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In 2015, space heating and domestic hot water production accounted for around
40% of the Swiss final energy consumption. Reaching the goals of the 2050 energy
strategy will require significantly reducing this share despite the growing building stock.
Renewables are numerous but subject to spatial–temporal constraints. Territorial planning
of energy distribution systems enabling the integration of renewables requires having
a spatial–temporal characterization of the energy demand. This paper presents two
bottom-up statistical extrapolation models for the estimation of the geo-dependent heat
and electricity demand of the Swiss building stock. The heat demand is estimated by
means of a statistical bottom-up model applied at the building level. At the municipality
level, the electricity load curve is estimated by combining socio-economic indicators with
average consumption per activity and/or electric device. This approach also allows to
break down the estimated electricity demand according to activity type (e.g., households,
various industry, and service activities) and appliance type (e.g., lighting, motor force,
fridges). The total estimated aggregated demand is 94 TWh for heat and 58TWh for
electricity, which represent a deviation of 2.9 and 0.5%, respectively compared to the
national energy consumption statistics. In addition, comparisons between estimated and
measured electric load curves are done to validate the proposed approach. Finally, these
models are used to build a geo-referred database of heat and electricity demand for
the entire Swiss territory. As an application of the heat demand model, a realistic saving
potential is estimated for the existing building stock; this potential could be achieved
through by a deep retrofit program. One advantage of the statistical bottom-up model
approach is that it allows to simulate a building stock that replicates the diversity of
building demand. This point is important in order to correctly account for the mismatch
between gross and net energy saving potential, often called performance gap. The impact
of this performance gap is substantial since the estimated net saving potential is only half
of the gross one.

Keywords: geo-depended energy demand, energy consumption by use, building classification, electric load curve,
bottom-up model
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INTRODUCTION

The global energy statistic report (BFE, 2016) and the sectorial
energy consumption analysis of Kemmler et al. (2014) show that
around 40% of the Swiss final energy consumption is used for
space heating (SH) and domestic hot water (DHW) production.
Adding the energy consumed by other building services to heat
demand, shows that around half of the total final energy con-
sumption can be attributed to the building sector. For this reason,
the 2050 Swiss Energy Strategy targets to reduce the demand of
the Swiss building stock by 63%, while increasing the share of
renewable energy (Kirchner et al., 2012). The 2050 Swiss Energy
Strategy has ambitious CO2 emission reduction targets as well.
Replacing fossil energy resources by electricity will raise questions
on how to satisfy the increasing electricity demand (58 TWh in
2015).

Using Kaya’s identity, Mavromatidis et al. (2016) emphasize
that reaching these targets will require to work along two axes:
energy efficiency to reduce energy demand and substitution of
fossil resources by renewables to reduce emissions per produced
energy unit. A precondition to design strategies allowing to
progress along these two axes is to have a better knowledge of
the territorial energy demand. Territorial aspects related to heat
and electricity consumption are a main concern of major EU
research projects, such as Connolly et al. (2013), Persson et al.
(2014), and David et al. (2017). The territorial aspect of heat
demand is predominant, since heat is difficult and expensive
to transport over long distances. Renewable heat resources are
numerous but often linked to spatial–temporal constraints. For
example, the use of high enthalpy geothermal and/or waste heat
requires the development of district heating networks. At the Swiss
national level, the potential use of these resources is studied by
the SCCER FEEB&D (2017) project hosted by the Swiss Center of
Competence in Energy Research (SCCER). The project is based
on a spatial–temporal characterization of energy demand and
renewable energy supply; one of its tasks is to design optimal
decentralized energy systems that are able to match both the
demand and supply side.

The characterization of heat and electricity consumption is also
an important topic to better understand the effectiveness of energy
efficiency programs. Heat demand reduction can be achieved, for
example, by retrofitting the building envelope, using ventilation
with heat recovery and improved building control systems. The
effect of the performance gap, defined as the discrepancy between
the expected and real savings achieved by building retrofit, was
quantified by Khoury (2014) the for post-war multi-family resi-
dential buildings of the Canton of Geneva. How this gap impacts
the projected heat demand reduction of the entire Swiss building
stock is estimated in Section “Impact of Large-scale Retrofit on
Heat Demand.” The design of programs that target the reduction
of electricity demand is more complex because of the different
possible uses of electricity. Detailed knowledge of how the elec-
tricity demand of a territory breaks down into various activities
and electric appliances is a precondition for such a program. This
is illustrated by Le Strat’s (Le Strat, 2008) study giving a detailed
analysis of how electric consumption has evolved in the Canton
of Geneva. In 2009, this study was used to redesign the large-scale
electricity savings programECO21 launched by the energy service

company SIG. This knowledge allows, for example, to make ex
ante estimations of savings achievable by large-scale electric device
replacement, such as efficient lighting in the common areas of res-
idential buildings. Expected versus actual savings for two ECO21
subprograms were compared (Cabrera et al., 2012) using three
different approaches.

Geographical information systems (GIS) have gained major
importance thanks to the increasing computing power and data
storage capacities combined with big data analysis techniques.
The use of GIS databases to assess energy demand and renew-
able resources is relevant at several territorial scales. Studies at
the regional scale use building level demand as input for their
models, as, for example, Saner et al. (2014) and Orehounig et al.
(2014). The potential of combining thermal and PV solar panels
is assessed for one urban and one suburban district by Quiquerez
et al. (2015) using a GIS analysis. At the Swiss national scale
Eicher et al. (2014) use GIS demand models aggregated on a
hectare raster. At a much bigger scale, such as the European
Union, Connolly et al. (2013) or Persson et al. (2014) use a 1-km2

raster grid.
This paper presents two geo-dependent energy demand mod-

els, the first deals with final energy demand for SH and DHW
production and the second one concerns electricity demand. The
two following subsections give specific background information
for these two models.

Geo-Dependent Heat Demand
The review paper of Swan and Ugursal (2009) outlines a clear
classification of available models that estimate heat demand of
buildings. Bottom-up models have the advantage that they esti-
mate the energy demand of small consumer aggregates, as for
example buildings that can be linked to geographical coordi-
nates. To estimate the energy demand at the building level, the
two main alternatives are to use either engineering or statistical
models.

Engineering models are based on building physics and require
detailed information on the building geometry as well as the
envelope components and their associated U and g values. At
the national scale such detailed data are not available and default
values formany parameters must be used (Perez et al., 2011) when
simulating the heat demand of a large building stock. Choos-
ing this approach implies that buildings of same type have the
same losses by conduction through the building envelope. Energy
demand, therefore, only depends on local climate conditions and
solar gains.

Statistical models encapsulate the complex set of building char-
acteristics that explain the energy demand in a smaller set of
parameters. Regression models estimate these parameters using
calibration samples of buildings with known energy consumption.
Another advantage of basing the model on measured energy
demand is that it includes the influence of the users (inhabitants
and facility manager). This influence often leads to a difference
between calculated and actual consumption even in cases where
the characteristics of the building are known in detail (De Wilde,
2014).

These reasons motivate the choice of a statistical extrapolation
method based on measured final energy consumption; such a
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method accounts for the behavior of the user and the variability of
demand between buildings with similar characteristics. A repre-
sentative sample of around 27,000 buildings containing measured
final energy for SH and DHW is used to calibrate the model.

Geo-Dependent Electricity Demand
There are numerous methods to simulate load curves. The review
paper of Grandjean et al. (2012) classifies the most relevant algo-
rithms into five groups, including both random (replicating the
diversity of consecutive days) and deterministic models (repli-
cating average behavior). For example, high-resolution models,
such as Marszal-Pomianowska et al. (2016), seek to include the
stochastic variability of electricity demand related to the behavior
of the inhabitants. At the Swiss national level, the goal is rather
to provide a large-scale model based on the average behavior of
users and their related activities. The proposed approach is closer
to that of the FORECAST/eLOAD model (Jakob et al., 2014). The
primary target is to offer the Swiss municipalities a tool allowing
to identify electricity saving potential and to predesign an ECO21
type program. The key question is how the electric demand of
a municipality is divided into the various activities and electric
appliances.

The model presented in Section “Geo-Dependent Electricity
Demand” is the result of a collaboration between the academic
research project SCCER FEEB&D (2017) and the local utility
SIG. The basis for this model is a study of Le Strat (2011) that
characterizes the electric consumption of a territory including all
the energy service companies (ESCO) of the EOS holding group.
This model decomposes the electricity demand into 36 activities
and 18 groups of electric appliances. The planned outcome of this
collaboration is the ElectroWhat web platform, which seeks to
answer the question “who consumes where, when and for what
use” at the national level. Throughout this paper, the term Elec-
troWhat often also refers to the geo-dependent electricity demand
model.

Finally, the resulting GIS data of both models is stored in a
database developed in collaboration with EPFL in Lausanne, also
containing the renewable PV rooftop potential (Assouline et al.,
2015) and low enthalpy geothermal potential (in preparation).
Such a database offers the opportunity to performmany territorial
studies at the Swiss national level.

METHODS

This section describes themethods used tomake a geo-dependent
characterization of heat and electricity demand. These two
demands are linked for buildings that are heated using electricity.
In this case, we first start to estimate the final energy demand for
SH and DHW using the heat demand model. For each municipal-
ity we use the fraction of dwellings that are equipped with electric
heat production systems. For this fraction, the heat demand is
then converted into electricity using efficiency factors that depend
on the heat production system (resistance electric heating or
heat pump). The yearly demand estimations are then divided in
monthly demands using ratios of monthly degree day (DD) over
yearly DD.

Geo-Dependent Heat Demand
The chosen approach, presented in this section, is a statistical
regression bottom-upmodel (Schneider et al., 2016). It is based on
measured heat demand and heated surfaces values of a representa-
tive set of around 27,000 buildings. It estimates the heat demand
per square meter of each building of the Swiss national building
register as a function of its category, age, and location, and its
heated surface as a function of the category, gross surface, and/or
dwelling surface. A bootstrap resampling algorithm quantifies the
uncertainty inherent to the use of average demand values per
age and category. This model improves previous work done by
Eicher et al. (2011). Figure 1 outlines the general structure of
the model. The heated surface AE (square meter) and the floor

FIGURE 1 | Heat demand model overview.
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specific heat demand E (MJ/m2/year) are estimated combining
basic information provided by the Swiss building register (OFS,
2014a) with average statistics calculated using calibration sets.
The estimations of the heated surface AE and floor specific heat
demand E are done separately, since they allow to take account
of regional climate conditions that may vary a lot depending on
geographical position.We assume that only E depends on climatic
conditions, whereas the relation between AE and gross building
surface (Agross) and/or dwelling surface (Adwelling) do not. The
final energy demand SEB (MJ/year) of a building is obtained by
multiplying these two estimations.

Finally, for each pixel of territory, the estimated heat demand
is summed over all buildings and a bootstrap algorithm allows to
compute a confidence interval around the estimated value given
by the model.

Datasets
The model uses the following datasets:

(i) The Swiss national building register (GWR) maintained
by the Swiss Federal Statistical Office (OFS, 2014a) that
contains basic building information such as: geographical
coordinates, category, age, ground, and dwelling surface as
well as themain energy carrier for approximately twomillion
buildings. This database is not exhaustive for non-residential
buildings. A comparison with the Swiss building footprint
data layer (Swiss Topo, 2015) shows that around 400,000
buildings are missing. A unique federal building identifica-
tion number (EGID) identifies each building, which allows
to link these data with other databases. Basic building infor-
mation data, such as building category, construction period,
Agross, Adwelling, geographical coordinates, and main energy
carrier are extracted from this dataset.

(ii) The Geneva SITG IDC database contains measured energy
consumption as well as heated surface AE defined accord-
ing to the SIA 416/1 standard for residential multi-family
buildings and buildings used for non-residential purpose.
This declaration is mandatory and is updated each year by a
network of trained agents. This database (SITG, 2015) con-
tains around 16,000 buildings, out of a total of approximately
48,000 buildings for the Canton of Geneva.

(iii) The GEAK database contains the energy consumption for
SH and DHW averaged over 3 years. The database contains
11,500 buildings (approximately 0.5% of the Swiss building
stock) spread over the entire Swiss territory.

(iv) The SIA 2028 standard (SIA, 2010) contains DD for 40mete-
orological stations.Figure 2 displays the fit of a linear regres-
sion between the DD, altitude and latitude in CH_LV03
coordinates. Each dot of the scatterplot represents the esti-
mated versus measured DD of ameteorological station. This
linear fit will be used at later stage to estimate the DD for
each building of theGWRusing its altitude and geographical
coordinates. The R2 is 0.95, the maximum observed relative
difference is 14% and the average difference is 4%.

Estimation of Heated Surface AE

Cross-matching the SITG IDC and GWR databases allows to
study the relations between building category, gross surface,

FIGURE 2 | Model degree day DD versus SIA 2028 DD for all Swiss
meteorological stations.

dwelling surface, and actual heated surface indicated in the SITG
IDC database. Figure 3 shows such a linear regression for the
multi-family residential buildings. The buildings with known
heated surface AE of the SITG IDC database are divided into four
main categories and ten sub-categories based on a classification
that divides the sample into groups with significant differences
for the ratio AE/Agross. Table 1 gives the regression coefficients
obtained from ten different building categories, given by 8,951
observations from the SITG IDC database. These regression coef-
ficients allow to estimate for each building of the GWR database,
the heated surface AE by means of the gross surface (number
of floors x ground surface) and/or the dwelling surface. If both
estimations are possible, priority is given to the estimation based
on gross surface because the coefficient of determination R2 of the
linear regression is higher.

Finally, for each building of the IDC database and for both
linear regressions, we compute the relative error ΔAE (%) between
the actual and the estimated heated surface using

ΔAE =
AE − fgross · Agross

fgross · Agross
, (1)

ΔAE =
AE − fdwell · Adwelling

fdwell · Adwelling
. (2)

These values, which are stored per building subcategory, will
be used further down in Eq. 10 for the calculation of confidence
intervals.

Note that the GEAK database, which is anonymous, could not
be linked to the gross and dwelling surfaces of the GWR, reason
why it is not used in this part of the calculation.

Heat Demand Estimation
For each building of the GWR database, the specific final energy
for the heat demand SEB is estimated by means of its age and
category, using average values given by the SITG IDC and GEAK
datasets, which are normalized to a common climatic reference.
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FIGURE 3 | Heated floor area AE as a function of gross surface Agross and Adwelling for multi-family buildings.

TABLE 1 | Regression coefficients between heated floor surface and gross surface (fgross) and between heated floor surface and dwelling surface (fdwell), as observed in
the IDC database.

Category Subcategory fgross R2 N fdwell R2 N

MF residential Only residential 0.890 0.973 5,103 1.275 0.952 4,591
With annex use 0.845 0.962 2,639 1.406 0.889 2,350

SF residential Only res. or with annex use 0.732 0.936 462 1.398 0.963 313

Non-residential Office and commerciala 0.787 0.917 282
Agricultural and industrialb 0.681 0.920 134
Others 0.702 0.921 29

Mixed use Office and commerciala 0.636 0.894 313 1.847 0.189 161
Agricultural and industrialb 0.664 0.906 31 12.428 0.553 27
Others 0.631 0.889 57 2.337 0.232 42

a Includes hotels, schools, and hospitals.
b Includes depositories, garages, and museums.
R2, coefficient of determination of the linear regression; N, number of buildings.

Due to its geographical specificities, Switzerland has important
climatic differences between regions that depend mainly on alti-
tude variations. To take this into account, a climatic correction is
done to adapt the heat demand of a building to the local climatic
conditions it is subject to.

Normalization of Calibration Data to a Common Reference
Since the heat demand data of the GEAK and SITG IDC calibra-
tion sets concern a variety of energy carriers and locations, it must
first be normalized to a common reference. Therefore, for each
building of these datasets, the measured final energy demand E
(MJ/m2 year) is converted into useful heat demand for SH using
the relation

QSH = ηECE − QDHW, (3)

ηEC (depending on energy carrier) is the transformation effi-
ciency factor estimated by Khoury (2014) and QDHW the useful
heat demand for DHW according to the SIA 380/1 norm. For
buildings with thermal solar panels, QDHW only accounts for the
fraction of the DHW demand which is produced by the main
heat production system. In such a case, using QSIA

DHW in Eq. 3
would lead to overestimating QDHW and underestimating QSH.
To avoid underestimated QSH values the following constraint is

added, which implies that at least one third of the total produced
heat is used for SH

QDHW = min
(
QSIA

DHW, 2/3 ηECE
)
. (4)

This thumb rule sets an upper limit for the ratio between QDHW
and QSH that corresponds to very efficient buildings. This limit is
based on observations made in buildings with high energy stan-
dards for which the energy required for DHW can be higher than
the one for SH. Note that this choice will have limited influence
on the final result since it only impacts the fraction QSH of E that
is subject to the climatic correction of Eq. 5 and only concerns
a small fraction of buildings. The impact of this thumb rule was
evaluated by looking at the difference between QGE

SH (see Eq. 7)
calculated with the constraint (4) and QGE

SH calculated without. All
absolute differences are below 2% and the average difference is
0.2% considering all categories and construction periods.

The useful energy demand values for SH are further normalized
for each building to a common climatic reference (arbitrarily
Geneva) using

QGE
SH = QSH

DD (GE)
DD (building)

, (5)
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DD(building) stands for the standard SIA 2028 heating DDs of
the climatic station associated to the building of the calibration set.
The assumption behind this climatic correction is that the yearly
demand for SH depends linearly on the DD. For this reason a ratio
of DD between two climatic regions allows to estimate the QSH of
a building in various climates.

Finally, the SITG IDC and GEAK data sets allow computing
15,588 and 11,499 QGE

SH values normalized to the Geneva climatic
reference.

Computing the DD for Each Building of the GWR
Combining the geographical coordinates with a topographic alti-
tudemodel permits to compute the altitude of each building of the
GWRusingEq. 6.Figure 2 illustrates the fit of the linear regression
model estimating DD(building) by means of the building altitude
Alt(building) and latitude Lat(building)

DD (building) = 1484 + 2.42 Alt (building)
+ 0.0035 Lat (building). (6)

Statistical Analysis by Building Category and Age
For the purpose of statistical analysis, the previous data is grouped
in four categories of buildings (multi-family residential, individual
residential, non-residential, mixed use). For each of these cate-
gories, the data is further divided into 12 construction periods,

and analyzed in terms of the statistical distribution of QGE
SH as

displayed in Figure 4. At this stage, it is worthwhile noticing that
the variability within each construction period is much higher
than between the periods, as previously observed by Khoury
(2014).Note that this subdivision is different from the one used for
the AE estimation, since the building characteristics that influence
the specific heat demand are not the same as those influencing the
ratio between AE and Agross.

Finally, for each building category and construction period, the
average SH demand, which will be used for extrapolation of the
GWR database is defined by

QGE
SH =

∑
{}Q

GE
SH AE∑

{}AE
. (7)

The sum in Eq. 7 is made for all buildings of same category
and construction period contained in the calibration samples.
The average is weighted by AE to give more importance to large
buildings since they will also have more influence in the energy
demand of a portion of territory. This will reduce the bias that
could be introduced by small buildings having extreme specific
heat demand QGE

SH .
This analysis is done separately for the SITG IDC and GEAK

datasets, the respective values being used for the reconstruction

FIGURE 4 | Boxplot distribution of QGE
SH by construction period and building category (SITG IDC database).
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of the entire GWR building stock located in Geneva, respectively,
for the rest of Switzerland.

Heat Demand at Building and Pixel Levels
For each building of the GWR database, the final energy demand
per square meter is estimated by the average demand of the
corresponding category and construction period using

Ê = 1�ηEC

(
QGE

SH
DD(building)

DD(GE)
+ QDHW

)
. (8)

Since the average specific heat demand QGE
SH is normalized to

the Geneva climate, it must then be adapted to the local climate
conditions in which this estimation will be used. The DD ratio
of Eq. 8—the inverse of the one of Eq. 5—transforms the Qh
of the Geneva climate into the ambient building climate. The
DD(building) of the building is computed by using in Eq. 6 the
geographical coordinates and the altitude of the building.

On this basis, the sum of the estimated heat demand of all
buildings contained in a pixel of territory is computed using

ŜEPixel =
∑

B∈Pixel

ŜEB =
∑

B∈Pixel

ÂE Ê. (9)

The upper procedure is repeated for the entire Swiss territory,
for square pixels of scalable sizes, ranging from 100m to 1.6 km.

Confidence Intervals
For each of the above pixels, we compute a confidence interval for
the estimated heat demand value. It is computed using the boot-
strap resampling algorithm (Efron and Tibshirani, 1993), which
consists in generating a heat demand distribution replicating the
dispersion of the calibration datasets. A random sampling within
the sets of relative errors ΔÂE defined by Eqs. 1 and 2 allows to
replicate the error of the linear regression models used to estimate
the heated surface AE. A random sampling in the distribution
of QGE

SH values replicates the diversity of heat demand per square
meter within a building category.

Finally, for each building of the pixel, a replicated Ê∗ value
is generated by replacing the average QGE

SH value of Eq. 8 by a
randomly picked value in the corresponding calibration dataset
(same building category and construction period). Similarly, the
heated surface ÂE is replaced by

ÂE
∗

=
(
1 + ΔÂE

)
ÂE, (10)

where ΔÂE is a randomly picked relative error of the correspond-
ing linear regression model. Feeding the Ê∗ and ÂE

∗
values into

Eq. 9, generates a replicated heat demand for the entire pixel.
Repeating this procedure a 1,000 times per pixel generates the
heat demand distribution of each pixel. Finally, the limits of the
10% level confidence interval are the 5 and 95% percentiles of this
distribution. Similarly, this distribution is used to calculate the 5
and 1% level confidence intervals.

Geo-Dependent Electricity Demand
This section describes the model used to decompose the electric
demand of a territorial unit into various activities and groups of
electric appliances (Schneider et al., 2017). The choice of a Swiss
municipality is adequate since it represents the smallest politi-
cal entity of Switzerland. For this reason many socioeconomic
indicators are available at this level. In 2016, Switzerland had
2,287 municipalities of quite heterogeneous size. The number of
residential dwellings ranges from 14 to 224,774, the city of Zürich
being the biggest municipality after the city of Geneva. Since the
spatial constraint for electricity is lower than for heat, it did not
seem of interest to break down the territory into pixels as in the
case of heat demand. Another particularity of certain regions is
that the ratio between main and secondary residences varies a lot.
The percentage of main residential dwellings ranges from 52%
for the Canton of Graubünden to 98.8% for the Canton of Basel.
This socio-economic characteristic has an important influence on
energy demand.

As illustrated in Figure 5, the yearly demand of a municipality
is split into three main sectors, each one with its own estimation
algorithm as described in the following two subsections. The
yearly consumption (YC) is split into 36 activities and 18 electric
appliances such as lighting, fridges, TV, etc. A further step consists
in transforming the yearly demand into estimated load curves
using a library of load curve shapes.

The heat demand model of Section “Geo-Dependent Heat
Demand” allows to estimate the final energy demand for SH and
DHW. Combining these estimations with fractions of dwelling
using electric heat production systems permits to estimate the
amount of electricity used for SH and DHW. In case electric heat
production is based on a heat pump, we use an average coefficient
of performance of 2.5 to convert useful heat into electric demand.

Yearly Demand per Activity and Electric Appliance
Industry and Services
For eachmunicipality, the estimation of the YCof the industry and
services sector is based on the number of employees per NOGA

FIGURE 5 | Overview of the geo-dependent electricity demand model.

Frontiers in Built Environment | www.frontiersin.org August 2017 | Volume 3 | Article 537

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Schneider et al. Swiss Spatial–Temporal Energy Demand

activity code available in the STATENT database (OFS, 2014b).
This statistic is combined with unitary average consumption per
employe and NOGA code. For the territory of Geneva and of
the EOSh group, these unitary consumptions are estimated using
the total billed electricity per activity. For the remaining Swiss
municipalities, the average unitary consumptions are calculated
using a yearly national survey collected fromapproximately 12,000
companies (Bendel et al., 2011). This approach is similar to the
one used by the FORECAST/eLOAD model (Jakob et al., 2014),
with the difference that FORECAST/eLOAD uses profiles for
occupancy and appliance distribution over time provided by the
SIA Standard 2024 (SIA, 2015).

A next step consists in estimating for eachNOGA activity code,
the amount of electricity used for each group of electric appliances.
This further distribution of the electric consumption is based on
average fractions of the total electricity consumed by each group
of electric appliances; these fractions come from audit and case
studies. Finally, for eachNOGA activity code these fractions allow
to split up the total yearly demand into different appliances, as
for example lighting, motor force, heat, etc. After completion
of this step, the yearly estimated electricity consumption of the
Industry and services sector is split into 55 activities and 15 electric
appliances.

Common Appliances and Public Lighting
The common appliances of a collective residential building
include the lighting of the staircase, the elevator, the common
laundry, air ventilation and other technical installations. The size
and age will of course have an influence on the consumption of
these services. Nevertheless, for estimation on a large scale, aver-
age values representing an average sized building will be accurate
enough. For public lighting the main underlying assumption is
that the installed light power (including traffic lights) is linked
to urban density. This approximation does not account for speci-
ficities, as for example extra urban highways and tunnels. These
two kinds of electric consumption are supposed to depend mainly
on the number of collective dwellings. Consumption is estimated
by combining number of dwellings and unitary consumptions per
dwelling.

As in the previous section, priority is given to unitary con-
sumptions calibrated on local ESCO bills to account for regional
differences. For example, there are big differences among several
Swiss regions in use practices of lighting in the common areas
of buildings. In Geneva, for example, it is mandatory to have
the staircase illuminated day and night. The ECO21 program
promotes low consumption light fixtures with occupancy sensors
allowing the light to switch on only when required. In the Canton
of Vaud, the common practice is to have staircase lighting with a
manual switch.

The Residential Sector
The consumption of the average household is estimated by com-
bining equipment rates, times of use and average power for each
main use appliance. The unexplained part is included in the appli-
ance “other.” A stock model, based on sales statistics of electric
devices per energy efficiency label, permits to estimate the average
power used by a device. Such sales statistics are available in the
report (EAE, 2009), for example.

Several European norms define the efficiency of the device in
terms of the electric consumption per unit according to the device
type. For fridges (2003/66/CE), the label gives the ratio between
the consumptions of the labeled device and a standard one. In
this case, the normal consumption of the standard fridge depends
mainly on the refrigerated volume.

The average YC of a device currently in operation is computed
by summing the products of average consumption per efficiency
label YC(ELabel) and the fraction of devices in operation

YC =
∑

(ELabel)

YC(ELabel) F(ELabel). (11)

For most electric devices, the same average estimated YCs are
used for the entire Swiss territory. The main regional difference
concerns the equipment rate of electric cookers.

Estimation of Load Curves
A library of average load curve shapes per electric appliance type
and activity permits to split the YC into monthly estimations.
The used percentages defining these shapes are based on mea-
sured seasonal effects that are particularly pronounced for heating
and lighting. Monthly demand is further broken down into daily
demand forworking andnon-working days and finally into hourly
demand. The load curve of a particular municipality is estimated
by adding the individual load curves of all activities and all electric
appliances.

GIS Energy Demand and Renewable
Resources Database
Relational database servers and data exchange protocols, as for
example the simple object access protocol (SOAP) are powerful
tools allowing data interconnection originating from different
sources. To facilitate data exchange, a database has been set-up
in collaboration with EPFL that consolidates results of the geo-
dependent energy supply and demandmodels. This consolidation
fulfills the following requirements:

• Gives the results of our model estimations for energy supply
and demand on a harmonized geographical aggregation level
(municipality level and 200m× 200m pixel size).

• Displays documentation on the delivered data.
• Provides easy and flexible access to data using a web-service.
• Provides scripts allowing to build a part of this database (heat

demand).

The actual release of the database contains rooftop PV poten-
tial (Assouline et al., 2017) with monthly and yearly values for
each municipality in Switzerland as well as yearly heat demand
and electricity estimations derived from the models presented in
this paper. The database provides PV supply potential and heat
demand estimations up to a resolution of 200m× 200m pixels.
Concerning electricity demand, the database contains for each
municipality the yearly demand estimation split up into activi-
ties and appliances. A dedicated web-service allows to query the
database using the SOAP protocol. The user manual and sample
of scripts to query the database are in the report of Schneider et al.
(2015).
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RESULTS AND APPLICATIONS OF THE
MODELS

The primary target of both models is to achieve a geo-dependent
energy characterization of the Swiss energy demand.Nevertheless,
it is of interest to derive some statistics aggregated at the national
level and to compare them (as shown in Sections “Heat Demand
Statistics Aggregated at the National Level” and “Validation of the
Electricity Demand Model”) with other available statistics. This
helps identifying potential biases of the models.

Sections “Heat Demand Maps,” “Impact of Large-scale Retrofit
on Heat Demand,” and “Electricity Demand Maps and Web Plat-
form” give some applications of the models, as for example draw-
ing GIS maps and estimating possible potentials of reduction of
demand linked to retrofit scenarios.

Heat Demand Statistics Aggregated at the
National Level
Table 2 contains aggregated values—per building category and
construction period—of the total heated surface AE and final
energy consumption for SH and DHW. Sufficient information
is available to calculate these estimations for around 90% of the
1.93 million buildings listed in the 2013 version of the GWR.
These values lead to a total heated surface estimation of 702
million m2 and a total final energy demand of 93.7 TWh/year
(76.8 TWh/year for residential and 16.9 TWh/year for mixed use
and non-residential buildings). Within the residential sector 71%

TABLE 2 | Aggregated results of geo-dependent heat demand model.

Construction periods Total (%)
(all constr. periods)

Before 1945 1945–1980 After 1980 Unknown

Total number of buildings in GWR
MF 110,436 127,381 118,319 61 356,197 (18%)
SF 384,627 405,943 464,848 594 1,256,012 (65%)
MU 39,175 24,003 15,906 79 79,163 (4%)
NR 38,841 46,961 51,000 103,644 240,446 (12%)
Total 573,079 604,288 650,073 104,378 1,931,818
Nb of buildings with heated surface
MF 109,428 125,832 116,987 47 352,294 (20%)
SF 379,976 402,058 460,062 527 1,242,623 (71%)
MU 37,605 23,023 15,090 58 75,776 (4%)
NR 20,130 26,579 23,216 9,979 79,904 (5%)
Total 547,139 577,492 615,355 10,611 1,750,597
Total heated surface AE (millions of m2)
MF 69.64 121.92 129.08 0.04 320.7 (46%)
SF 88.71 75.17 94.91 0.07 258.9 (37%)
MU 22.38 22.25 18.20 0.04 62.9 (9%)
NR 11.58 20.77 23.31 3.62 59.3 (8%)
Total 192.3 240.1 265.5 3.8 701.7
Total final energy demand SECH for SH and domestic hot water (TWh/year)
MF 10.36 18.41 12.77 0.00 41.5 (44%)
SF 13.42 12.40 9.48 0.01 35.3 (38%)
MU 4.17 3.77 2.62 0.01 10.6 (11%)
NR 1.33 2.68 1.89 0.37 6.3 (7%)
Total 29.3 37.2 26.8 0.4 93.7

MF, multi-family residential; MU, mixed use; SF, single family residential; NR, non-
residential.

of the energy is consumed by buildings built before 1980. The fact
that these buildings also have a high heat demandper squaremeter
emphasizes the importance of thermal envelope retrofitting.

Comparing these numbers with the estimation of an
alternative study permits to detect a possible bias of the
present model. For year 2013, Kemmler et al. (2014) estimate
SECH to be 91.1 TWh/year, (59.5 TWh/year for residential and
31.6 TWh/year for mixed use and non-residential buildings).
Although the two models have a good concordance for global
demand, significant differences exist when considering the
residential and non-residential sectors separately, mainly due to
the differences between the estimated heated surfaces. In the case
of the residential buildings, our model estimates a heated surface
of 580million square meter that is significantly higher than the
one 509million square meter estimated by Kemmler et al. (2014).
This lower estimation would lead to a ratio f dwell of 1.2 that is
significantly lower than the value of Table 1.

Heat Demand Maps
Since themodel delivers energy demand estimation at the building
level, Eq. 9 permits to compute the aggregated demand for pixels
of any size. Dividing the Swiss territory into a raster of pixels and
exporting, pixel by pixel, the demand to an information system
such as QGIS, allows us to draw heat demand maps. Figure 6
gives an example of such a heat density map for Switzerland, with
a zoom on the town of Martigny. A color ramp indicates the
final energy consumption per square meter of territory for each
pixel of 200m× 200m size. Such maps permit to identify por-
tions of territory having high demand density, being consequently
suitable for district heating deployment. Cross-matching these
demandmapswith other geo-referred information, as for example
availability of waste heat, permits to estimate the exploitation
potential of such resources. Other information, as for instance,
the percentage of demand covered by fossil energy carriers can be
added to derive estimated CO2 emission maps.

Impact of Large-scale Retrofit on Heat
Demand
The previously presented geo-dependent heat demand database
allows estimating the savings that could be achieved by large-scale
retrofit of building envelope. The new energy policy scenario
(NEP) of the Swiss Energy Strategy 2050 targets reducing today
final energy demand for SH and DHW production to around
42 TWh/year; this represents a decrease of 53%. This section
challenges this scenario by making the optimistic assumption that
today retrofit rate will double to reach 2%. If current retrofit prac-
tices are applied, the SIA 380 standard (SIA, 2009) sets an upper
limit QSH,lim (MJ/m2) for the calculated useful energy demand per
squaremeter. This demand is calculated under normed conditions
for indoor temperature and ventilation rate that are not often
fulfilled in real use conditions after retrofit. This discrepancy
between the normed and real use of the building induces a per-
formance gap. This gap is the difference between the theoretical
savings QSGross (MJ/m2) defined by

QSGross = QSH − QSH,lim, (12)
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FIGURE 6 | Swiss geographical information system map for heat demand and zoom on the town of Martigny.

and the actual savings QSNet (MJ/m2) defined by

QSNet = QSH − QSH _ AR, (13)

where QSH,AR is the actual measured energy demand per square
meter after retrofit. The analysis of ten representative case studies
(Khoury et al., 2016) of recently retrofitted post-war multi-family
residential buildings allowed to characterize the performance gap
by means of a statistical correlation between QSGross and QSNet

QSNet = 0.0009 (QSGross)2

+ 0.17QSGross if QSGross < 600MJ/m2. (14)

This relation (R2 = 0.9897) takes account of the entire retrofit
process, from the design stage (choice of solutions and use of
simulation software) to the use of the buildings by the occupants
and energy managers. It can be viewed as a characterization of the
current retrofit and operation practices. In case QSGross exceeds
600, we use the more conservative value QSNet = 0.7 QSGross. This
rule applies to buildings having a theoretical energy savings that
lies outside the range of the building sample analyzed by Khoury
et al. (2016).

The analysis of this section will show that taking account of the
performance gap has a significant effect on the savings of large-
scale retrofit programs. Figure 7 shows the procedure used to
estimate the net saving potential of a group of buildings that are
supposed to be retrofitted in accordance with the efficiency limit
of the SIA 380 standard. We start by assigning to each of these
buildings a shape factor, which is defined as the ratio between the
building thermal envelope surface Ath and its heated surface AE.
These ratios are taken from the SIA 2031 standard (SIA, 2016) for
all the building categories, except for the multi-family residential
buildings. For the latter, the factors are estimated on the basis of
the number of floors using the relation below, which was derived
from the GEAK database.

Ath�AE = 0.32 + 1.97�√
Nfloors

. (15)

These shape factors permit to compute for all buildings the
limit value QSH,lim, which is the heat per square meter demand
a building should not exceed after retrofit. The heat demand of
the building for SH before retrofit is estimated by a randomly
picked QSH value taken from our calibration set of buildings of
same category and construction period (see Eq. 5). This random-
ization replicates the variability of the observed distribution of
heat demand of buildings of same category. Using an average
value instead of this distribution would not have any effect on
the average QSGross value, but would bias the QSNet estimation,
because of the quadratic term of Eq. 14. Putting these two values
into Eq. 12 allows to estimate the gross saving potential per square
meter QSGross for each building. Eq. 14 allows to compute the net
saving potential per square meter that is then converted into final
energy using Eq. 16.

ESNet = 1�ηEC QSNet AE. (16)

Finally, to compute the total net savings ESCH
Net, we sum the net

saving potential ESNet of all buildings supposed to be retrofitted.
This procedure is repeated 1,000 times and the average of theESCH

Net
values gives the net saving potential of the retrofitted building
group.

For future projections concerning the building stock size and
the evolution of its energy demand, we refer to the report of
Prognos (Kirchner et al., 2012). This study expects an increase
of heated surface of 32% between 2010 and 2050. In the present
simulation, it was supposed that all new buildings added to the
current building stock consume 100MJ/m2/y of final energy for
SH and DHW.

Figure 8 shows how the possible evolution of the final energy
demand for 2020, 2035, and 2050 using the previously explained
estimation procedure. Under the assumption no retrofit is done,
the total demand SECH will increase proportionally less than the
additional heated surface, since the new buildings are supposed to
be very efficient. The doted gray lines are the expected evolution
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FIGURE 7 | Estimation of gross and net energy saving potential after retrofit of a building group.

FIGURE 8 | Evolution of final energy demand of the Swiss building stock for SH and domestic hot water (DHW).

of demand according to the new energy policy scenario (NEP)
and business as usual scenario (WWB) of the 2050 Swiss energy
strategy. In our 2% per year retrofit rate scenario, it is assumed that
the buildings offering the highest saving potential are retrofitted
first. Even following this optimistic assumption the expected sav-
ings ESCH

Net are significantly lower than the projection given by
the WWB scenario. Disregarding the performance gap leads to
savings ESCH

Gross that are close to the projections of Prognos.

Validation of the Electricity Demand Model
This section presents two kinds of validations done by compar-
ing estimates obtained from the model with available electricity
consumption statistics. A first validation consists in comparing
estimated and actual annual consumptions at the national and
at different regional levels. This enables to check the accuracy of
the unitary consumptions used to estimate the YCs in the various

sectors of activity. A second validation compares the estimated
hourly demand with the measured one. The way the model builds
the estimated hourly load curve implies that load curves are identi-
cal for all the days of the samemonth and day type (working, non-
working). It is thus adequate to compare the estimated load curve
with the average load computed by taking separately working and
non-working days for each month and hour of the day. This kind
of comparison checks if the shapes of the load curve library and
the weights used for aggregation replicate actual demand.

Validation of Annual Consumptions
The annual consumptions are compared at the national, cantonal
and municipality levels. Table 3 compares for the year 2008
estimated electricity consumptions and alternative statistics from
several sources. As explained in Section “Yearly Demand per
Activity and Electric Appliance,” the estimations of themodel give
priority to unitary consumptions calibrated on local ESCO bills to
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TABLE 3 | Comparison of aggregated yearly demand estimations with other data
sources.

Territory Measured (TWh) ElectroWhat (TWh) Diff (%)

National level
CH 57.42(i) 57.68 0.45

Cantonal level
GE 2.851(ii) 2.85 −0.004
VD 3.88(iii) 3.34 −13.92
ZH 9.3(iv) 9.52 2.37

District level
Geneva (BSF No. 6621) 1.26(v) 1.33 5.56
Russin (BSF No. 6637) 0.0013(v) 0.0026 96.00

(i) National demand statistics of Kemmler et al. (2014); (ii) OCSTAT Table T 08.03.2.01
(OCSTAT, 2017); (iii) Canton Vaud table T08.03.01-A2017 (Canton VD, 2017); (iv) AWEL,
Abteilung Energie (AWEL, Abteilung Energie, 2014); (v) Based on SIG issued bills.

take account of regional differences. If such data are not available
for the region of interest, average Swiss default values are used.
For this reason, the accuracy of the model depends on the level of
available information.

At the national level, the report of Kemmler et al. (2014) pro-
vides yearly estimations for the main sectors of activity. At this
aggregation level there is a very goodmatch showing that the used
average Swiss unitary consumptions per activity do not introduce
a bias at this level.

Certain cantonal energy offices publish electricity consump-
tion statistics on their home pages. The calibration values of the
model for the Canton of Geneva are based on bills issued by
the local utility SIG. Therefore, the cantonal aggregated estimated
consumption is very close to the actual consumption. For the two
other examples of Cantons, bigger differences are observed. The
estimation for the Canton of Zurich uses Swiss average default
values for all unitary consumptions, since no statistics for unitary
consumption per activity are available for this region.

The collaboration with SIG has allowed to access almost all
electricity bills of the Canton of Geneva. Comparing actual and
estimated electricity demand for each municipality of the Canton
Geneva permits to check how accurate the estimation remains
when used for smaller territorial units. Figure 9 plots estimated
versus billed electricity demand for the 44 municipalities of the
Canton. For the Canton of Geneva, the average difference between
actual and estimated demand of a municipality is 16%, with
differences ranging from 0.6% (Aire-la-Ville) to 96% (Russin).

Validation of Load Curve Profiles
This section compares the estimated load curve with two mea-
sured load curves; the first aggregated at the level of the Canton of
Geneva and the second at the level of Switzerland. The comparison
is done by comparing for each month the estimated and actual
load curve representative of an average day. Taking separately for
each hour the average demand of all days of the same month
permits to compute a load curve representative of an average
day. Since a large part of the demand is due to the industry and
services sector, working and non-working days are considered
separately.

Figure 10 displays for eachmonth (1–12 on the x-axis) the aver-
age daily load curve in black and the simulated one in gray. The

FIGURE 9 | Actual versus estimated electricity consumption for the year 2008
of the 44 municipalities of the Canton of Geneva.

increase of demand in the coldwintermonths is quite limited since
Geneva has almost no electric heating. The simulation replicates
the daily shape quite well with morning (11 a.m.) and evening
peaks (7 p.m.) due to cooking as well as lighting appliances in the
evening. The evening peak is greater due to earlier sunset during
winter. For week-ends, the overall load is less because the activity
in the services and industry sector is lower; however, the evening
peak induced by households becomes more obvious, especially
during winter.

Figure 11 gives the same comparison for the Swiss overall load
curve. The measured hourly load curve is estimated by SFOE
(2009) every third Wednesday of each month. It is based on a
consolidation of the net production (taking account of imports
and exports) of all Swiss electricity producers. An estimated loss
of 12% due to transportation and distribution was removed to
reflect the final energy used by the end consumer. The main
differences are seen for June and Julywhere themodel significantly
overestimates the demand. At the Swiss level, around 10% of the
SH and DHW production (Schneider et al., 2016) is covered by
electricity. This explains a seasonal variability with higher demand
during the winter months.

Electricity Demand Maps and Web
Platform
Figure 12 shows an example of a GIS map combining yearly
demand per capita, distribution of demand into fourmain activity
sectors and total demand for some municipalities near the city
of Lausanne. A quite high heterogeneity exists among the shares
consumed per sector, also influencing the per capita consumption.
In themunicipalities of Aclens andMex a large part of the demand
is attributable to the services and industry sector, which induces a
high demand per capita compared to a residential municipality
such as Bussigny. This difference of socio-economic structure
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FIGURE 10 | Actual and simulated average hourly load curve from January (1) to December (12) 2008 for the Canton of Geneva.

FIGURE 11 | Actual and simulated average hourly load curve from January (1)
to December (12) 2008 for Switzerland.

influences the distribution of demand into electric appliances and
the shape of the load curve.

The Electowhat model is used to set-up a prototype web plat-
form allowing to explore the consumption specificities of each
Swiss municipality. A report containing the main indicators is
enriched with charts illustrating the distribution of the yearly
demand into activities and electric appliances. This detailed dis-
tribution of electric consumption can be downloaded in Excel
format for further treatment. A future step will be to include on
this platform the experience gained by SIG during the imple-
mentation and monitoring of their electricity efficiency program
ECO21. The platformwill use the decomposed electricity demand
provided by the model to help the user to design an efficiency
program of ECO21 type in any region of Switzerland.

DISCUSSION

Geo-Dependent Heat Demand
The geo-dependent heat demand model presented in Section
“Geo-Dependent Heat Demand” is an alternative to commonly
used calculation models based on building physics, which suffer
from a lack of accuracy when used at large territorial scale, due to
the limited available information on the building characteristics.
Calibrating the model using measured final energy consumption
bears the advantage of replicating the difference in energy demand
between buildings with very similar characteristics. An innovative
approach consists in using a bootstrap algorithm to compute a
confidence interval in addition to the estimated demand of a
pixel of territory. These confidence intervals quantify the part of
variability the model cannot reproduce, when the specific heat

demand Qh of a building is replaced by the average demand of the
buildings of same category and age.

There are two important assumptions linked to this kind of
approach. The first is that the GWR database contains the major-
ity of the heated buildings of Switzerland. The second is that
the samples used to calibrate the bottom-up model are repre-
sentative. Important deviations from these assumptions would
introduce bias in the estimations. One possibility to detect bias
is to compare, for example, the aggregate demand of all build-
ings with other available national scale statistics. As shown in
Section “Heat Demand Statistics Aggregated at the National
Level,” the total aggregated final energy demand for heating is
93.7 TWh/year (76.8 TWh/year for residential and 16.9 TWh/year
for mixed use and non-residential buildings). Total demand is in
good agreement with an alternative estimation based on national
statistics, but significant differences exist when considering the
demand of residential and non-residential sectors separately.
The main cause for this discrepancy is the differences between
the estimations of heated surfaces. Since the f dwell values of
Table 1 are based on a large number of observations, we are
quite confident with our larger heated surface estimations for
the residential sector. The alternative estimation used for com-
parison also comes from a model, which is subject to its own
uncertainties.

The actual consumption data for buildings contained in the
SITG IDC database allows to identify 206 pixels of 200m× 200m
with known total final energy demand. Estimated demand
together with its confidence interval and actual demand are com-
pared for each of these pixels to test the accuracy of the bootstrap
algorithm. For three chosen confidence levels α = 10, 5, and 1%,
the proportion of pixels having their actual energy demand value
outside the confidence interval are 15.5, 8.3, and 2.4%, respec-
tively. The fact that these proportions are close to α, show the
adequacy of the bootstrap algorithm.

Since retrofit has a major role to play in reducing demand and
achieving the goals of the 2050 energy strategy of the Swiss Federal
council, it is interesting to challenge the projectionsmade by Prog-
nos (Kirchner et al., 2012). Section “Impact of Large-scale Retrofit
on Heat Demand” gives an example of how the heat demand
model can be used to estimate the achievable heat demand saving
potential of the Swiss building stock. For this sake, we relied on
previous results (Khoury et al., 2016) concerning the performance
gap between the gross and net heat demand savings achieved by
building retrofit, which reflects the current retrofit and operation
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FIGURE 12 | Example of electricity consumption map in the surroundings of the city of Lausanne.

practices.When applying the results of the abovementioned study
to our model, we estimate that if the entire Swiss building stock
undergoes deep energy retrofit, the gross saving potential for
SH would amount to 38.1 TWh/year. When taking into account
the performance gap, the net saving potential for SH reduces to
18.4 TWh/year, i.e., almost half of the gross saving potential. A
similar ratio between net and gross saving potential was already
observed at a smaller scale in the canton of Geneva. Comparing
projected savings for years 2020, 2035, and 2050 with the goals of
the energy strategy 2050, we see that evenwhenmaking optimistic
assumptions on retrofit rate and selection of buildings, the net
estimated savings remain far from the anticipated targets. This
result is based on the assumption that the relation between net
and gross saving potential applies to all building categories. Even
if the projection of Figure 8 deserves deeper investigation, this
first approximation already raises interesting questions. The pro-
jections of Prognos do not take into account the performance gap
and may for this reason be too optimistic.

The approach given here has some limitations that are due to
data availability. For instance, having an exhaustive GWR regis-
ter would answer questions concerning possibly missing heated
surface. A larger calibration set uniformly covering the entire
Swiss territory and all building categories would also increase
the accuracy of the model, as well as reducing the size of the
confidence intervals.

Geo-Dependent Electricity Demand
The accuracy of the geo-dependent electricity demand model
strongly depends on the detail level of the data available to cali-
brate the unitary consumptions per activity. This is illustrated in
Table 3 that compares the estimated versus actual total aggregated
demand for Cantons where local demand data was available—or
not—for calibration. In the case of the Canton of Geneva, detailed
consumption per activity is known, leading to representative

unitary consumption of this region. In the Canton of Zurich, aver-
age Swiss values are used based on national energy consumption
surveys for various activities. Although these default values lead to
an unbiased estimation at the national level, they cannot replicate
in detail the variability that energy demand may have between
different regions, within the same activity. This phenomenon is
also observed on a smaller scale, as shown in Figure 9, showing
the errors at the level of each municipality, even when the model
is calibrated with accurate Cantonal unitary consumptions. This
reflects the fact that electricity demand within a same group of
activities has a quite high variance that a large-scale model cannot
reproduce.

A second type of validation compares estimated and actual
load curves to check if the aggregation of the individual estimated
load curves per activity and electric appliance lead to an overall
demand, which is close to the average demand of a representative
working and non-working day. Again, the added value of having
local calibration data available is highlighted by the fact that the
model replicates more accurately the demand of the Canton of
Geneva than the overall national demand. Unlike the algorithm
used for the FORECAST/eLOAD platform, no adaptations are
done after the comparison. In our case the validation only serves
to check if the load curve library and the weights used to combine
the individual load curves reflect the average actual demand.
Making further adaptations based on least square difference min-
imization may lead to completely biased coefficients since the
number of degrees of freedom of the model is larger than the
number ofmeasured observations.We choose to let themodel rely
on parameters based on case study measurements and time of use
model estimations for household appliances, without making any
a posteriori adjustments.

It is interesting to observe that the fraction of heat production
covered by electricity varies considerably according to the consid-
ered region (from 1% for Basel up to 25% for Vallis). This has

Frontiers in Built Environment | www.frontiersin.org August 2017 | Volume 3 | Article 5314

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Schneider et al. Swiss Spatial–Temporal Energy Demand

an effect on the seasonal variation of the electric load curve of
the region under consideration. The canton of Geneva has, for
example, only a small fraction of electric heating (around 5% of
total final energy). Consequently, the seasonal effect is lessmarked
on Figure 10 than in Figure 11, since other regions of Switzerland
have higher shares of electric heat production systems.

CONCLUSION

Specific approaches are used to estimate geo-dependent heat and
electricity demand due to the variety of goals. In the case of heat
demand, emphasis is placed on the spatial aspect because heat is
more difficult to transport. Modeling electricity demand is more
complex, since electricity has many possible uses. To decompose
electricity demand per activity and per electric appliances in addi-
tion to the spatial characterization provides a big added value.
It gives the base input to design electricity efficiency programs
considering regional specificities. Further conclusions are given
separately for the geo-dependent heat and electricity demand.

Geo-Dependent Heat Demand
The proposed bottom-up model operates at the building level and
allows heat demand estimations for every geographical aggrega-
tion level. It is calibrated using large sets of measured final energy
demand. This data was used to compute heat demand statistics
per building category and construction period. Basing the model
on measured consumptions has the advantage of including the
influence of the user. In addition, this approach allows to esti-
mate confidence intervals by means of a bootstrap resampling
algorithm. The aggregated overall demand for the entire Swiss
territory is in good agreement with national statistics, speaking
in favor of the model.

A first outcome of the model is to build a database providing
the heat demand for a pixel grid of the entire Swiss territory. As
second possible use of the model, is the estimation of expected
savings achievable through retrofit (see “Impact of Large-scale
Retrofit on Heat Demand”). It is interesting to notice that taking
account of the performance gap significantly reduces the projected
savings (of approximately 50%). This kind of observation was
already pointed out by Khoury (2014) in his study onmulti-family
residential buildings of the Canton of Geneva. Such discrepancies
reveal key questions on some of the energy savings projections
made for the 2050 energy strategy of the Swiss Federal council.

Geo-Dependent Electricity Demand
The used model breaks down the total estimated electricity
demand of a municipality into estimated hourly load curves per
activity and electric appliance. The University of Geneva, in col-
laboration with the local utility SIG, is currently updating the
model in view of simulating the year 2015. Themodel—today cal-
ibrated using the year 2008—replicates well the average behavior
at large-scale, but of course cannot replicate all local specifici-
ties. This is a consequence of the fact that the chosen groups of
activities have some heterogeneity concerning the consumption
per employee. For example, consider the activity “manufacture
of machines and tools,” for which the energy intensity varies a
lot depending on the type of manufactured good. Some regions

might be more specialized in one or the other type of good,
having consequently differences of consumption per employee.
The consequence of using Swiss average values for large portions
of the Swiss territory is that a part of the variability of demand
remains unexplained, as seen in Table 3 and in Figure 9.

The comparison of aggregated estimated load curves with
actual ones shows that the model replicates the most important
seasonal and intraday variations. The present simulation can be
done for any geographical level for which the required input
variables reflecting socioeconomic activity and building stock are
available. By default, the municipality level should be used, since
it is the smallest geographical unit having all the required input
information easily available at the national scale. This model also
opens the perspective of making ex ante estimations of savings
that could be achieved by standard efficiency measure packages.
To this end, in collaboration with the SIG, it is planned to set-up
a web-platform helping the user to design an efficiency program
similar to ECO21 in any region of Switzerland.

Finally, the results of the geo-dependent heat and electricity
models are consolidated with geo-dependent renewable resource
data. This database is shared with other research partners and
serves as base input to assess energy transition scenarios. Between
2018 and 2020, the second phase of the SCCER FEEB&D project
(SCCER FEEB&D, 2017) will explore how to find the best trade-
off between energy efficiency (building retrofit, ECO21 type pro-
grams, etc.) and use of renewable resources (PV, geothermal, heat
pumps,waste heat, free-cooling, etc.). Suchmodels combinedwith
a consolidated database are the foundation for exploring energy
transition pathways and deriving policy recommendations.

NOMENCLATURE

Abbreviations
ECO21 Large-scale energy efficiency program launched in 2007 by SIG

EGID Federal building identification number

ESCO Energy service company

DHW Domestic hot water

GEAK Cantonal building energy certificate

GIS Geographical information system

GWR Swiss national building register maintained by the Swiss Federal
Statistical Office

NOGA General classification of economic activities, providing a numeric
code per activity

SH Space heating

SIG Geneva’s energy service company Services Industriels de Genève

SITG IDC Territorial information system of Geneva’s territory, index of heat
consumption layer

SOAP Simple object access protocol

Latin symbols
AE Heated surface or energy reference surface defined by standard

SIA 416/1 (m2)

Adwelling Total surface of all residential dwelling of a buildings (m2)

Agross Gross building surface as ground surface multiplied by the number
of floors (m2)

Ath Surface of the building thermal envelope (m2)

ΔAE Relative error between estimated and actual AE (-)

(Continued)
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DD(l) Degree day of geographical location l (K·day)

E Final energy demand per m2 for SH and DHW production
(MJ/m2/year)

ESNet Net final energy saving potential for SH after retrofit (MJ/year)

F (L) Fraction of electric devices actually in operation having efficiency
label L (%)

g Solar energy transmittance of glass windows (%)
QSH Useful energy demand per m2 for SH (MJ/m2/year)

QSH,lim Upper limit of calculated useful energy demand per m2 for SH
according to standard SIA 380/1 (MJ/m2/year)

QSH,AR Useful energy demand per m2 for SH after retrofit (MJ/m2/year)

QDHW Useful energy demand per m2 for DHW (MJ/m2/year)

QSGross Gross useful energy saving potential per m2 for SH after retrofit
(MJ/m2/year)

QSNet Net useful energy saving potential per m2 for SH after retrofit
(MJ/m2/year)

U Thermal transmittance of a building’s envelope component
(W/m2·K)

SEB Final energy for SH and DHW production for a building (MJ/year)

SECH Final energy for SH and DHW production for the Swiss building
stock (TWh/year)

X̄ Average value of variable X. For example QSH is the average useful
energy demand for SH of a given building category

(Continued)

X̂ Estimated value of variable X. For example Ê is the estimated final
energy demand for SH and DHW production

YC Yearly electric consumption of an electric device (kWh/year)

Greek symbols
ηEC Efficiency of energy conversion system
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