
ORIGINAL RESEARCH
published: 19 October 2017

doi: 10.3389/fbuil.2017.00056

Edited by:
Dryver R. Huston,

University of Vermont, United States

Reviewed by:
Hamed Ebrahimian,

California Institute of Technology,
United States

Feng-Liang Zhang,
Tongji University, China

Prakash Kripakaran,
University of Exeter, United Kingdom

*Correspondence:
Manolis N. Chatzis

manolis.chatzis@eng.ox.ac.uk

Specialty section:
This article was submitted to

Structural Sensing, a section of the
journal Frontiers in Built Environment

Received: 28 June 2017
Accepted: 14 September 2017
Published: 19 October 2017

Citation:
Chatzis MN and Chatzi EN (2017) A
Discontinuous Unscented Kalman

Filter for Non-Smooth Dynamic
Problems.

Front. Built Environ. 3:56.
doi: 10.3389/fbuil.2017.00056

A Discontinuous Unscented Kalman
Filter for Non-Smooth Dynamic
Problems
Manolis N. Chatzis1* and Eleni N. Chatzi2

1Department of Engineering Science, The University of Oxford, Oxford, United Kingdom, 2Department of Civil, Environmental
and Geomatic Engineering, ETH Zurich, Zurich, Switzerland

For a number of applications, including real/time damage diagnostics as well as control,
online methods, i.e., methods which may be implemented on-the-fly, are necessary.
Within a system identification context, this implies adoption of filtering algorithms, typically
of the Kalman or Bayesian class. For engineered structures, damage or deterioration
may often manifest in relation to phenomena such as fracture, plasticity, impact, or
friction. Despite the different nature of the previous phenomena, they are described
by a common denominator: switching behavior upon occurrence of discrete events.
Such events include for example, crack initiation, transitions between elastic and plastic
response, or between stick and slide modes. Typically, the state-space equations of
such models are non-differentiable at such events, rendering the corresponding systems
non-smooth. Identification of non-smooth systems poses greater difficulties than smooth
problems of similar computational complexity. Up to a certain extent, this may be
attributed to the varying identifiability of such systems, which violates a basic requirement
of online Bayesian Identification algorithms, thus affecting their convergence for non-
smooth problems. Herein, a treatment to this problem is proposed by the authors, termed
the Discontinuous D– modification, where unidentifiable parameters are acknowledged
and temporarily excluded from the problem formulation. In this work, the D– modification
is illustrated for the case of the Unscented Kalman Filter UKF, resulting in a method
termed DUKF, proving superior performance to the conventional, and widely adopted,
alternative.

Keywords: identifiability, non-smooth systems, Kalman filters, UKF, system identification and structural health
monitoring, Bayesian methods

1. INTRODUCTION

The increasing availability of dense and heterogeneous sensor information has allowed for condition
assessment and robust diagnostics of linear and non-linear engineered systems across diverse
domains, including the civil, mechanical, and aerospace fields (Kumar and Crassidis, 2007; Worden
et al., 2008; Farrar and Worden, 2012). Of particular interest for a number of specialized imple-
mentations, including that of robust diagnostics and control, are systems that extend beyond the
linear range, commonly attained in response to extreme or unusual loads. Such loads may induce
behavior that is non-linear and potentially non-smooth, as in the case of plasticity (Smyth et al.,
1999; Ebrahimian et al., 2017), impact (Wriggers, 1991), fracture (Kakouris and Triantafyllou, 2017),
and sliding (Giannakopoulos, 1989). The adequate modeling of such systems may be achieved by
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application of offline (Papadimitriou and Papadioti, 2013; Au
and Zhang, 2016; Zhang and Au, 2016) or of (near) “real-time”
identification schemes, the latter typically relying on adoption of
Bayesian-type filters (Kalman, 1963; Ljung and Glad, 1994). The
task of online identification is a non-trivial one, especially when
conjoined with identification of system parameters, which are
often not known a priori or are highly uncertain (Astroza et al.,
2017).

When both unmeasured system states and system parame-
ters are to be estimated, a so-called problem of joint state and
parameter identification is posed, often expressed as a non-linear
system identification case (Chatzi and Smyth, 2014). In previous
years, online non-linear estimation was for themost part achieved
by means of the Extended Kalman Filter (EKF) (Mariani and
Corigliano, 2005; Ding et al., 2014; Ebrahimian et al., 2015).
However, more recently, methods which avoid linearization of
the state equations, such as the Ensemble Kalman Filter (EnKF)
(Huang et al., 2017), the Unscented Kalman Filter (UKF) (Julier
and Uhlmann, 1997; Chatzi et al., 2010; Omrani et al., 2013; Al-
Hussein and Haldar, 2015), and the Particle Filter (Chatzi and
Smyth, 2012; Eftekhar Azam et al., 2012), have gained in popu-
larity due to their flexibility in treating non-linear dynamics. Of
the aforementioned techniques, the UKF in particular employs a
reduced number of particles, termed the Sigma-Points, maintain-
ing a rapid and online estimation. This is the main driver behind
its selection as the method of choice in this paper.

Kalman-type, and Bayesian filters in general, place a funda-
mental assumption on the dynamic states and the time-invariant
parameters of a system being fully observable (Kalman, 1963;
Hermann and Krener, 1977; Diop and Fliess, 1991) and identi-
fiable (Walter, 1982). While this holds true for smooth systems,
the same does not apply for their non-smooth counterpart, which
pertains to systems that are described by non-differentiable state-
space equations (Chatzis et al., 2014; Olivier and Smyth, 2017a).
Nonetheless, the simulation and tracking of non-smooth systems
is essential for numerous engineering problems, since these are by
default tied to manifestations of damage and failure.

Previous work of the authors (Chatzis et al., 2014) overviews
the classification of systems in accordance with their observability
and identifiability properties. Violation of this property forms a
salient obstacle for Bayesian-type online identification algorithms,
which are expected to diverge for unobservable states or param-
eters (Liu et al., 1996), which is naturally amplified for non-
linear systems. The methods presented in Chatzis et al. (2014)
may be implemented to infer the observability and identifiabil-
ity of a system’s states and parameters, and the way in which
these evolve during a system’s response under specific loads.
This information may then be seeded into the online estimators
(filters) in real-time for ensuring convergence, thereby improving
estimation.

In this work, and following original developments introduced
in Chatzis et al. (2017), a modified version of the standardUKF is
proposed. The key to the formulation lies in adoption of amodular
state-space formulation, evaluation of the observability within
each time step of the analysis, and selection of an appropriate sub-
space of the full state vector to be used by the UKF. The method
is termed the Discontinuous D– modification to the UKF, i.e.,

the DUKF. Examples are presented illustrating the performance
of the method for models used in the context of plasticity, which
are however general enough to be applied in several other applica-
tions of non-smooth problems. The examples reveal a consistently
superior performance of theD–modification further highlighting
the effects of the special observability properties of non-smooth
problems. The proposed alternative opens up the way for robust
online tracking and control of a variety of engineered systems
including rocking (Chatzis and Smyth, 2012a,b, 2013; Greenbaum
et al., 2015), energy (Alavi et al., 2015), and biological systems
(Villaverde et al., 2016; Villaverde and Banga, 2017).

2. NON-SMOOTH DYNAMICAL SYSTEMS

A non-linear systemwith state variables xt, time-invariant param-
eters θ, known input vector u, and measurement vector y can in
general be described by the following system of equations:

ẋt = E(xt, θ, u), θ̇ = 0, y = G(xt, θ, u) (1)

where E and G designate the non-linear state-space and measure-
ment functions, respectively. For uncertain systems, i.e., systems
whose time-invariant parameters are uncertain or unknown, the
above problemmay be recast into one of joint state and parameter
identification. In this case, the state-space andmeasurement equa-
tions of formulation (1) may be written in an augmented form by
introducing the state vector x= [xt, θ]:

ẋ = e(x, u), y = g(x, u) (2)

In the latter representation, one treats both the dynamic states
and the parameters of the system as states of the augmented
system. A dynamical system is further characterized as analytic
or smooth, when the state-space equation (2) are continuous
and infinitely differentiable. Very often, however, the state-space
equations of physical models may not be analytic, either due to
discontinuities in the state-space equation or in their derivatives.
It should also be highlighted that smoothness requires that the
equations are infinitely differentiable through at least all the real-
izations of the states encountered during the trajectory of the sys-
tem. In this paper, we deal with models for which the state-space
equations are continuous, but not differentiable, and whose state-
space equations can be separated into smooth, i.e., continuous and
infinitely differentiable, branches of the form:

ẋ =



e1(x), x ∈ Rn
1

...
ei(x), x ∈ Rn

i
...

el(x), x ∈ Rn
l

(3)

where ei(x) is an analytic set of functions within Rn
i . It should be

noted that at a specific time instance the state is described by a
given realization, corresponding to a single branch of equation (3).

Very often the study of the behavior of dynamic systems results
in a discretized description of the problem where nodes are
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FIGURE 1 | Systems described as nodal points connected with components
(A) Discrete masses connected with components providing resistance to
motion (B) nodes connected with finite elements.

connected with each other with components, as can be seen in the
following Figure 1. Often the nodes correspond to point masses
with the components corresponding to elements that resist the
relative displacements and velocities of themasses, or in the case of
Finite Element analysis the nodes are the finite element nodes and
the components correspond to the finite elements (Zienkiewicz
and Taylor, 2005).

The investigated system may be expressed as a combination
of individual components Cj, j= 1 . . .Nc, where Nc is the overall
number of the components. For each component Cj a subset,
xCj = [xCj t, θCj ], of the overall states of the system x, acts as input.
The outputs of Cj, PCj , are connected to the inputs according to a
set of equations of the form:

ṖCj = ECj(xCj , ẋCj) (4)

where ECj are generally non-smooth equations, which can further
be separated into smooth branches, e.g., for the kth branch of
model Cj:

ṖCj = eCk
j
(xCj , ẋCj) (5)

where eCk
j
(xCj) is an analytic set of functions. As the system evolves

dynamically over time, it is expected to shift between the individ-
ual branches of a componentCj. This transition between branches
will be referred to as a dynamic event, and the corresponding time
instance as the time of the event. A set of transition equations
gCk→l

j
(x) = 0 describe the transition from branch Ck

j to Cl
j.

Having determined the active smooth branch of a component the
smooth branch of the overall system from equation (3) can be
easily chosen.

2.1. Observability of Non-Smooth
Dynamical Systems
The observability of non-smooth systems and the points of dif-
ferentiation to their smooth counterparts have been discussed in

Chatzis et al. (2014, 2017). It should be noted that the notions of
observability and identifiability used in these papers and in this
work refer to the ability to distinguish the states and parameters
from their neighbors at a specific time instance. The method
proposed in Chatzis et al. (2014) relies on the study of the
observability of each of the smooth subsystems of equation (3),
resulting into a characterization of each system branch as either
observable, when all associated states are observable, and hence
the parameters are identifiable, or as unobservable, when not all
states are observable, and hence not all parameters are necessarily
identifiable. In general, the separation of an analytic system’s
states into an observable and an unobservable set requires a non-
linear transformation (Persis and Isidori, 2000). However, for the
systems examined herein, it is further assumed that for each of
the subsystems i of equation (3), we can further separate the state
vector x into its observable and a minimum number of unob-
servable components, denoted as xoi and xui, in a straightforward
manner.

If the union of the observable states from all branches is a strict
subset of the state vector x (∪l

i=1xoi ⊂ x), i.e., does not contain at
least one of the components of x, then it may be concluded that
these excluded states are unobservable and may not be adequately
tracked via a System Identification algorithm. If on the other
hand, the union of the observable components results in the state
vector x, ∪l

i=1xoi = x, then each component of the state vector x
could potentially be identified within the corresponding smooth
branch within which it is observable. Hence, if the response of
the system includes at least one branch for which a parameter is
identifiable, then a system identification algorithm could poten-
tially succeed in identifying the value of that parameter. In this
paper, the latter case of systems is studied, i.e., systems for which
the parameters of the model may be inferred via an appropriate
system identification method.

For a component Cj whose smooth branch k is defined by
equations (5), it is of further interest to proceed in a observability
analysis where it is assumed that all of the dynamic states, and
their derivatives are measured inputs and Pc are the measured
outputs, i.e., u = [xCj t, ẋCj t] and y = yI = [PCj ]. By studying the
observability of this system the parameters θCj can be separated
into identifiable and a minimum set of unidentifiable parame-
ters [θo

Cj , θ
u
Cj ]|yI . Equation (5) can be expressed only in terms of

[xCj t, ẋCj t, θ
o
Cj
]:

ṖCj = eCk
j

(
xCj t, ẋCj t, θ

o
Cj

)
(6)

Due to the absence of θu
Cj |yI from equation (6), for any mea-

surement setup which does not directly involve measurement of
θu
Cj |yI , those parameters directly contribute to the unidentifiable

states xui of the corresponding smooth branch of equation (3).
If a parameter is shared between different components it will be
contributing to the unidentifiable xui only if it belongs to θu

Cj |yI for
all of them. It should, however, be noted that whether [xCj t, θ

o
Cj |yI ]

contribute to xui depends on the observability of the system under
the actual measurement setup used.

Hence, this component analysis may often pinpoint part of the
unidentifiable parameters, although it ought to further be paired
with an observability analysis, as discussed in Chatzis et al. (2014).
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3. UNSCENTED KALMAN FILTER

The UKF simulates non-linear systems by approximating the state
as a Gaussian random variable (GRV), represented by a set of
carefully chosen deterministic points known as the Sigma Points.
This section only provides a basic overview of the filter equations;
more details can be found in Julier and Uhlmann (1997) andWan
andVanDerMerwe, 2000 and previouswork of the authorsChatzi
and Smyth (2009), Chatzi et al. (2010), and Chatzis et al. (2015).

Consider the general dynamical system described by the fol-
lowing equations (7).

xk = f(xk−1, uk−1) + wk−1, yk = h(xk, uk) + vk (7)

wherewk is the process noise and vk is the observation noise, both
of which are considered to be white Gaussian noise processes of
covariance matricesQk and Pk, respectively.

Given the state vector at step k− 1 and assuming that this
has a mean value of x̂k−1 and covariance Pk−1, the statistics of
xk can be calculated by using the Unscented Transformation, or
in other words by computing the set of sigma points χi

k with
associatedweightsWi. The steps of themethod are summarized in
Table 1.

As inferred by the steps outlined above, theUKF algorithmdoes
not discern between observable/unobservable states and identi-
fiable/unidentifiable parameters. The overall convergence of the

TABLE 1 | The steps of the UKF algorithm.

UKF

Initialization at time t0: x̂0 = E[x0]

• The unscented transform
1. Augment the state vector to include the noise parameters:

xα
k−1 =

[
xTk−1 w

T
k−1 vTk−1

]T
2. Formulation of the sigma point vector:

χα
k−1 =

[
x̂α
k−1 x̂α

k−1 +
√

(L + λ)Pα
k x̂α

k−1 −
√

(L + λ)Pα
k

]
where λ is a UKF parameter,
L is the dimension of the state vector x and Pα =diag(P, Q, R)

• Time-update:
3. Propagation of the sigma points through the system model:

χi
k|k−1 = f

(
χi
k−1, χw,i

k−1

)
, i = 0, .., 2L

4. Predicted mean and covariance:
x̂k|k−1 =

∑2L
i=0 Wm

i χi
k|k−1 and

Pk|k−1 =
∑2L

i=0 W c
i

[
χi
k|k−1 − x̂k|k−1

] [
χi
k|k−1 − x̂k|k−1

]T
• Measurement steps:
5. Measurement mean and covariance matrices:

ŷk|k−1 =
∑2L

i=0 Wm
i Y i

k|k−1 and Yk|k−1 = h
(

χi
k|k−1, χη,i

k−1

)
Pyy
k =

∑2L
i=0 W c

i

[
Y i

k|k−1 − ŷk|k−1

][
Y i

k|k−1 − ŷk|k−1

]T
and

Pxy
k =

∑2L
i=0 W c

i

[
χi
k|k−1 − x̂k|k−1

][
Y i

k|k−1 − ŷk|k−1

]T
• Kalman updating
6. Calculation of Kalman Gain:
Kk = Pxy

k

(
Pyy
k

)−1

where:
7. Improve predictions of the state and covariance using the latest observations:

x̂k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
Pk = Pk|k−1 − KkP

yy
k KT

k

method is ensured only when a parameter converges faster during
identifiable time steps, than it diverges during unidentifiable steps.

4. DISCONTINUOUS UNSCENTED
KALMAN FILTER DUKF

As stated in Section 2.1., during a specific time instance where
the system lies in a specific smooth branch i, only part xoi of
the state vector may be observable. Therefore, the UKF algorithm
is expected to converge only for that observable part xoi. The
predictions furnished during this interval by the UKF for the
unobservable part xui, which in this work is assumed to be the
unidentifiable parameters, are non-optimal and it is also quite
likely that during these time intervals the values of xui may very
well diverge from the real solutions. In fact, their resulting esti-
mates are expected to be inferior to the initial estimates of these
parameters in the initiation of the interval. Hence, during such
intervals it is argued that the optimal choice would be to update
only the observable part of the state.

To introduce the computational part of the D– modification, a
row switching transformation matrix Ti is defined such that:

Ti x =
{
xoi
xui

}
= x′ (8)

in other words, pre-multiplying x with Ti results in a rearranged
vector x′ where the first noi components are observable and the
remaining nui components are unidentifiable. As the order among
the observable components, and likewise for the corresponding
order among the unidentifiable parameters, is not of importance
any of the Ti matrices that satisfy equation (8) may be chosen.
In all cases, those are by definition Boolean matrices containing
only one non-zero element per row which is further equal to one,
satisfying the property T−1

i = TT
i . Any vector v and matrix

A whose rows, and columns for the latter, correspond to the
elements of xmay be brought to the order of x′ with the following
operations:

Ti v =
{
voi
vui

}
Ti ATT

i =
[

Aoo (Auo)T

Auo Auu

]
(9)

while for a n×m matrix B, whose rows only correspond to the
order of the elements in x, the following operating reorders its
elements to the order of x′:

Ti B =
[

Bo

Bu

]
(10)

It is now straightforward to separate a vector or matrix to the
observable o, unobservable u, and cross uo components. DUKF
follows the steps of the UKF algorithm for steps 1–5, as shown in
Table 1. The DUKF structure in nonetheless differentiated from
the standard UKF steps as follows: DUKF updates the observable
components of the estimates of the mean vector and covariance
matrix during the Kalman updating step: x̂k|k−1 → x̂k|k and
Pk|k−1 → Pk|k, using an appropriate Kalman gain matrix defined
based on the observable components. The unobservable parts
are retained invariant, while the cross terms of the covariance
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are updated using the Schmidt-Kalman Filter (Schmidt, 1966;
Novoselov et al., 2005). The steps of the DUKF algorithm are
summarized in detail in Table 2.

The extra steps entailed by the D– modification in com-
parison to the standard UKF are simple operations involving
multiplications with the transformation matrix Ti. Hence, the
extra computations required are of minimal cost, while in fact the
computational cost of the DUKF results similar to, or lower than,
that of theUKF. This may be attributed to the fact that the Kalman
updating steps result in multiplications of matrices that are of
lower dimension to those of the original method. An additional
advantage of the method against the Discontinuous Extended
Kalman Filter,DEKF, previously introduced by the authors, lies in
that it does not require the detection of events and hence there are
no constraints on the algorithm used for the time updating step.
This implies that themethod can be directly paired with any exist-
ing dynamic or finite element software for the time updating step.

4.1. Estimating the Active Smooth Branch
An important step of the DUKF algorithm is related to separating
the states to observable and unobservable as indicated in Table 2.
This is straightforward to do once the smooth branch the sys-
tem lies in is known. As discussed earlier, this may more easily
be constructed by choosing the active smooth branch for each
component Cj of equation (5). If the true value of the states is

TABLE 2 | The steps of the DUKF algorithm.

DUKF

Initialization at time t0: x̂0 = E[x0]

• The Unscented Transform, • Time-update and • Measurement steps
Steps 1–5 identical to the UKF’s 1–5 steps as shown in Table 1

• Separate to observable and unobservable components
6. Choose Mi based on x̂k|k−1

7. x̂′
k|k−1 = Ti x̂k|k−1 =

[
(x̂ok|k−1)

T (x̂uk|k−1)
T
]T

P′
k|k−1 = Ti P′

k|k−1 T
T
i =

[
Poo
k|k−1 (Puo

k|k−1)
T

Puo
k|k−1 Puu

k|k−1

]

P′xy
k = Ti P

xy
k =

[
Pxy

o

k

Pxy
u

k

]

• Kalman updating
8. Calculation of Kalman Gain:

Ko
k = Pxyo

k

(
Pyy
k

)−1

11. Updating observable components:

x̂ok = x̂ok|k−1 + Ko
k

(
yk − ŷk|k−1

)
Poo
k = Poo

k|k−1 − Ko
kP

yy
k

(
Ko
k

)T
12. Retaining unobservable components invariant:
x̂uk|k = x̂uk−1|k−1

Puu
k|k = Puu

k−1|k−1

13. Updating cross terms:

Pou
k|k = Pou

k|k−1 − Ko
kP

xyu

k

14. Gathering terms: x̂′
k|k =

[
(x̂ok|k−1)

T (x̂uk|k−1)
T
]T

P′
k|k =

[
Poo
k|k (Puo

k|k)
T

Puo
k|k Puu

k|k

]
15. Rearranging terms:
x̂k|k = TTi x̂

′
k|k

Pk|k = TTi P
′
k|k Ti

known that can be done by evaluating the values of the set of
functions gCj(x) which result to the transition equations between
branches, gCk→l

j
(x) = 0. In this paper, this branch has to be

estimated by evaluating a related set of functions ĝCj(x) at x =
x̂k|k−1.

1. The non-smoothness is a result of a non-differentiable function
in the state-space equations. In that case, ĝCj = gCj .

2. The non-smoothness is a result of an inequality constraint
equation gCj(x) ≤ 0. As a result, at least one of the branches
lies entirely within the space defined by the constraint equa-
tion gCj(x) = 0. As for any sigma point i, g(χi

k|k−1) < 0
or g(χi

k|k−1) = 0, their weighted sum is likely to satisfy:
gCj(x̂k|k−1) < 0. In fact the previous could be observed even
if g(χi

k|k−1) = 0 , ∀i. This creates situations where all sigma
points may lie in the smooth branch define by the equality
constraint, yet the estimated active smooth branch is different.
For this reason, ĝCj ̸= gCj and a different estimator has to
be used based on the physics of the studied problem. Such an
example is presented in Section 5.2.

5. APPLICATIONS

5.1. Non-Linear Hysteretic Bouc–Wen
Model
In this example, the hysteretic system illustrated in Figure 2
comprising a Bouc–Wen type spring of mass-normalized stiffness
k and linear damping c is examined.

The relative displacement x of the body with respect to the
ground is considered as the measured quantity. The observability
of this systemwas examined inChatzis et al. (2014). The equations
of motion are formulated as:

ẍ + k r + cẋ = −ẍg
ṙ = ẋ − β |ẋ| |r|ν−1 r − γ ẋ |r|ν

(11)

FIGURE 2 | Mass on a Bouc–Wen Spring.
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where k is the stiffness of the spring, c the damping coefficient, and
β, γ, and ν are the parameters of the Bouc–Wen model. The term
ṙ can be rewritten as ṙ = ẋ− ẋs, where xs is the displacement of the
slider and ẋs = β |ẋ| |r|ν−1 r − γ ẋ |r|ν . Hence, r can be thought
of as the displacement of the elastic spring. As stated in that paper
the dynamic equations of motion of the system can be separated
into four smooth branches:

(A) : ṙ = ẋ − β ẋ rν − γ ẋ rν , for ẋ > 0& r > 0
(B) : ṙ = ẋ + β ẋ rν − γ ẋ rν , for ẋ < 0& r > 0
(C) : ṙ = ẋ + β ẋ (−r)ν − γ ẋ (−r)ν , for ẋ > 0& r < 0
(D) : ṙ = ẋ − β ẋ (−r)ν − γ ẋ (−r)ν , for ẋ < 0& r < 0 (12)

within these branches the system is not fully observable, but may
be rewritten in the form:

(A) : ṙ = ẋ − ∆1 ẋ rν , for ẋ > 0& r > 0
(B) : ṙ = ẋ + ∆2 ẋ rν , for ẋ < 0& r > 0
(C) : ṙ = ẋ + ∆2 ẋ (−r)ν , for ẋ > 0& r < 0
(D) : ṙ = ẋ − ∆1 ẋ (−r)ν , for ẋ < 0& r < 0 (13)

where ∆1 =β + γ and ∆2 =β − γ. The augmented state vector
is hence defined as: [x, ẋ, r, k, c, ν, ∆1, ∆2]. In this new repre-
sentation, within each branch all of the states (x, ẋ, r, k, c, ν)
are observable while only one of the parameters ∆1 and ∆2 is
identifiable depending on the sign(ẋ r). When ẋ r ≥ 0, i.e., with
branches (A, D)∆1 is identifiable, while when ẋ r < 0, i.e., within
the branches (B, C) ∆2 is identifiable.

The previous result can also be demonstrated in terms of the
Bouc–Wen spring that can be considered to be the non-smooth
componentC1, for which equations (13) correspond to the formof
equation (5) with PC1 = r and xC1t = [ẋ]. For such a component,
θoC1 = ∆1, θuC1 = ∆2, when ẋ r ≥ 0 and θoC1 = ∆2, θuC1 = ∆2,
when ẋ r < 0. For the given measurement setup used, the
observability analysis on the overall system shows that there are no
further unidentifiable parameters or unobservable states. To com-
plete the description of the method the transformation matrices
are defined:

1. ẋ r ≥ 0 :
T1 = I8×8 (14)

2. else:

T2 =

 I6×6 {0}6×1

{0}1×6
0 1
1 0

 (15)

A system with mass-normalized stiffness and damping terms
k = 1000 1

sec2 and c = 2∗
√
k∗5% 1

sec , respectively, and Bouc–Wen
parameters ν = 2, ∆1 = 6000, ∆2 = 2000 initially at rest is sub-
jected to the input ground motion shown in Figure 3. The mea-
sured signal is assumed to be the displacement of the system x.

5.1.1. The Effect of Noise
For the parametric analysis that follows, an initial guess is herein
assumed as k0 = k, c0 = c, ν = 3, ∆1/2000= 2, and ∆2/2000= 2.
Initially, the effect of different realizations of noise vectors to the
convergence of the algorithms will be studied. To that end 1000
different sets of random process and noise vectors are generated,
corresponding to a noise-to-signal RMS ratio of 5%. The noisy
inputs and outputs are then used in the two methods, DUKF
and UKF, which assume corresponding covariance matrices for
the process and measurement noise, and the mean error of the
final estimates for the Bouc–Wen parameters is calculated. The
Cumulative Distribution of the mean BW parameter errors is
shown in Figure 4A. Subsequently, the effect of different levels of
noise-to-signal RMS ratio for the process noise and the assumed
values in the algorithm is investigated. To that end, values of RMS
ratios in the range [1%, 7%] with an increment of 1%, where
different values are used for the signals that contaminate the
input andmeasurement vector and the assumed covariances of the
measurement and process noise used in the models. That creates
a total of 74 cases that are examined, for which the mean BW
parameter error is calculated, using both the conventional and
proposed method, and the results are presented in 4B.

As observed in Figure 4A, DUKF performs superior to the
UKF for a given noise-to-signal RMS ratio and is less affected
by the exact realizations of the noise vectors. For the DUKF
approximately 80% of the cases result into mean parameter error
less than 20 versus 60% for the UKF. As can further be deduced
from Figure 4B, the same qualitative comparison for the two
methods is observed even in the casewhere diverse noise-to-signal
RMS ratios are adopted, while a mismatch is noted between the

A B

FIGURE 3 | (A) Ground acceleration (B) relative displacement.
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A B

FIGURE 4 | Predictions of the two EKF models for the corresponding parameters of the Bouc–Wen model. (A) 5% noise RMS ratio and corresponding assumed
covariances. (B) Varying the noise RMS ratio and assumed covariances.
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FIGURE 5 | Mean relative error color-plots for the two methods when different initial values are used for the Bouc–Wen parameters.

FIGURE 6 | 4 masses system with Bouc–Wen springs and linear dampers.

actual and assumed (in the model) covariances of the process
and measurement noise. The use of the DUKF allows for larger
discrepancies between the assumed covariances of the noises and
their real properties.

5.1.2. The Effect of the Initial Estimates
The effect of different initial estimates for the Bouc–Wen param-
eters on the convergence is explored in the following Figure 5. To
that end, the initial estimates used for∆1 and∆2 vary in the range
between [1, 7] * 2000, while ν is varied in the range: [1.8, 3]. The
mean relative error of the BW parameters is calculated for each
case and a color is assigned depending on the value of that error.
The error color-bar is shown in Figure 5 corresponding to mean
errors from 0 to 100%.

As observed inFigure 5, the relative error is lower for theDUKF
as compared to theUKF for a wide range of initial estimates of the
parameters. Essentially the method is more forgiving in terms of
the proximity of the initial estimate to the real value, which offers
an important advantage as often the initial estimates are not close
to the final value.

5.1.3. Non-Smoothness and Dimensionality
The previous Bouc–Wen spring will be extended to 4 masses
connected with Bouc–Wen springs. Each mass is described by a
displacement xi relative to the ground. The non-linear springs are
defined by their stiffness ki and the Bouc–Wen parameters ∆1i ,
∆2i , and ν i and linear dampers with coefficients ci, i= 1, . . ., 4 as
shown in the following Figure 6.
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The state-space equations of the systemmay be assembled after
noting that the equation of evolution of the elastic displacement
of spring i> 1 becomes:

ṙi = ẋi − ẋi−1 − ∆1i (ẋi − ẋi−1) |ri|νi , for (ẋi − ẋi−1) ri ≥ 0
ṙi = ẋi − ẋi−1 + ∆2i (ẋi − ẋi−1) |ri|νi , for (ẋi − ẋi−1) ri < 0

(16)

If this system is excited by a ground acceleration ẍg and the
displacements of the four masses [x1, x2, x3, x4] are measured
then it may be demonstrated that for each of the four Bouc–Wen
components of the system,C1, . . .,C4, the parameters∆1i and∆2i
become unidentifiable when (ẋi − ẋi−1) ri < 0 or (ẋi − ẋi−1) ri ≥
0, respectively. This occurs from the identifiability properties of
each Bouc–Wen component, Ci, after noting that PCi = ri and
xCit = [ẋi − ẋi−1]. When (ẋi − ẋi−1) ≥ 0, θoCi = ∆1i and θuCi =
∆2i , else θoCi = ∆2i and θuCi = ∆1i . The remaining parameters
and dynamic states are identifiable and observable, respectively,
according to the observability analysis of the overall system. The
overall transformation matrix Ti can hence be assembled at any
time instance.

A systemwith parameters ki = [1000, 900, 800, 700] [1/s2], ci =
2
√
ki 5/100 [1/s], ∆1i = [6, 7, 8, 9] 2000, ∆1i = [6, 7, 8, 9] 2000,

∆1i = [1, 1, 2, 6] 1000, and ν i = [2, 2, 2, 2] is subjected to the time
history of Figure 3A. The obtained displacements are shown in
the following Figure 7.

The measurements are contaminated with noise of noise-
to-signal RMS ratio of 1%. The corresponding covariances are
assumed in both models for the process and measurement noises.
The initial estimates used for both models are ki = 1000, ci =
2
√
1000 10/100, ν i = 2.5,∆1i = ∆2i = 3 for i= 1, ·, 4. The results

of the identification using the UKF and DUKF are shown in the
following Figures 8 and 9.

As observed in Figure 8, both methods provide fairly good
estimates of the elastic parameters of the system ki, ci. How-
ever, when it comes to the non-linear (Bouc–Wen) parameters,
the DUKF provides a substantially improved estimated versus

FIGURE 7 | Displacements of the four masses of the system.

the UKF. This can be seen by the fact that while for DUKF
the final ratio of the estimated over real values for the parame-
ters is close to unity, for the UKF this ratio substantially devi-
ates from unity indicating large estimation errors. This can be
attributed to the multiple, 4 in this case, unidentifiable parame-
ters at any time window. As those unidentifiable parameters are
increased, it is more likely that the estimates of the system overall
diverge.

It should hence be noted that non-smooth high dimensional
systems suffer from the effects of dimensionality, but also from
the additional effect of the increased number of unidentifiable
parameters and hence sources of divergence. The former can be
improved using techniques applied to smooth systems for dimen-
sionality (Olivier and Smyth, 2017b), while the latter is treated
through the D– modification suggested here. It should be noted
that the two treatments, which aim at tackling different problems,
can be combined.

5.2. 2DOF Elasto-Plastic System
In this example, the behavior of a shear system of twomasses with
displacements x1 and x2 connected to each other and the ground
by means of linear damping elements of normalized damping
over mass c1, c2 and elastoplastic springs of normalized over mass
stiffness k1, k2 and yield force Fy1 and Fy2 as shown in Figure 10 is
studied.

The equations of motion describing the system when subjected
to a ground acceleration ẍg become:

ẍ1 + (c1 + c2) ẋ1 − c2 ẋ2 + k1 xel1 − k2 xel2 = −ẍg
ẍ2 + (c2) ẋ2 − c2 ẋ1 + k2 xel2 = −ẍg (17)

where xeli is the elastic elongation of the elastoplastic spring i
whose evolution over time is defined as:

ẋel1 = ẋ1, in the elastic branch ẋel1 = 0, in the plastic branch
(18)

ẋel2 = ẋ2 − ẋ1, in the elastic branch ẋel2 = 0, in the plastic branch
(19)

The following equations define the transition conditions
between the elastic and plastic branches for spring i:

∥ki xeli∥ = Fyi , elastic → plastic
ẋeli = 0, plastic → elastic (20)

The previous transition equations ensure that the force of
elastoplastic spring i always satisfies the condition: ∥ ki xeli ∥≤ Fyi .

For the purpose of identification the augmented state vector
will include x1, x2, ẋ1, ẋ2, kxel1, kxel2, c1, c2, k1, k2, Fy1 , Fy2 . The
dynamic states kxeli correspond to the product ki xeli and are
used instead of the elastic displacements as it allows separating
the states into observable and unidentifiable within all branches
without having to use a non-linear transformation (Chatzis et al.,
2017). In terms of the identifiability of the system it can eas-
ily be shown as in Chatzis et al. (2017), that all the dynamic
states together with c1 and c2 are always identifiable. How-
ever, only one of [ki, Fyi ] is identifiable depending on whether
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A B

C D

FIGURE 8 | Spring and damping parameters identified by the UKF and DUKF.

spring i lies in an elastic or plastic branch at that specific time
instance. This follows after studying the identifiability of any of
the two elastoplastic spring components, Ci where PCi = kxeli
and xC1t = [ẋi − ẋi−1]. Then the equation of component Ci
becomes:

ṖCi = ki (ẋi − ẋi−1), in the elastic branch
ṖCi = 0, in the plastic branch (21)

and as a result θuCi = Fyi in the elastic branch and θuCi = ki in
the plastic branch. Fyi becomes identifiable when component Ci
enters the plastic branch. This is because the plasticity constraint,
when activated, effectively results into an additional measurement
equation: Fyi = ∥kxeli∥.

Hence, the identifiability of the system requires estimation of
whether spring i is in an elastic or plastic branch. While this
discussion is obvious for the real system through use of equation
(20), it requires some careful consideration when applied to the
systems estimated by the DUKF. As each of the sigma points are
bound by the inequality constraint of equation (20), it is likely
that their mean would satisfy the condition ∥kx̂eli∥ < Fyi even
if the majority of the sigma points are satisfying the equality, and

are hence in the plastic branch. The problem occurs due to the
fact that the condition in equation (20) indicates of whether the
spring is elastic or plastic, but cannot quantify “how” elastic or
plastic the response of the system is. A means of indicating the
tendency of the system to behave in an elastic or plastic manner,
suggested in this paper,may be attained via comparison of the esti-
mated mean velocities of the elastic and plastic elongation of the
springs.

To such an end, the inequality of equation (20) is used to deem
of whether each sigma point lies in an elastic or plastic branch
using the estimated values for the springs prior to applying the
measurement update (i.e., χi

k|k−1 for sigma point i). Then, the
elastic and plastic velocity of spring i for sigma point j, ẋjelj , ẋ

j
plj ,

are:

ẋjeli = ẋjsi , if spring i is elastic

ẋjeli = 0, if spring i is plastic (22)

where ẋjsi is the total velocity of spring i for sigma point j, ẋjs1 = ẋj1
and ẋjs2 = ẋj2 − ẋj1, then ẋjpli = ẋjsi − ẋjeli . The mean estimates of
the two velocities ˆ̇xeli and ˆ̇xpli can be calculated using the fourth
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FIGURE 9 | Bouc–Wen parameters identified by the UKF and DUKF.

step of the DUKF algorithm. Hence, the following criterion is
used to deem of whether the system is behaving elastically or
plastically:

∥ˆ̇xeli∥ ≥ ∥ˆ̇xpli∥ → the system behaves elastically

∥ˆ̇xeli∥ < ∥ˆ̇xpli∥ → the system behaves plastically (23)

It is now straightforward to estimate the branch each spring
would be in and obtain the corresponding contribution to the
transformation matrix T. It should finally be noted that in both
theUKF andDUKF algorithms the following constraint is applied
to sigma point j if ∥kxeli∥ > Fyi for spring i:

kxeli = Fyi ∗ sign(kxeli) (24)
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A B

FIGURE 10 | System studied. (A) System of two masses connected with elastoplastic springs and linear dampers. (B) Behavior of elastoplastic spring.

A B

FIGURE 11 | (A) Ground acceleration and (B) displacements of the masses.

A B

FIGURE 12 | Force displacement curves for (A) Spring 1 and (B) Spring 2.

where equation (24) is a return mapping scheme. This is what
one would follow in the forward dynamics problem, as the value
of Fyi would be known. However, in this problem it would also
be possible to instead modify the value of Fyi when the plasticity
constraint is violated.

A system with properties k1 = 1000 [1/s2], k2 = 800 [1/s2],
c1 = 2

√
k1 0.05 [1/s], c2 = 2

√
k2 0.05 [1/s], Fy1 = 50 [m/s2]

Fy1 = 30 [m/s2] is subjected to the excitation of Figure 11A. The
occurring displacements of bothmasses aremeasured as shown in
Figure 11B.
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The two springs exhibit an elastoplastic response as shown
in the force displacement responses plotted in Figure 12. The
maximum total displacements, x1 and x2 − x1 correspond to 1.7
and 2 times the yield displacements, respectively.

The input and measurements are contaminated with white
noise signals corresponding to 5% noise-to-signal RMS ratios. As
there is a substantial drift of the measured signals their RMS is
calculated after these are passed through a high pass filter with a
cutoff frequency at 0.5Hz. The initial estimates for the stiffness
and the damping of both springs are given a significant offset, as
these are assumed as twice their actual value. The initial estimates
of the yield forces, Fy1 and Fy2 , are varied in the following ranges:
Fy1 ∈ [5, 80] and Fy2 ∈ [5, 60]. This is later used in both the
UKF and DUKF, where the assumed covariances of the process
andmeasurement noises match the 5% noise-to-signal RMS ratio.
After the algorithms are implemented, the mean relative error
of the estimated parameters with respect to the real values is
calculated and is plotted in the following Figure 13, where the
upper row of figures corresponds to the results of DUKF and the
lower toUKF, each columnof sub-figures corresponds to the error
of the parameter indicated by the title and for each sub-figure

FIGURE 13 | Mean relative error color-plots for the two methods when
varying the initial estimates of Fy1 and Fy2 .

the horizontal and vertical axes correspond to different initial
estimates of Fy1 and Fy2 . The mean relative error is indicated by
the color-bar of the Figure.

As observed in Figure 13, DUKF in general results in reduced
errors over UKF for a wide range of initial estimates. It should be
noted that themethod results in a large improvement over the esti-
mates of the stiffness of the two springs k1 and k2. This is expected
as these parameters become unidentifiable when the correspond-
ing spring is in the plastic branch. Equally there appears to be a
clear improvement for the estimates of the plastic forces Fy1 and
Fy2 , when the initial estimates are in the range Fy1 ∈ (0, 70) and
Fy2 ∈ (5, 50). For values of Fy1 > 70 and Fy2 > 50, DUKF does
not change the initial estimate of the corresponding parameter,
as the algorithms estimates that the system is always elastic. This
can be understood by looking at the following Figure 14 which is
plotting the forces seen by elastic springs of stiffness k1 and k2 for
the real displacements of the system.

In both cases, there are only few points in Figures 14A,B,
where, respectively, even the force of a linear spring for the dis-
placements of the system would exceed the values of Fy1 > 70
and Fy2 > 50. As a result, it is reasonable for the DUKF, given the
properties of the estimator selected and the way the plasticity con-
straint is applied, to reach the conclusion that the corresponding
spring always remain elastic when the initial estimates of Fyi are in
the aforementioned range. While this is disadvantageous in terms
of identification of the real value of the parameters, when high
initial estimates of Fy1 and Fy2 are used, the advantage of theDUKF
lies in that the algorithm has not changed the estimates of the
corresponding covariance terms indicating that these parameters
were not identified. Additionally, it appears that even for such
cases the DUKF is capable of providing good estimates for the
remaining parameters.

In contrast, the UKF would proceed to evolve the initial esti-
mate of Fy1 and Fy2 in all scenarios. The algorithm may hence
reduce the initial estimate of Fy1 or Fy2 even during periods of
unidentifiability and this non-optimal change could happen to
result into more favorable estimates for the value of Fy1 and Fy2 .
However, it is equally or more probable that the algorithm will
change the overall estimates of the parameters to less favorable

A B

FIGURE 14 | Force displacement curves for (A) Spring 1 and (B) Spring 2.
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values during unidentifiable windows, thus resulting in diver-
gence of all parameters. This is depicted in the behavior of theUKF
in Figure 13 for initial estimates of Fy1 > 70 and Fy2 > 50 where
even when the algorithm happens to do better for the estimates
of the corresponding Fyi the remaining parameters behave less
optimally. Additionally, in that region the final estimate of the
covariance terms corresponding to Fyi are substantially lower
than the DUKF even when the algorithm does not converge.
The behavior of both algorithms for the case of initial estimates
Fy1 = 70, Fy2 = 60 is shown in the following Figures 15 and 16
for the estimated/real values of the parameters versus time and the
estimated versus real plastic displacements xpli , respectively.

It should be noted that in Figure 15, the DUKF does not
practically alter the initial guess of Fyi as described above. In
this simulation the UKF happens to evolve the estimate of Fy1
in a coincidentally favorable way, while doing the opposite hap-
pens for Fy2 . However, as observed in Figure 16A, the UKF has
difficulty in tracking the plastic displacements for this case. To

FIGURE 15 | Estimated over real values for the parameters, for the
disadvantageous for the DUKF scenario of initial estimates Fy1 = 70,
Fy2 = 60.

the contrary, the DUKF is shown in Figure 16B to result into
excellent predictions despite the inability to track the values of
Fy1 and Fy2 . Finally it should be noted that UKF appears relatively
certain for the values of Fy1 and Fy2 , despite the fact that the
latter is incorrect, with corresponding covariance terms smaller
than 2× 10−3. In contrast,DUKF has not practically changed the
covariance from the initial guess which is of the order of 102 indi-
cating that the method is uncertain of its estimation of these two
values.

Hence, this investigation leads to a result similar to those of the
DEKF in Chatzis et al. (2017) for Elasto-plastic springs: it appears
more favorable to use initial estimates of Fyi smaller than the real
value of those parameters, or at least smaller than the maximum
force seen by an elastic spring for the displacements of the system.
Of course while this is not possible a priori, as those values are
not known one can be informed by the DUKF of the inability of
the algorithm to identify the corresponding value of Fyi , due to
the lack of change of the parameters and the corresponding large
covariance terms. Additionally, the elastic displacements xeli and
total displacements xi of the system are calculated by the DUKF
with high precision allowing to alert the user on the presence of
permanent displacements.

6. DISCUSSION AND CONCLUSION

This paper suggests the use of a Discontinuous D– modification
for non-smooth systems for modifying the UKF. Non-smooth
systems include certain parameters whose identifiability prop-
erty changes over time. To alleviate the divergence exhibited by
standard filtering algorithms during time periods of unidentifi-
ability, the Discontinuous modification suggests retaining such
parameters invariant during those intervals. This paper, therefore,
introduces a Discontinuous Unscented Kalman Filter DUKF.

The method is implemented as a minimally invasive modifi-
cation allowing, as the original UKF algorithm, straightforward
implementation with any existing software that employ filtering
algorithms to update the states of a systemover time. TheD–mod-
ificationmakes use of a transformationmatrix at any time instance
based on the estimated active smooth branch of the system

A B

FIGURE 16 | Estimated versus real plastic displacements of the springs for (A) UKF and (B) DUKF, for the disadvantageous for the DUKF scenario of initial estimates
Fy1 = 70, Fy2 = 60.

Frontiers in Built Environment | www.frontiersin.org October 2017 | Volume 3 | Article 5613

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Chatzis and Chatzi DUKF for Non-Smooth Problems

and the occurring identifiable and unidentifiable parameters. The
proposed modification does not increase the computational cost
of the original method; in fact it leads to inversions and operations
on matrices of lower dimension.

The examples provided demonstrate the use of the algorithm
with two different types of non-smooth systems: systems where
the identifiability condition varies between different subspaces
of the state vector and systems for which the non-smoothness
is a result of an inequality constraint. Several non-smooth sys-
tems can be described as combinations of these two cases. The
examples illustrate the robustness of the D– modification and the
overall improved performance ofDUKF versusUKF for problems
of increased complexity. Different sources of complexity were
studied in terms of their effect such as the noise in the input
and measured data, the assumed noise covariances in the models,
different initial conditions and dimensionality. The DUKF was
shown to improve the estimates provided for all the previous
cases, and resulted in a more consistent behavior than that of the
standard UKF for non-smooth systems.

This paper together with former work of the authors on the
EKF (Chatzis et al., 2017) demonstrate that non-smoothness
bears an effect on the convergence of non-linear Kalman Filters
and in general for online Bayesian methods, further illustrating

that the D– modification is a viable treatment across algorith-
mic implementations of this class. The D– modification tackles
the problems associated to non-smoothness and may be paired
with existing modifications aiming at improving the performance
of the algorithms for smooth problems, substantially expanding
the ability of the occurring algorithms to handle problems of
increased complexity.
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