parameter space contour.

While parameter identification is precise for linear parameters,
identification of non-linear parameters fails to provide precise
results (see Figure 7). The widespread tails of the zero-mean
normal distribution undermine non-linear parameter identifica-
tion for TBMU (see Figure 7A). However, even for uniformmodel
uncertainty distributions (seeFigure 4B), no significant reduction
in the parametric uncertainty related to non-linear parameters can
be obtained (see Figure 7B forMBMU and Figure 7C for EDMF).
This is to be expected since all measurements are made in the
linear range.

The third uncertainty scenario involves parametrizing the like-
lihood function (S3 in Table 2). The identified SD values exceed
the values that are derived using the true model. SDs of the zero-
mean normal likelihood function (S3,TBMU) are shown in Figure 8
for initial and post-earthquake frequencies, f ini and f peq. The SD
is provided as a relative value, as proposed in Eq. 10. Uncer-
tainty parameter identification provides more precision, when
compared to the prior distribution (uniform between 0 and 1).
However, in general terms, uncertainty values are overestimated
when they are parametrized.

For TBMU, the SD of a zero-mean normal distribution is
treated as an uncertain parameter. However, the limited number
of measurements undermines identifiability of structural param-
eters in addition to likelihood function parameters. Thus, no
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reduction in the structural parameter uncertainty is obtained
for either linear or non-linear parameters and the results for
parameter identification are not reported.

Modified Bayesian model updating relies on uniform likeli-
hood functions with a constant probability inside bounds and
zero probability outside the bounds. As MBMU allows biased
uncertainty distribution (not centered on 0), parametrizing uncer-
tainty leads to eight additional parameters for scenario S3,MBMU
(see Table 2): lower and upper bounds on the likelihood function

FIGURE 8 | Identification results for parametrized uncertainties in traditional
Bayesian model updating application (S3,TBMU in Table 2). The SD of a
zero-mean normal distribution is identified. (A) Likelihood function for initial
frequency (f ini) and (B) likelihood function for post-earthquake frequency (fpeq).

FIGURE 9 | Identification of parametrized bounds to the L∞ norm likelihood
function implemented in modified Bayesian model updating (S3,MBMU in
Table 2). (A) Bounds to uniform likelihood function for initial frequency (f ini) and
(B) bounds to uniform likelihood function for post-earthquake frequency (fpeq).

for natural frequencies and MAC values before and after the
earthquake. The identification results for parametrized bounds to
uniform likelihood functions in MBMU are reported in Figure 9
for initial and post-earthquake frequencies. The distribution of
identification results indicates higher precision for the lower
bound than for the upper bound. Also, values for lower bounds
are accurately identified, while upper bounds tend to be overesti-
mated. Overestimated uncertainty bounds result in conservative
parameter identification. In general, the distribution of identified
uncertainty bounds hinders a precise identification of parameter
values.

In this case, 12 measured quantities are available: natural fre-
quencies and mode-shapes of the first three modes before and
after the earthquake. Identifying SDs for TBMU adds four likeli-
hood function parameters to the five structural parameters. Iden-
tifying bounds for uniform likelihood functions in addition to
parameter values would require the identification of a total of 13
parameters. In addition, long computation times, which increase
with the number of parameters (higher number of samples are
needed to get stable results), a high number of parameters is
unidentifiable when limited number ofmeasurements is available.
Therefore, in such scenarios, uncertainties need to be identified
prior to the identification task.

When such error estimations take the form of bounds on uni-
form distributions, the identification results may lead to the con-
clusion that the model class is wrong or the error underestimated.
Underestimating the uncertainty can lead to biased identification
results when error estimations are taken to be Gaussian, as it is
the case using TBMU when model error is ignored. Such biased
identification potentially leads to wrong predictions, as shown in
the next section.

Prediction
Identification of parameter values is an intermediate step when
the goal is to predict behavior. In this section, identification
methodologies are compared with respect to the accuracy and
precision of behavior predictions. Predictions are carried out for
base moment and top displacement during an aftershock. Since

FIGURE 10 | Comparison of predicted absolute maximum base moment during an aftershock for tested identification scenarios. If model errors are ignored (S1 in
Table 2), error-domain model falsification (EDMF) and modified Bayesian model updating (MBMU) indicate that the wrong model class is used (A). The vertical axis
(probability density function) for measurement uncertainty (A) is increased for better readability. (B) Predefined uncertainty. (C) Parameterized uncertainty.
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loading conditions differ from measurement conditions (modal
properties), extrapolation is needed.

When extrapolation is carried out, the model error potentially
differs from the model error that is used for identification. For
instance, top displacement depends linearly on stiffness, while
model properties depend on the square-root of stiffness. There-
fore, model error should be redefined for extrapolation-based
prognosis.

Model prediction uncertainty is estimated from true model
predictions using Eq. 10 in a similar way than model uncertainty
is estimated for identification. Calculating model error using Eq.
10 returns a single value for prediction error (−55% for predicted
maximum base moment and −73.5% for predicted maximum
top displacement). Therefore, model uncertainty is assumed to
be uniformly distributed between the estimated prediction errors
and 0. Model uncertainty, Ug in Eq. 4, is thus estimated to be
part of the interval [−55%, 0%] for base moment and [−73.5%,
0] for top displacement. Estimated prediction uncertainties are
larger than model uncertainty related to modal properties, which
is estimated for identification. Hence, the need for re-evaluating
model uncertainties to achieve robust predictions is underlined.

For identification scenarios that ignore model error (S1 in
Table 2), the prediction range is taken without adding model
uncertainty. For identification scenarios that involve parametriz-
ing the uncertainty distributions, model prediction uncertainties
need to be re-estimated as well, as identified errors are limited
to the measurement conditions. The modeling error is applied to
identification scenarios (b) and (c), Figure 10. A Monte-Carlo
scheme with 5 million samples is used to combine parametric
prediction uncertainty with model prediction uncertainty.

Predictions related to maximum absolute base moment val-
ues are presented in Figure 10. If model error is ignored (see
Figure 10A), MBMU and EDMF indicate a wrong model class.
Posterior parameter distributions for TBMUwithoutmodel errors
result in biased predictions compared to the true aftershock base
moment.

Error-domain model falsification assumes uniform predic-
tion intervals based on bounds that are derived using a target
prediction probability of 0.95. For predictions based on BMU,

the complete prediction distribution is reported. The prediction
results based on the true model error are accurate, as the true val-
ues are included in the prediction distributions. Prior parameter
distributions without identification result in a prediction interval
of 6–68 kNm for base moment. Thus, prediction range resulting
from EDMF is reduced to 55% of the initial prediction range.
For parametrized uncertainties (Figure 10C), no reduction in the
prediction range can be obtained, given the non-identifiability of
model parameters.

Figure 11 shows the prediction results related to the top dis-
placement during an aftershock.Again, the prediction ranges yield
similar results. TBMU without model error (S1,TBMU in Table 2),
Figure 11A, provides precise yet inaccurate biased results. The
prediction range obtained from EDMF (S2,EDMF inTable 2) is 14%
of the initial prediction range and provides accurate thus, robust,
results. Also, the prediction ranges resulting from parametrized
uncertainties are high (see Figure 11). For top displacement pre-
dictions, the maximum likelihood estimates provided by BMU
scenarios are acceptable. However, given the results for base
moments, it appears best to sacrifice prediction precision in order
to increase prediction accuracy, through use of EDMF, Figure 11.

Estimating model errors correctly is challenging in full-scale
applications. Therefore, the robustness of EDMF results with
regard to misevaluated model uncertainty is assessed. As EDMF
results are based on grid sampling, changing model uncertainty
values does not require new model simulations. EDMF thereby
enables the engineer to adapt and change model uncertain-
ties when increased knowledge of the structure is acquired, for
instance, through in situ inspections.

The influence of model uncertainty levels is first assessed with
respect to the number of candidate models that are found. As can
be seen in Figure 12, no candidate models are found for model
errors that are lower than 95% of the model uncertainty that is
estimated using the true values in Eq. 10. This source of robustness
is very useful in applications on full-scale structures. If model
errors are overestimated, higher numbers of incorrect models are
accepted.

Even more important than identification, the prediction
robustness of EDMFwith regard tomisevaluation of model errors

FIGURE 11 | Comparison of predicted absolute maximum top displacements during an aftershock for tested identification scenarios. If model errors are ignored (S1

in Table 2), error-domain model falsification (EDMF) and modified Bayesian model updating (MBMU) indicate that the wrong model class is used (A). The vertical axis
(probability density function) for measurement uncertainty (A) is increased for better readability. (B) Predefined uncertainty. (C) Parameterized uncertainty.
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FIGURE 12 | Size of the candidate model set evaluated for changing levels of
model error estimations.

FIGURE 13 | Evolution of the maximum base moment prediction range during
an aftershock. No candidate models were found for model uncertainties
smaller than 90% of the model uncertainty derived using the true model.

is assessed in Figure 13. If model uncertainty is underestimated,
by more than 10%, no candidate models are found. This feature of
EDMF (andMBMU) leads to robust predictions. TBMU lacks this
source of robustness, as identification results are found even for
0%model error (see Figure 6). Thus, uniform PDFs for combined
model and measurement uncertainties are appropriate and robust
for situations with unknown and varying uncertainty correlation
values. Predictions that involve extrapolation are robust with
respect to large, biased, and correlated uncertainties. However,
overestimation of model error reduces the precision of predic-
tion ranges. Therefore, EDMF and MBMU sacrifice precision for
increased accuracy (or robustness).

SUMMARY AND DISCUSSION

Three structural identification methodologies are compared
in terms of parameter identification and behavior prediction.
Through varying scenarios for taking model uncertainty into
account (no model uncertainty, predefined model uncertainty
and parametrized model uncertainty), the data-interpretation
methodologies are tested with respect to accuracy of prediction
intervals that involve extrapolation from linear modal properties

(used for identification) to non-linear time-history predictions.
Traditional assumptions, such as zero-mean normal uncertainties
are found to be inappropriate in such applications.

Simulated measurements from a simplified structure are used
to test three structural identification methodologies. Upper
bounds of the usefulness of structural identification using non-
linear behavior models from linear measurements are obtained.
Model uncertainties, such as ignoring shear contribution, chang-
ing hysteretic rules and ignoring springs on upper stories (as
shown in Figure 2) are quantified. Non-linear time-history analy-
ses are path dependent. Thus, a significant amount of uncertainty
is related to the loading history of non-linear springs. Modal
measurements do not provide information about past maximum
encountered strains or displacements. However, unlike base shear
or top displacements, modal properties can be measured quickly
and at low cost. Therefore, this paper gives an upper bound
estimation for the efficiency of identifying linear parameters for
non-linear analyses.

Traditional assumptions for structural identification are shown
to be inappropriate. However, future work on full-scale structures
and models with increased complexity is needed to validate the
accuracy of structural identification methodologies that are based
on uninformed (uniform) uncertainty distributions.

CONCLUSION

Structural identification with non-linear models based on linear
measurements is a challenging task. Three identification tech-
niques that provide populations of solutions are reviewed and
compared. The following conclusions are drawn:

– Uniform probability distributions for combined model and
measurement uncertainties are appropriate for situations with
unknown and varying uncertainty correlation values. Predic-
tions that involve extrapolation are robust with respect to large,
biased and correlated uncertainties. Prediction precision is
sacrificed to maintain accuracy.

– Traditional Bayesian model updating that relies on non-
uniform uncertainty predictions can result in biased predic-
tion ranges. Maximum likelihood estimates should, therefore,
be avoided. In addition, unlike MBMU and EDMF, TBMU
fails to reject wrong model classes, which can result in wrong
identification as well as incorrect predictions.

– Adding prediction error is essential for predictions of struc-
tural behavior. For prognosis of building responses to actions
that differ largely from measurement conditions, prediction
uncertainty can be larger than identification uncertainty.

– Parametrized uncertainties in MBMU (L∞ norm) provide
conservative estimates of upper bounds of the correct model
uncertainties. However, small numbers of measurements can
undermine identification of parameter values along with
parametrized uncertainty distributions.

– For parameters that are related to non-linear behavior, the
precision of structural identification based on linear mea-
surements (natural frequencies) is understandably lower than
for linear parameters. Nevertheless, prediction ranges can be
reduced by 30% (for base moments) to 90% (for top displace-
ments) using EDMF.
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