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A wide range of vibrating structures are characterized by variable structural dynamics
resulting from changes in environmental and operational conditions, posing challenges
in their identification and associated condition assessment. To tackle this issue, the
present contribution introduces a stochastic modelingmethodology viaGaussian Process
(GP) time-series models. In the presently introduced approach, the vibration response
is represented by means of a random coefficient time-series model, whose coefficients
comply with a GP regression on the environmental and operational parameters. The
approach may be implemented in conjunction to any type of linear-in-the-parameters
time-series model, ranging from simple AR models to more complex non-linear or non-
stationary time-series models. The obtained GP time-series modeling approach provides
an effective and compact global representation of the vibrational response of a structure
under a wide span of environmental and operational conditions. The effectiveness of
the postulated GP time-series models is demonstrated through two case studies: the
first involves the identification of the vertical vibration response of the Humber bridge,
evaluated over a period of three years; the second considers the long-term simulated
vibration response of a wind turbine featuring non-stationary dynamics stemming from
the rotor speed. In both cases, the variation of the average wind speed is the main driver
of uncertainty, while, through application of the proposed GP time-series models, it is
possible to track the resulting variation in modal quantities.

Keywords: time-series models, uncertainty, metamodels, random coefficient, gaussian process

1. INTRODUCTION

Several types of vibrating structures by default operate in constantly varying environmental and
operational conditions, which inevitably results in variability of the induced structural dynamics.
This is the case for wind turbines, bridges, high rise buildings and more. This issue poses a practical
challenge related to the identification and analysis of the vibrational response of these structures, as
well as for the health monitoring, fatigue assessment and control of the induced vibrations.

In order to construct a robust model of the dynamic response of the structure, it is not
only necessary to accurately model the short-term response of the structure, but it is further
necessary to effectively capture the long-term trends underlying the induced dynamics. This
issue, in the particular case of data-based time-series models, has been extensively researched in
recent years, resulting in the formulation of different strategies, including projection methods, and
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deterministic or stochastic functional dependence models. Projec-
tion methods, also referred to as data normalization methods, aim
at projecting characteristic quantities associated with the time-
series model representing the short-term response of the struc-
ture, into a subspace where the influence of Environmental and
Operational Parameters (EOPs) may be easily removed (Yan et al.,
2005; Sohn, 2007; Deraemaeker et al., 2008). On the other hand,
deterministic functional dependence models aim at capturing the
long-term variability in the dynamics by assuming a deterministic
functional relationship from EOPs to the characteristic quantities
of the time-series model describing the dynamics of the response.
Typically, such a deterministic functional relationship is captured
via a functional series expansion. Methods falling into this class
include the regression/interpolation methods discussed in Wor-
den et al. (2002) and Sohn (2007), as well as the Functionally
Pooled (FP) time-series models explained in Kopsaftopoulos et al.
(2018) and Sakellariou and Fassois (2016). These methods are
particularly effective when a direct relationship exists between
measurable input EOPs and the characteristic quantities of the
time-series models. Nonetheless, uncertainty in the EOPs and in
the dynamic response introduces variability in the characteristic
quantities of the basic time-series model, which may not be effec-
tively captured by means of a deterministic relationship. Instead,
randomor stochastic functionsmay bemore effective in capturing
the uncertainty on the characteristic quantities of the time-series
model.

In this sense, a third class of methods, referred to as stochastic
functional dependencemodels, aim at capturing the long-termvari-
ability by assuming that the characteristic quantities of the basic
time-seriesmodel are stochastic variables depending on the EOPs.
Toward this end, recent works have postulated either Random
Coefficient (RC) (Avendaño-Valencia and Fassois, 2015, 2017a,b;
Avendaño-Valencia et al., 2015a) or Polynomial Chaos Expansions
(PCE) (Spiridonakos and Chatzi, 2014, 2015; Avendaño-Valencia
et al., 2015b; Spiridonakos et al., 2016) to represent the variability
of the characteristic quantities of a model. In particular, RC time-
series models represent the variability in the dynamics as ran-
domness in the parameters of the time-series model. Then, apart
from the selection of the specific time-seriesmodel, a further user-
defined choice pertains to the definition of an appropriate distri-
bution model for its respective coefficients, which in several cases
can become very complex. On the other hand the PCE approach
exploits the probabilistic knowledge of the EOPs to build the most
effective functional representation of the time-series parameters.
However, it is also considered that the randomness in the model
parameters originates solely on the randomness of the EOPs.
Therefore, other sources of uncertainty may be misrepresented.

In this regard, this work provides a framework for the global
(short and long term) identification of the dynamic response of
a structure, of unknown properties or a given a priori numerical
model, under variable operational and environmental conditions
by representing the short-term dynamics via a linear-in-the
parameters regressive time-series model (which may assume the
form of an AutoRegressive, AutoRegressive with eXogenous input
or similar model), and a Gaussian Process (GP) regression to
represent the stochastic dependence of the parameters of the basic
time-series model on the EOPs, which in turn, describes the
long-term variability on the dynamics of the structural response.

Contrary to deterministic functional dependence models and
PCE-based methods, where the EOPs are considered as the sole
source of variability on the time-series model parameters, the
appraised GP approach is further capable of capturing and quan-
tifying the additional uncertainty stemming from other unmea-
surable sources. Likewise, the obtained GP time-series model is
totally linear-in-the-parameters, which facilitates the identifica-
tion, parameter estimation and posterior model-based analysis.
The issue of model identification is addressed by the Maximum
Likelihood principle, which is solved bymeans of an Expectation-
Maximization method adapted to the particular structure of the
Gaussian Process time-series model. In addition,Gaussian Process
Principal Component Regression (GP-PCR) is introduced as an
optional improvement to the basic GP time-series model aiming
at reducing the number of variables in the representation and to
improve the numerical stability of the parameter estimation and
optimization.

The methods discussed here are demonstrated on two dedi-
cated case-studies. The first one pertains to the identification of
actual data corresponding to the vertical acceleration response in
the Humber bridgemeasured over 21 non-consecutive days in the
period fromMay 19, 2011, toMarch 24, 2013. The second one cor-
responds to the identification of the long-term vibration response
of a wind turbine, employing simulations obtained via the FAST
wind turbine aeroelastic simulation code, which are characterized
by non-stationary dynamics and long-term variability induced by
variable wind speed.

The remainder of this paper is organized as follows: Section 2
initially provides a summary of traditional linear-in-the-
parameters time-series models, pointing out their limitations in
long-term identification, and offering their natural extension
via GP regression. In addition, principal component regression
is introduced as an alternative to reduce the number of
identified parameters. Subsequently, Section 3 is devoted to
the identification of the GP time-series model based on a
set of dynamic responses, including the estimation of the
parameters of individual realizations, the estimation of the
hyper-parameters of the representation and the assessment and
validation of the obtained model. Finally, Section 4 provides the
two aforementioned case studies, i.e., the Humber bridge and
wind turbine simulated vibrational response, while Section 5
concludes the study.

2. MODELS OF THE DYNAMIC RESPONSE
OF STRUCTURES

2.1. Traditional Linear-in-the-Parameters
Regressive Time-Series Models
Consider the dynamic response of a structure y[t] ∈ R defined
over the normalized discrete time t= 1, 2, . . . ,N and sampled
with a sampling rate f s. The response is assumed to obey the
linear-in-the-parameters regressive time-series model:

y[t] = ϕT(z[t]) · θ + w[t], w[t] ∼ NID(0, σ2
w) (1)

where ϕ(z[t]) ∈ Rn is the regression vector, z[t] ∈ Rnz is the
vector of regressed variables, θ ∈ Rn is the parameter vector and
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w[t] is a Normally and Identically Distributed (NID) innovations
of mean zero and variance σ2

w. The vector of regressed variables
z[t] may contain previous values of the dynamic response y[t],
excitation inputs x[t] and innovationsw[t], according to themodel
type. Accordingly, equation (1) corresponds to the case of either
an output-only or a Multiple Input Single Output (MISO) model.
However, theMultiple Input Multiple Output (MIMO) case can be
cast into the presently discussed framework through the proper
rearrangement of the regression and parameter vectors, as well
as the redefinition of the dynamic response and innovations as
column vectors. In addition, linear state space representations
may be considered when observation errors are an important
component of the dynamic response measurements.

The linear-in-the-parameters regressive time-series model of
equation (1) encompasses a large group of time-series models,
which differ in the specific form of the regression vector and
the vector of regressed variables. A few important examples are
summarized next:

• AutoRegressive (AR) models: the simplest case corresponds to
the AR model, for which the regression vector is of the form
((Ljung, 1999) Ch. 4):

ϕ(z[t]) = z[t] =
[
y[t − 1] y[t − 2] · · · y[t − na]

]T (2)

where na is the order of the AR model.
• AutoRegressive Moving Average (ARMA) models: ARMA

models further include previous values of the innovations in
the vector of regressed variables, and thus (Ljung, 1999):

ϕ(z[t]) = z[t]

=
[
y[t − 1] · · · y[t − na] w[t − 1] · · · w[t − nc]

]T
(3)

where na and nc are the orders of the AR and MA parts of the
model.

• AutoRegressive with eXogenous variable (ARX) models: ARX
models combine previous values of the dynamic response and
the excitation vector x[t] ∈ Rnx , and thus ((Ljung, 1999) Ch. 4):

ϕ(z[t])= z[t]

=
[
y[t − 1] · · · y[t − na] xT[t − 1] · · · xT[t − nb]

]T
(4)

where na and nb are the orders of the AR and exogenous parts
of the model.

• Linear Parameter Varying AR (LPV-AR) models: LPV-AR
models are a class of time-dependent AR models, which cor-
respond to a generalization of the simple AR model, where
the parameters of the AR model are dependent on an external
scheduling variable β[t] determining the values of these param-
eters at time t. The regression vector in the case of LPV-AR
models is of the form (Avendaño-Valencia and Fassois, 2017b):

z[t] =
[
y[t − 1] y[t − 2] · · · y[t − na]

]T (5a)

ϕ(z[t]) = z[t] ⊗
[
gb1(β[t]) gb2(β[t]) · · · gbp(β[t])

]T (5b)

where na is the AR order, ⊗ denotes the Kronecker product,
gbj(β[t]) is the j-th functional expansion basis, and p is the
order of the functional expansion basis. The closely related
Functional Series TAR (FS-TAR) models form a special case of
the LPV-AR model where the scheduling variable is time, i.e.,
β[t] ≡ t (Poulimenos and Fassois, 2006).

• Non-linear AR (NAR) models: NAR models correspond to
the non-linear counterpart of AR models, where the dynamic
response is regressed on non-linear functions of its previous
values, so that the regression vector assumes the form (Spiri-
donakos and Chatzi, 2015):

z[t] =
[
y[t − 1] y[t − 2] · · · y[t − na]

]T (6a)

ϕ(z[t]) =
[
g1(z[t]) g2(z[t]) · · · gn(z[t])

]T (6b)

where na is the AR order, and gj (z[t]) is the j–th non-linear
term of the vector of regressed variables.

Equation (1) may be expressed alternatively as follows:

w[t] = y[t] − ϕT(z[t]) · θ = y[t] − y[t|t − 1] (7)

where y[t|t – 1]:=E{y[t]|θ, ϕ(z[t])} is the one-step-ahead predic-
tion of the dynamic response, with associated variance E{(y[t1] −
y[t1|t1 − 1]) · (y[t2] − y[t2|t2 − 1])} = σ2

w · δ[t1 − t2], where
t1, t2 are two analysis instants, and δ[t] denotes the Kronecker
delta. Hence, under the NID assumption of the innovations w[t],
the conditional probability of the dynamic response y[t] given the
parameter vector θ and the regression vector ϕ(z[t]) is Gaussian
with mean y[t|t–1] and variance σ2

w, or more specifically:

p(y[t] | θ, ϕ(z[t])) = Ny[t](y[t|t − 1], σ2
w),

y[t|t − 1] = ϕT(z[t]) · θ (8)

whereNx(xo, σ2
x) denotes a Gaussian distribution for the random

variable x with mean xo and variance σ2
x . Moreover, by virtue of

the NID nature of the innovations, it follows that the probability
for an entire vibration response realization of lengthN aggregated
in the vector y= [y[1] y[2] · · · y[N]]T , is:

p(y | θ,Φ) =
N∏

t=1
p(y[t] | θ, ϕ(z[t])) =

N∏
t=1

Ny[t](y[t|t − 1], σ2
w)

(9)

where Φ= [ϕ(z[1]) ϕ(z[2]) · · · ϕ(z[N])] ∈ Rn×N is the
N-sample long regression matrix. Then, by introduction of equa-
tion 8, and by virtue of the properties of exponential functions, it
follows that (see Appendix A.1):

p(y | θ,Φ) = Ny(ΦT · θ, σ2
w · IN) (10)

where IN indicates the N-size identity matrix. The conditional
PDF p(y|θ, Φ), seen as a function of the parameter vector θ,
determines the likelihood of the parameter vector L(θ | y,Φ). Fur-
thermore, after assuming that the coefficient vector θ is a deter-
ministic variable, Maximum Likelihood (ML) estimates may be
obtained by determining the values that maximize the likelihood
L(θ | y, Φ) ((Ljung, 1999), Sec. 7.4).
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2.2. Limitations of the Traditional Linear
Regressive Models
Although the linear-in-the-parameters regressive time-series
model shown in equation (1) is useful for representing diverse
classes of time-series, including stationary, non-stationary and
non-linear, it lacks the flexibility to effectively represent vari-
able dynamics stemming from variable Environmental and Oper-
ational Conditions (EOCs). For instance, it is known that the
elasticity modulus of a material may change with temperature,
and in turn, a change in this variable would modify the natu-
ral frequencies and damping ratios associated with the dynamic
response of the structure. Hence, the model in equation (1) with
a fixed parameter vector θ, would fail to effectively represent the
dynamic response of the structure over a long period of analysis.

Instead, it may be considered that during a given period of
time, say T =N · f s, the EOCs remain more or less constant, and
consequently, the physical parameters of the structure would also
remain constant. Under these conditions, the linear regression
model of equation (1) is a valid representation of the dynamic
response of the structure for such analysis period, while the
parameter vector θ would change according to the EOCs. Two
main questions may be identified in this regard, the first is on how
to select the length of the period where it is considered that the
structural parameters remain more or less constant; the second is
on how to represent the variability in the parameters as a func-
tion of the EOCs. The selection of the period of pseudoconstant
dynamics may be obtained empirically by means of stationarity
tests, as described for example in Kay (2008), Basu et al. (2009),
and Borgnat et al. (2010). On the other hand, the representation
of the variability in the dynamics of the structure as an effect of
the EOCs is the main problem addressed in this work, for which a
Gaussian Process Regression approach is postulated, as shown in
the remainder of this work.

2.3. Gaussian Process Time-Series Model
The key assumption in the Gaussian Process (GP) regression
approach is that the parameter vector of the time-series model
follows a Gaussian distribution. Therefore, the linear-in-the-
parameters regressive time-series model of equation (1), is com-
plemented as follows:

y[t] = ϕT(z[t]) · θ + w[t], w[t] ∼ NID(0, σ2
w) (11a)

θ = θo(ξ,M) + u, u ∼ NID(0n×1,Σθ) (11b)

where ξ ∈ Rm is the Environmental and Operational Parame-
ter (EOP) vector determining the EOCs in the analysis period,
θ0(ξ, M)= E{θ|ξ, M} is the mean parameter vector indicating
the expected value of the parameter vector given the EOP ξ and
the matrix of projection coefficients M∈ Rn×p, and u is an NID
random vector with mean zero and covariance Σθ . The model
is completed by the following functional series expansion of the
mean parameter vector:

θo(ξ,M) =
p∑

j=1
µj · gbj(ξ) = M · g(ξ) (12)

where p is the order of the functional series expansion and:

M =
[
µ1 · · · µp

]
∈ Rn×p g(ξ) =

gb1(ξ)
...

gbp(ξ)

 ∈ Rp×1

(13)

are the matrix of projection coefficients and the functional basis
vector containing the basis with indices b =

[
b1 · · · bp

]T
p×1,

bj ∈ N. Note that any type of non-linear function may have been
used to describe the parameter variation, however, a linear-in-
the-parameter structure has been selected—again—in equation
(12) to facilitate the estimation and analysis of the model. A
time-series model obeying equation (11) shall be referred to as a
Gaussian Process (GP) time-series model and is characterized by
a set of deterministic parameters, referred to as hyper-parameters
P = {M,Σθ, σ2

w}, consisting of the matrix of projection coef-
ficients, the parameter covariance matrix and the innovations
variance.

For a GP time-series model, the instantaneous value of the
dynamic response y[t] and the parameter vector θ are jointly
distributed Gaussian variables, with the joint PDF conditioned on
the regression vector, the EOP vector and the hyper-parameters
shown next:

p(y[t], θ | ϕ[t], ξ, P) = p(y[t] | ϕ[t], θ, ξ, P) · p(θ | ϕ[t], ξ, P)
(14)

where, from equation (11), it follows that:

p(y[t] | θ, ϕ[t], ξ, P) = Ny[t](y[t|t − 1], σ2
w) (15a)

p(θ | ϕ[t], ξ, P) = Nθ(θo(ξ, M),Σθ) (15b)

Similarly, when the dynamic response over the complete period
of analysis of lengthN, namely y, is considered, the respective joint
conditional PDF takes the form:

p(y, θ |Φ, ξ, P) =
N∏

t=1
p(y[t], θ | ϕ[t], ξ, P)

=
N∏

t=1
p(y[t] | θ, ϕ[t], ξ, P) · p(θ | ϕ[t], ξ, P)

(16)

which, under the Gaussianity of both p(y[t]|θ, ϕ[t], ξ, P) and
p(θ |ϕ[t], ξ, P), becomes:

p(y, θ |Φ, ξ, P) =

Ny(ΦT · θ, σ2
w · IN)︸ ︷︷ ︸

p(y | θ,Φ,ξ,P)

· Nθ(θo(ξ,M),N−1 · Σθ)︸ ︷︷ ︸
p( θ|Φ,ξ,P)

(17)

In addition, according to the conditional density axiom, the
joint PDF may be decomposed as follows ((Rasmussen and
Williams, 2006), p. 9):

p(y, θ |Φ, ξ, P) = p(y | θ,Φ, ξ, P) · p(θ |Φ, ξ, P)

= p(θ | y,Φ, ξ, P) · p(y |Φ, ξ, P) (18)
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where p(θ|y,Φ, ξ, P) is the posterior PDFof the parameter vector
after observing the dynamic response, and p(y | Φ, ξ, P) is the
marginal probability of the dynamic response, comprising a func-
tion of the hyper–parameters and is referred to as the marginal
likelihood of the hyper-parameters L(P | y, Φ, ξ). The latter is
obtained by marginalizing the joint conditional PDF p(y, θ | Φ,
ξ, P) with respect to all the possible values of θ (Rasmussen and
Williams, 2006), p. 9). Given that both distributions p(y | θ, Φ,
ξ, P) and p(θ | Φ, ξ, P) are Gaussian, the posterior parameter
PDF and marginal likelihood are Gaussian as well, of the form
(Rasmussen and Williams, 2006), p. 9):

p(θ|y,Φ, ξ, P) = Nθ(θ̂, Pθ) (19a)

L(P | y,Φ, ξ) = p(y|Φ, ξ, P) = Ny(ΦT · θo(ξ,M), Σεk)
(19b)

where

θ̂ = E{θ|y,Φ, ξ, P} = θo(ξ,M) + K · (y − ΦT · θo(ξ,M))
(20a)

Pθ = E{(θ − θ̂) · (θ − θ̂)
T|y,Φ, ξ, P} = (In − K · ΦT) · Σθ

(20b)

K = Σθ · Φ · Σ−1
ε (20c)

Σε = σ2
w · IN + ΦT · Σθ · Φ (20d)

In the previous equations θ̂ ∈ Rn corresponds to the pos-
terior parameter mean with the associated posterior parameter
covariance matrix Pθ ∈ Rn×n. Moreover, the quantities:

ỹ[t|t − 1] := ϕT(z[t]) · θo(ξ,M), ε[t] := y[t] − ỹ[t|t − 1]
(21a)

y[t|t − 1] := ϕT(z[t]) · θ̂, e[t] := y[t] − y[t|t − 1] (21b)

are referred to as the prior and posterior one-step-ahead predic-
tions, respectively, with associated prior and posterior prediction
errors ε[t] and e[t]. In addition, Σε ∈ RN×N is the covariance
matrix of the prior prediction error. The main difference between
the prior and posterior predictions, is that the prior predictions
correspond to the best guess of the dynamic response in the
absence of knowledge of the actual parameter vector at the period
of analysis, while the posterior predictions are the best guess
of the dynamic response based on (an estimate of) the actual
parameter vector.

2.3.1. Remark – Unknown or Non-Measurable
Sources of Uncertainty
The GP time-series model may also be used in the context where
the EOP vector is either unknown or unmeasurable. If that is
the case, the functional series expansion of the mean parameter
vector in equation (12) is limited to a single constant term, so that
θ0(ξ, M):=θ0 =µ1·1, while the parameter PDF reduces to the
conventional multivariate Gaussian model, so that θ ∼ N θ(θ0,
Σθ). Such a case has been explored in Avendaño-Valencia et al.
(2015a).

2.4. Regression on a Reduced Parameter
Set via Principal Component Regression
Apotential difficulty in the adoption of theGP time-seriesmodels
lies in the computational cost due to the large number of param-
eters that need to be estimated. Moreover, a coefficient vector
covariance matrix Σθ with full structure implies that several
of the estimated parameters are redundant and/or unnecessary.
A potential solution to this problem is to use a dimensionality
reduction scheme for the regression matrix, such as in Principal
Component Regression (PCR), which is explained next.

To start with, consider the matrix Φ̄K = [Φ1 Φ2 · · · ΦK]T ∈
Rn×(N·K) containing the regression matrices associated with the
set of dynamic responses YK , which possesses the Singular Value
Decomposition (SVD) Φ̄ = U · Λ · VT, where U ∈ Rn×m

and V ∈ R(N·K)×m are orthogonal matrices, and Λ ∈ Rm×m,
with m=min{(N · K – 1), n} designating the rank of Φ̄K, is a
diagonal singular value matrix with entries λ1 ≥λ2 ≥ · · · ≥ λm.
Moreover, consider the vector d =

[
d1 d2 · · · dm̃

]T of
dimension m̃ ≤ m containing the indices of selected singular
values, and the truncated eigenvector matrices Ũ ∈ Rn×m̃ and
Ṽ ∈ R(N·K)×m̃ built from the columns of U andV corresponding
to the indices in d.

Hence, if the regression vector ϕ(z[t]) is projected into the
column Eigen-space, so that:

Ũ · ϕ̃(z[t]) = ϕ(z[t]) ↔ ϕ̃(z[t]) = ŨT · ϕ(z[t]) (22)

Then, upon replacement of the previous result into the original
regression model, the alternative Principal Component Gaussian
Process Regression (PC-GP) time-series model is obtained:

y[t] = ϕ̃T(z[t]) · ϑ + w[t], w[t] ∼ NID(0, σ2
w) (23a)

ϑ = ϑo(ξ, M̃) + ũ, ũ ∼ NID(0m̃×1,Σϑ) (23b)

where ϑ = ŨT · θ ∈ Rm̃ is a reduced dimensionality parameter
vector. Note that thematrixU and the scaled singular valuesΛ2/N
correspond to the matrix of principal vectors and the matrix of
principal values of the Principal Component Analysis (PCA) of
the covariance matrix estimate Φ̄ ·Φ̄T/N, thus the name Principal
Component Regression (PCR) ((Bair et al., 2006; Hastie et al.,
2009), Section 3.5).

Two main advantages are obtained through the use of the
PC-GP method (Hastie et al., 2009): (i) the dimension of the
parameter vector is reduced from n to m̃; (ii) since the regression
is built on orthogonal regressors (contained in the matrix Ũ), the
reduced parameter vector ϑ is also uncorrelated, and thus the
corresponding covariance matrix Σϑ is diagonal. Consequently,
only the diagonal elements of the matrix need to be estimated.
Additionally, the original parameter vector may be retrieved via
the operation:

θ = Ũ · ϑ (24)

3. IDENTIFICATION OF THE GP
TIME-SERIES MODEL

The identification of a GP time-series model may be stated as
the problem of determining the hyper-parameters P and the
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structural parameters (consisting of the model and basis orders)
that best fit a given a set of K dynamic responses, say YK = {y1,
y2, . . . , yK}. Additionally, according to the model type, a corre-
sponding set of excitation inputs X K = {x1, x2, . . . , xK} and EOP
vectors ΞK = {ξ1, ξ2, . . . ,ξK} are provided. Additionally, it may
be of interest to determine the parameter vectors associated with
each one of the realizations, i.e., each one of the parameter vectors
θk for all k= 1, . . . ,K. These three topics are analyzed next.

3.1. Estimation of the Parameter Vectors of
Individual Realizations
Maximum A Posteriori (MAP) estimates of the parameter vector
of the GP time-seriesmodel for a single realization yk are obtained
by evaluating the values thatmaximize the posterior PDF p(θk | yk,
Φk, ξk,P) in equation (19a). Given that the posterior distribution
is Gaussian, the MAP estimates correspond to the posterior mean
(equal to the mode of the Gaussian distribution), which may be
computed via equation (20) for given values of P .

3.2. Estimation of the Hyperparameters
3.2.1. Maximum Likelihood Estimation of the
Hyperparameters
Maximum likelihood estimates of the hyperparameters are
obtained via optimization of the marginalized hyper-parameter
likelihood for the complete set of data. Accordingly, ML estimates
are obtained from the optimization problem ((Rasmussen and
Williams, 2006), ch. 5; (Shumway and Stoffer, 2011), ch. 6):

P̂ = arg max
P

K∑
k=1

ln L(P|yk,Φk, ξk) (25a)

K∑
k=1

ln L(P|yk,Φk, ξk) = −N · K
2

ln 2π

− 1
2

K∑
k=1

(
ln |Σεk | + εT

k · Σ−1
εk · εk

)
(25b)

where εk =
[
εk[1] εk[2] · · · εk[N]

]T
N×1 is the vector of prior

prediction errors, with εk[t] defined in equation (21a). Although
it is possible to analytically solve the ML optimization problem
in equation (25a) for some of the hyper-parameters (in particular
for a constant parameter mean), the problem becomes intractable
for other quantities. Alternatively, the Expectation-Maximization
(EM) algorithm constitutes a powerful tool to solve this optimiza-
tion problem.

3.2.2. Expectation-Maximization Algorithm for
Efficient Computation of the ML Estimates
The Expectation-Maximization (EM) algorithm attempts to max-
imize the conditional expectation of the logarithm of the joint
conditional PDF p(yk, θk | Φk, ξk, P), with respect to available
data ((Shumway and Stoffer, 2011), ch. 6). Formally expressed, the
EM algorithm aims at maximizing the expected log-likelihood:

Q(P|P(−)) =Eθ|D,P(−)

{
−

K∑
k=1

ln p(yk, θk |Φk, ξk, P)

}
(26)

where Eθ|D,P(−) {·} denotes the conditional expectation of the
argument with respect to the space of θ given data D = {yk, Φk,
ξk}, ∀ k= 1, . . . ,K and hyper-parameters P (−), and where:

K∑
k=1

ln p(yk, θk |Φk, ξk, P)

= −1
2

K∑
k=1

(N · ln σ2
w + σ−2

w (yk − ΦT
k · θk)

T · (yk − ΦT
k · θk)

+ ln |Σθ| + (θk − θo(ξk,M))T · Σ−1
θ · (θk − θo(ξk,M)))

(27)

Thus, after evaluating the expectation, the expected log-
likelihood of the GP time-series model becomes:

Q
(
P|P(−)

)
= Q1

(
P|P(−)

)
+ Q2

(
P|P(−)

)
(28)

Q1

(
P|P(−)

)
= −K · N

2
lnσ2

w

− 1
2σ2w

K∑
k=1

((
e(−)
k

)T
· e(−)

k + tr
(
ΦT

k · P(−)
k · Φk

))
Q2

(
P|P(−)

)
= −K

2
ln |Σθ|

− 1
2

K∑
k=1

((
δ

(−)
k

)T
· Σθ

−1 · δ
(−)
k + tr

(
Σθ

−1 · P(−)
k

))

where tr(·) denotes the trace operation, and:

e(−)
k = yk − ΦT

k · θ̂
(−)
k , e(−)

k ∈ RN (29a)

δ
(−)
k = θ̂

(−)
k − θo

(
ξk,M(−)

)
, δ

(−)
k ∈ Rn (29b)

and θ̂
(−)
k andP(−)

k are theMAP estimates of themean and covari-
ance of the coefficient vector given the hyperparameter values
P(−) = {M(−),Σ(−)

θ , σ
2(−)
w } obtained with equation (20).

The Expectation-Maximization algorithm operates by
selecting some initial hyperparameter values P (0), and then,
at each iteration i= 1, 2, . . . , the following two steps are
performed:

3.2.3. Expectation Step (E-Step)
The expected log-likelihood is evaluated based on the previous
hyper-parameter values, P (i−1). This translates into the evalua-
tion of themean and covariancematrix of the posterior coefficient
PDF, by applying equation (20) on all the available dynamic
response realizations k= 1, . . . ,K.

3.2.4. Maximization Step (M-Step)
Updated hyper-parameter values are obtained by computing the
values that maximize the expected log-likelihood function, this is
to say:

P(i) = arg max
P

Q
(
P|P(i−1)

)
(30)
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which leads to the update equations:

M(i) =

( K∑
k=1

θ̂
(i−1)
k · gT(ξk)

)
·

( K∑
k=1

g(ξk) · gT(ξk)

)−1

(31a)

Σ̂(i)
θ =

1
K

K∑
k=1

(
δ

(i−1)
k · (δ(i−1)

k )
T

+ P(i−1)
k

)
(31b)

σ̂2(i)
w =

1
K · N

K∑
k=1

(
(e(i−1)

k )
T

· e(i−1)
k + tr

(
ΦT

k · P(i−1)
k · Φk

))
(31c)

Moreover, if the parameter vector is constant, then the update
equation for the mean parameter vector reduces to:

θ(i)
o =

1
K

K∑
k=1

θ̂
(i−1)
k (32)

In addition, in the case of the PC-GP time-series model, the
diagonal structure of the coefficient covariancematrix leads to the
simplified update equation:

σ
2(i)
ϑj

=
1
K

K∑
k=1

(
(ϑ(i−1)

j − ϑ
(i−1)
j,o )

2
+
[
P(i−1)
k

]
j,j

)
,

∀ j = 1, 2, . . . , m̃ (33)

where [M]a,b is the entry of matrixM on row a and column b.
The E and M steps are iterated until a specific number of

iterations, say N iter, is reached, or until convergence, which may
be assessed by evaluating if the norm of the difference between the
current and previous values of the marginal likelihood and hyper-
parameter estimates is lower than a pre-specified threshold. The
later translates into monitoring if any of the following conditions
is true:

∆P ≥ |P(i) − P(i−1)| (34a)

∆L ≥ | ln L(P(i)|YK) − ln L(P(i−1)|YK)| (34b)
Niter ≥ i (34c)

where ∆p and ∆L are thresholds on the absolute difference of
hyperparameters and the marginal likelihood updates.

The EM algorithm has been demonstrated to maximize the
marginal likelihood (equation (25b)) at every step and to converge
to a local maximum of the marginal likelihood located in the
neighborhood of the given initial values (Shumway and Stoffer,
2011). In order to facilitate the convergence toward the global
maximum, it is essential to provide a suitable set of initial hyper-
parameter values, which may be derived from an initial set of
estimates of the coefficient vectors θk obtained with traditional
least squares or maximum likelihood methods as explained for
example in Ljung (1999).

3.3. Model Assessment and Validation
Once the GP time-seriesmodel has been estimated, it is important
to determine the performance of the model. Likewise, it may be of
interest to compare with other model structures and determine

which one is best for the data. For that purpose, the main tool
for evaluating the performance is the marginal likelihood shown
in equation (25b). However, precise evaluation of the marginal
likelihood may be non-trivial, in particular because the prior
prediction error covariance matrix is unknown. Instead, it may be
preferable to evaluate the Residual Sum of Squares normalized by
the Series Sum of Squares (RSS/SSS) based on the prior estimation
residuals ε̂[t], as follows:

RSS/SSS(prior) =

( K∑
k=1

N∑
t=1

ε̂2k[t]

)/( K∑
k=1

N∑
t=1

y2k[t]

)
,

ε̂k[t] = yk[t] − ϕT
k (z[t]) · θo(ξk, M̂) (35)

where M̂ corresponds to the estimates of thematrix of coefficients
of projection.

Alternatively, a validation error can be evaluated in order to
assess the representation effectiveness and generalization ability
of the GP time-series model. In this sense, consider the validation
set Y(v)

L = {y(v)1 , · · · , y(v)L } consisting of L dynamic responses,
whose elements are independent from the setYK used for estima-
tion (training) of the model. Then, the prior RSS/SSS in equation
(35) may be evaluated based on the validation set, where the prior
estimation residuals are replaced by the validation error ε̂

(v)
l [t], so

that:

RSS/SSS(v)(prior) =

( L∑
l=1

N∑
t=1

(ε̂(v)
l [t])

2
)/( L∑

l=1

N∑
t=1

(y(v)l [t])
2
)

,

ε̂
(v)
l [t] = y(v)l [t] − ϕT

k (z
(v)
l [t]) · θo(ξ

(v)
l , M̂) (36)

The validation RSS/SSS may be associated with the empirical
risk ((Vapnik, 2000), ch. 1) for the loss function L(yk[t], yk[t|t−1])
= ε̂2k[t] ·

(∑K
k=1

∑N
t=1 y2k[t]

)−1.

4. CASE STUDIES

4.1. Long-term Identification of the
Acceleration Response in the Humber
Bridge
4.1.1. Data Description and Preprocessing
The Humber Bridge is a long span suspension bridge joining the
small towns of Hessle (north) and Barton (south) in the UK.
The main span of the bridge comprises 1,410m and is built on
aerodynamic steel box girders and inclined hangers, and sup-
ported by two reinforced concrete towers rising 155.5m above the
caisson foundations. The bridge is exposed to prevailing south-
westerly cyclonic winds that can reach hurricane force (exceeding
32.7m/s), with atmospheric temperatures ranging from −10 to
30°C. Further details of the structure of theHumber bridgemay be
found in Rahbari et al. (2015). The bridge has been instrumented
with various sensors, including GPS antennas, accelerometers,
inclinometers and extensometers. In addition, various environ-
mental variables including wind speed and temperature at dif-
ferent locations of the bridge are also measured. The monitoring
campaign comprised a three year period starting from January
11, 2011, to December 2, 2013. In the present study, the vertical
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acceleration response signal measured at the midspan on the east
side of the deck is selected for analysis, while the wind speed is
used as EOP.

The vertical acceleration response signal is originally sampled
at 20Hz. For the present study however, it is down-sampled to
2Hz in order to focus the analysis on the main structural fre-
quencies, located under 1Hz, while at the same time reducing
the model complexity. Acceleration and wind speed signal seg-
ments of 250 s (N = 500 samples) are extracted every 30min, thus
resulting in a maximum of 48 segments per day. In the analysis
presented here, the average wind speed on each analysis period is
considered as the unique EOP for the construction of a GP-AR
model of the vertical vibration of the bridge. Hence, in order to
reduce the parameter uncertainty and the computational cost in
the construction of the model, only the vibration records corre-
sponding to the main wind direction (about 90± 20°) are utilized
in the construction of the model. Note, however, that a more
comprehensive representation of the vibration response of the
bridge may be appraised by considering also the wind direction
as an EOP in the GP-AR model. This issue shall be appraised in
a future work. Thus, after the selection of the vibration records
corresponding to the main wind direction and the removal of
artifacts due to problems of the measuring system, a total of 7,000
signal segments are finally obtained for the construction of the
model.

In Figure 1 is provided a histogram of the average wind
speed corresponding to the selected vibration signals. In addi-
tion, Figure 2 displays a typical daily variation of the power
spectral density (PSD) of the vertical acceleration response and
the average wind speed (irrespective of the wind direction). The
obtained PSDs demonstrate that the main natural frequencies
remain relatively stable, although the amplitude of the vibration
evidences large variations even during a single day. In particular,
it is evident that during the low wind speed period observed on
the first 4 h of the analyzed period, the power of the vibration is
much lower in comparison with later hours where the wind speed
increases.

4.1.2. Model Identification
4.1.2.1. Modeling of the Short-term Response
An AutoRegressive (AR) model structure is selected to represent
the acceleration response on short, 250 s, intervals. The order of
the AR model is selected by evaluating different model structures
with orders in the range na = [1, . . . , 100]. A subset of 7 days of
data is selected to determine the model order. The prior RSS/SSS
and Bayesian Information Criterion (BIC) curves, as well as the
frequency stabilization plot, displaying the natural frequencies
and damping ratios associated with the estimated AR models for
increasing orders, are shown in Figure 3. It may be observed that
the RSS/SSS tends to favor large AR orders, while the BIC clearly
demonstrates several minima, and a global minimum found for
the value na = 72. The frequency stabilization plot seems to con-
firm these findings, by demonstrating that the main frequency
peaks found in the PSD are accommodated by AR models with
order around na = 72. Thus, according to the frequency stabi-
lization plot and the BIC curve, the selected model order for
subsequent analysis is na = 72.

FIGURE 1 | Histogram displaying the distribution of the average wind speeds
available for the identification of the model.

4.1.2.2. Modeling of the Long-term Response
The long-term acceleration response of the bridge is represented
by means of a GP-AR model where the 250 s average wind speed
is used as EOP, this is to say ξ. For this purpose, the average wind
speed is normalized from the range [0, 30]m/s to the range [0,1]
by making ξ =AWS/30, where AWS stands for the 250 s Average
Wind Speed. The functional basis used for the expansion of the
parameter vector of themodel corresponds to the class of Hermite
orthogonal polynomials, which satisfy the recurrence relation:

gj+1(ξ) = Hj(ξ) = ξ · Hj−1(ξ) − (j − 1) · Hj−2(ξ), ∀j ≥ 2
(37)

g1(ξ) = Ho(ξ) = 1, g2(ξ) = H1(ξ) = ξ

Thus, GP-AR(72)models are estimated using the EMalgorithm
for increasing basis orders in the range of p= 1, . . . , 6. For the
application of the EM algorithm and validation of the perfor-
mance of the obtained models, the whole dataset consisting of
7,000 segments of 250 s is separated into training and validation
subsets. The training subset is composed by the initial 3,000 seg-
ments, while the validation subset is composed by the remaining
4,000 segments. It should be noted that the GP-AR(72) model
with p= 1 would correspond to the case when the EOP variable
is ignored and the parameter vector is assumed to be Gaussian
with constant mean and covariance matrix. The settings used for
the application of the EM algorithm are shown in Table 1. Note
that the threshold ∆RSS/SSS is presently utilized instead of ∆L, as
suggested in equation (34), since the RSS/SSS is used to evaluate
the convergence of the optimization procedure. Figure 4 shows
the RSS/SSS based on prior and posterior residuals, as well as for
the training and validation subsets obtained with the GP-AR(72)
model with basis orders p= 1, . . . , 6. The obtained results demon-
strate that a GP-AR(72) model with basis order p= 4 provides
the best fit in all cases. Furthermore, the validation error results
slightly elevated when compared against the training error, thus
demonstrating the generalization capability of the model.

The prior and posterior estimates of the parameter vector as
a function of the AWS are shown in Figure 5. The dependency of
the parameter estimates on theAWS is evident and is consistent on
both the prior and posterior parameter estimates. Nonetheless, in
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FIGURE 2 | Typical 1-day variation of the PSD of the acceleration response and the average wind speed: (A) PSD (spectrogram)–Hamming window, length 8,192
samples, overlap 5,792 samples; (B) 2min average wind speed.

some cases the posterior estimates tend to deviate from the prior at
higher AWS values, especially for higher wind speeds. This effect
may be due to the reduced amount of signal segments available for
higher wind speeds in the construction of the model, as evident in
the histogram of wind speeds shown in Figure 1.

4.1.3. Model-Based Analysis
Once the GP-AR(72)p = 4 model has been identified, it is possible
to analyze the dynamic characteristics of the acceleration response
of the bridge as a function of the average wind speed. In particular,
the Power Spectral Density, the natural frequencies and damping
ratios are extracted from the identified GP-AR(72)p = 4 model.
Each one of these quantities are evaluated as follows:

Characteristic polynomial : A(z, ξ) = 1 +
na∑
i=1

âi(ξ) · z−i

(38a)

PSD : Pyy(f, ξ) =
σ2
w

|A(ej2πf, ξ)|2
(38b)

Poles : {λi(ξ) ∈ C, i = 1, . . . , na : A(λ, ξ) = 0} (38c)

Natural frequencies : fn,i(ξ) =
fs
2π

· |lnλi(ξ)| (38d)

Damping ratios : ζi(ξ) = −cos(arg(lnλi(ξ))) (38e)

Figure 6 shows the GP-AR(72)p = 4 model-based PSD, natural
frequencies and damping ratios obtained for the range of average
wind speeds from 0 to 25m/s, while frequencies and damping
ratios are limited to the ranges [0,500]mHz and [0,10]%, respec-
tively. The model-based PSD and modal quantities demonstrate
that both the amplitude and frequency of the vibration are directly
influenced by the average wind speed.

A more detailed analysis of the first six natural frequencies
and damping ratios obtained from prior and posterior parameter
estimates is presented in Figure 7. The posterior estimates are
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FIGURE 3 | Selection of the order of the AR model. (A) Prior RSS/SSS and BIC curves for increasing model orders na = 1, 2, . . . , 100; (B) frequency stabilization
plot of the AR model for increasing model orders with the Welch PSD estimate–Hamming window, length 512 samples, 256 samples overlap.

TABLE 1 | Settings of the EM algorithm.

Parameter Value

Maximum number of iterations Niter = 104

Hyper-parameter difference threshold ∆p = 10–5

RSS/SSS difference threshold ∆RSS/SSS =10–5

Initialization Ordinary least squares estimates of the
parameters of individual realizations

calculated for the complete set of vibration segments based on the
estimated GP-AR model. The dispersion of the modal quantities
tends to blow up for increasing wind speeds, which in part may
be due to the effect of wind and turbulence on the structure. In

addition, the difference between prior and posterior estimates of
the modal quantities tends to increase when the wind speed is
larger than 20m/s. This effect may be due to the lesser amount of
samples acquired from higher wind speeds, which may be leading
to increased uncertainty in the parameter estimates. The modal
analysis results obtainedwith theGP-ARmodelmay be contrasted
with those previously reported on (Diana et al., 1992; Brown-
john et al., 1994, 2010). In particular, it appears that the modes
displayed in Figure 7 correspond to the first, second, third, and
eight vertical modes (fn ,1, fn ,2, fn ,3, and fn ,5 respectively), and the
first torsional mode of the bridge (fn ,4). Nonetheless, the predicted
variation in the first torsional mode appears to be different to that
one found with the GP-AR model.
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FIGURE 4 | Selection of the basis order of the GP-AR(72) model. Left: prior RSS/SSS obtained for the training and validation subsets; Right: posterior RSS/SSS
obtained for the training and validation subsets.

FIGURE 5 | Prior and posterior estimates of the first four parameters of the GP-AR(72)p=4 model for the average wind speed range from 0 to 25m/s.

Confirmation of the modal analysis results shall be sought
in a future work, where a vector AR model would be used to
represent the two vertical and the horizontal vibration response
of the bridge. However, the relatively simpler model utilized in
this analysis can be used to track and assess the variability in the
modes of the bridge when the wind is blowing from the main
direction.

4.2. Simulated Vibration of Operating Wind
Turbine Blades
4.2.1. Data Description and Preprocessing
This application focuses on the identification and analysis of the
vibration acceleration signals obtained via simulations of a fully
operational wind turbine. For a PCE-based treatment on actual
tower measurements obtained from an operated wind turbine,
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FIGURE 6 | GP-AR(72)p=4 model-based PSD, natural frequencies, and damping ratios as a function of the average wind speed in the range 0–25m/s. Frequency
range and damping ratio limited to [0, 500]mHz and [0, 10]%, respectively. (A) PSD of the bridge vibration as a function of AWS; (B) natural frequencies and damping
ratios as a function of AWS.

the interested reader is referred to Bogoevska et al. (2017). The
analyzed wind turbine is the NREL 5MW reference offshore wind
turbine, fully described in Jonkman et al. (2009). The simula-
tion is performed by means of the FAST wind turbine aeroe-
lastic code, which uses a turbulent wind excitation simulated
with TurbSim (Jonkman and Buhl, 2005). Acceleration signals
are measured at different locations along the span of on one
of the blades of the wind turbine on the flap wise direction,
as depicted in Figure 8. From these, the acceleration signals
measured on the tip of the blade (node 6) are used for further
analysis.

Simulations of both turbulent wind and vibration response
are computed for a period of 10min (600 s) with a sampling

rate of 200Hz. Moreover, the instantaneous rotor azimuth is also
extracted, which shall be used as the scheduling variable in the
model for representation of the short-term response. The obtained
acceleration signals are subsequently downsampled at 12.5Hz for
further analysis and processing. An antialiasing low-pass filter is
applied before down-sampling. The filter consists of a 100 order
FIR filter with cutoff frequency of 5Hz. The cutoff frequency has
been selected in order to preserve the structural modes which
are under 4Hz, and is applied in a forward–backward fashion
to compensate the phase delay by using the MATLAB command
filtfilt.

A set of 100 simulations is obtained under different 10min
average wind speeds in the range from 5 to 26m/s. For that
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FIGURE 7 | Distribution of selected natural frequencies and damping ratios obtained from the GP-AR(72)p=4 model. Solid line, modal quantities from prior parameter
estimates; dots, modal quantities from posterior parameter estimates; shaded areas, 50 and 90% confidence intervals derived from the parameter mean and
covariance matrix. Left column: natural frequencies in mHz; right column: damping ratios.

purpose, the Latin hypercube sampling algorithm is used to create
a set of 100 random average wind speeds within the specified
range. Then, a turbulent wind speed time-series is simulated for
each 10min average wind speed, which is subsequently used as
input to the FAST simulation software.

It is noted that the present simulated data bears important
differences with those published in the previous work (Avendaño-
Valencia and Fassois, 2017a), which are summarized as follows: (i)
The turbulent wind excitation is simulated over an 8× 8 grid,
in comparison with the 2× 2 grid used in the previous work.
Therefore, the excitation is richer while the vibration response
may be more complex. (ii) The sampling rate used for simulation
is extended from 25 to 200Hz so as to improve the conver-
gence of the numerical integration algorithm. (iii) The analysis is
performed in a sensor in the blade tip instead of the blade root.
A consequence of the previous selections is that the structure of
the obtained models may differ significantly with that reported
(Avendaño-Valencia and Fassois, 2017a).

4.2.2. Model Identification
4.2.2.1. Modeling of the Short-term Response
The blade vibration signal is represented via a Linear Parameter
Varying AR (LPV-AR) model, which uses the instantaneous rotor
azimuth as scheduling variable (Avendaño-Valencia and Fassois,
2017a). The selection structure of the LPV-AR model follows the
procedure described in Avendaño-Valencia and Fassois (2017a),
while the selection of the LPV-ARmodel structure is guided by the
BIC. The obtained BIC curves are shown in Figure 9, from which
the model order na = 17 and basis order pa = 5 are selected.

4.2.2.2. Modeling of the Long-term Response
A GP-LPV-AR model is constructed for the representation of
the long term response of the blade. For this purpose, the EOP
variable ξ is defined as the 10minute average wind speed (lying
in the range [0,30] m/s) normalized within the range [0,1]. The
parameter vector of the model is expanded on the Hermite poly-
nomials defined in equation (37).
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GP-LPV-AR(17)5 models with GP basis orders in the range
p= 0, 1, . . . , 6 are estimated using the EM algorithm. The settings
of the EM algorithm are similar to those used in the previous
example and summarized in Table 1; however, in the present case

the thresholds for finalization of the optimization are defined as
∆p =∆RSS/SSS = 10–6. Figure 10A shows the RSS/SSS based on
the prior and posterior prediction errors for increasing orders
of the functional basis expansion of the GP. The plot shows

FIGURE 8 | Location of the sensors in the blade of the wind turbine. Acceleration signals are measured on the flapwise direction of the blade (normal to the surface
of the page).

FIGURE 9 | Selection of the LPV-AR model structure: BIC curves for increasing model orders na = 1, 2, . . . , 40 and for different basis orders pa =1, 3, . . . , 9:
(A) whole range; (B) detail in the range na = [10, 25].

FIGURE 10 | Selection of the order of the GP-LPV-AR models: prior and posterior RSS/SSS curves for increasing GP basis orders p= 0, 1, . . . , 6, for
(A) GP-LPV-AR model; (B) GP-LPV-AR model with principal component regression.
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FIGURE 11 | GP-LPV-AR model-based “frozen” Power Spectral Density evaluated for a full rotation period of the wind turbine blade, and for increasing wind speeds.

totally different behaviors of the prior and posterior errors. In
particular, it is evident that the prior prediction error depends on
the order of the functional expansion, while the posterior error
does not show a significant dependence. This behavior may be
expected, since the prior estimates are based solely on the model
predictions, while the posterior estimates are adjusted to the
observed vibration response. For that same reason, the prior error
is a better tool to evaluate the model capabilities. In the present
case, according to the prior RSS/SSS curve, a basis order p= 5
is selected.

Similarly, a PC-GP-LPV-AR model (based on a Principal
Component representation of the regression matrix of the LPV-
AR model, as explained in Section 2.4) is used for the long-
term identification of the response of the wind turbine. The
PC-GP-LPV-AR model is further estimated by means of the EM

algorithm, using the same settings applied in the previous GP-
LPV-AR model. The Principal Component representation of the
regressionmatrix is carried out using all the components (without
dimensionality reduction), however, the covariance matrix of the
model parameters is in the present case, diagonal, thus a lower
number of hyper-parameters have to be estimated. The obtained
prior and posterior RSS/SSS curves obtained with the PC-GP-
LPV-AR model are shown in Figure 10B. In this case, the prior
and posterior error curves are almost the same, while the overall
error is slightly higher than that obtained with the GP-LPV-AR
model.

4.2.3. Model-Based Analysis
The dynamics of the wind turbine are analyzed based on the iden-
tified GP-LPV-AR(17)5,5 model. For that purpose, the analysis of
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FIGURE 12 | GP-LPV-AR model-based average “frozen” natural frequencies and damping ratios of the wind turbine blade response evaluated for increasing wind
speeds. Solid line indicates the average value, while shaded areas indicate estimates of the 95% confidence intervals.

the dynamics is based on the “frozen” Power Spectral Density,
natural frequencies and damping ratios, which are calculated by
means of the following equations:

“Frozen” characteristic polynomial :

A(z, β, ξ) = 1 +
na∑
i=1

âi(β, ξ) · z−i (39a)

PSD : Pyy(f, β, ξ) =
σ2
w

|A(ej2πf, β, ξ)|2
(39b)

Poles : {λi(β, ξ) ∈ C, i = 1, . . . , na : A(λ, β, ξ) = 0} (39c)

Natural frequencies : fn,i(β, ξ) =
fs
2π

· |lnλi(β, ξ)| (39d)

Damping ratios : ζi(β, ξ) = −cos(arg(lnλi(β, ξ))) (39e)

For the present application, these quantities are functions of
two variables, namely the instantaneous rotor angle β and the
10minute average wind speed ξ. In that sense, the “frozen” PSD,
natural frequencies and damping ratios are calculated for a single
period of rotation of the blades and for the whole range of wind
speeds (3–25m/s). Figure 11 shows the obtained “frozen” PSDs
for different wind speeds in the range. The figure indicates that
the variability of the characteristics of the dynamic response of
the wind turbine both as the rotor azimuth changes, and as the
wind speed increases. In particular, it can be observed that for
all the wind speeds, an important increment in the power of
the vibration response is evident at about two-thirds of a full

rotation. This event may be associated with the blade passing
in front of the tower. Moreover, it is also evident that as the
wind speed increases, the overall power of the vibration response
increases as well. The total power difference when the wind speed
changes from 5 to 25m/s is about 20 dB or a whole magnitude
level.

Average values of the “frozen” natural frequencies and damping
ratios and their respective confidence intervals may be drawn
from the obtained GP-LPV-AR model. The procedure is similar
to that performed in the previous application example. Three
modes are selected for this analysis, namely the pair of modes
located around 1Hz, and the mode located around 2Hz. The
selected average “frozen” natural frequencies and damping ratios
are shown in Figure 12. In the obtained curves is clear the depen-
dency of both natural frequency and damping ratio on the wind
speed. Particularly, for modes 1 and 3 there is an increase on
the damping ratio, while for mode 2 the damping ratio tends
to decrease as the wind speed does. In addition, the natural
frequencies tend to increase with the wind speed as well. The
confidence intervals are in general well bounded, and in par-
ticular it is clear that the estimates of the damping ratios are
reliable.

5. CONCLUDING REMARKS

This work has been devoted to a Gaussian Process time-series
modeling framework for the representation of the long-term
dynamics of structures operating under variable environmental
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and operational conditions. The model definitions plus an iden-
tification method based on the Expectation-Maximization algo-
rithm have been presented. In addition, an optional parame-
ter reduction technique based on Principal Component Regres-
sion has been introduced as a method to reduce the number
of parameters to be estimated in the representation. The result-
ing GP time-series methods provide an appealing alternative for
the representation of the complex dynamics of vibrating struc-
tures operating under variable environmental and operational
conditions.

A potential limitation of the GP time-series modeling method-
ology, as presented in this work, is that the innovations variance
of the time-series model is assumed to be constant. The adop-
tion of a constant innovations variance may hinder the repre-
sentation of changing power in the vibrational response of the
structure according to environmental and operational conditions.
A solution for this limitation is to define a GP to represent the
dependence of the innovations variance on the EOPs, in the same
manner as already explained for the coefficients of the time-series
model. Toward this end, it would be further necessary to modify
the EM algorithm for the estimation of the parameters of the
innovations variance GP.

The proposed GP time-series modeling method offers a
promising tool for assimilation in damage diagnosis algorithms.
For this purpose, a key element lies in formalizing the selection
of the conditions used for training of the model, namely, specifi-
cation of the range of environmental and operational conditions
under which the GP time-series model is able to lead to a robust

decision. An exploratory study on this issue can be found in
Avendaño-Valencia and Chatzi (2017), and will be extended as
future work.
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APPENDIX

A. Demonstrations
A.1. Demonstration of the PDF in Equation (10)
This section aims to demonstrate the PDFof the dynamic response
vector y =

[
y[1] · · · y[N]

]T given the parameter vector θ and
the regression matrix Φ =

[
ϕ(z[1]) · · · ϕ(z[N])

]T. For that
purpose, consider the PDF:

p(y | θ,Φ) =
N∏

t=1
p(y[t] | θ, ϕ(z[t])) (A1)

substituting equation (8) and displaying the Gaussian distribution
as an exponential function, yields:

p(y | θ,Φ) =
N∏

t=1
Ny[t](y[t|t − 1], σ2

w)

=
N∏

t=1
(2πσ2

w)
−1/2 · exp

(
− 1
2σ2w

(y[t] − ϕT(z[t]) · θ)
2
)
(A2)

applying the product operator, yields:

p(y | θ,Φ)

= (2πσ2
w)

−N/2 · exp

(
− 1
2σ2

w

N∑
t=1

(y[t] − ϕT(z[t]) · θ)

)

= (2π)−N/2 · |σ2
w · IN|−1/2 · exp

(
− 1
2σ2

w

N∑
t=1

(y[t] − ϕT(z[t]) · θ)
2
)

(A3)

Then, operating in the sum inside of the exponential function,
leads to:

N∑
t=1

(y[t] − ϕT(z[t]) · θ)
2

=
N∑

t=1

(y[t] − ϕT(z[t]) · θ) · (y[t] − ϕT(z[t]) · θ)

=


y[1] − ϕT(z[1]) · θ
y[2] − ϕT(z[2]) · θ

...
y[N] − ϕT(z[N]) · θ


T

·


y[1] − ϕT(z[1]) · θ
y[2] − ϕT(z[2]) · θ

...
y[N] − ϕT(z[N]) · θ



=



y[1]
y[2]
...

y[N]

−


ϕT(z[1])
ϕT(z[2])

...
ϕT(z[N])

 · θ


T

·



y[1]
y[2]
...

y[N]

−


ϕT(z[1])
ϕT(z[2])

...
ϕT(z[N])

 ·θ


(A4)

and thus:
N∑

t=1
(y[t] − ϕT(z[t]) · θ)

2
=
(
y − ϕT · θ

)T
·
(
y − ΦT · θ

)
(A5)

Then, after putting everything together, the following result is
obtained:

p(y|θ,Φ) = (2π)−N/2 · |σ2
w · IN|−1/2

· exp
(

− 1
2σ2w

(
y − ΦT · θ

)T
·
(
y − ΦT · θ

))
= Ny(ΦT · θ, σ2

w · IN) (A6)
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