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A frequency-domain method of physical-parameter system identification is developed for
three-dimensional building structures with stiffness eccentricity. Equations of motion in the
time domain are transformed into the frequency domain. The dynamic equilibrium of the
free body above the j-th story is used to identify the j-th story stiffness and damping. It is
required to measure the horizontal and rotational accelerations at all stories to identify
the story stiffness and damping coefficients of all stories. Compared to the previous
approach using the special identification function, the limit manipulation at zero frequency
is unnecessary and is robust for noise. Furthermore, it should be remarked that the
quantities of eccentricities in all stories can be identified using the slopes of the functions
for torsional stiffness identification in the frequency domain.

Keywords: system identification, torsional response, frequency domain, stiffness eccentricity, physical-parameter
identification

INTRODUCTION

An innovative method is proposed for frequency-domain physical-parameter system identification
(SI) of three-dimensional (3D) building structures with stiffness eccentricity, which accompany
torsional vibration. The one-directional story stiffnesses and damping coefficients in the 3Dbuilding
structure are identified from the recorded data on floor horizontal accelerations and rotational
accelerations around a vertical axis. To the best of the authors’ knowledge, investigations on physical
SI of 3D building structures with stiffness or mass eccentricities are quite limited. One of such
examples is the paper by Omrani et al. (2012) in which many parameters to be identified in 3D
building structures appear to cause difficulties. They conducted the statistical analysis and the
magnitude of eccentricity was assumed a priori. On the other hand, the identification method
proposed in this paper has an advantage such that the stiffness eccentricities are identified together
with all stiffness and damping parameters.

Recently, the business continuity plan (BCP) is becoming a leading subject in the world and
is being discussed with great concern in the construction and operating process of various built
environments. Unprecedented hazards and incidents in the last few decades enhanced BCP to a
key subject and many significant efforts on BCP have been devoted to assure the resilience of built
environments. The structural health monitoring (SHM) plays a critical role in the development
of BCP.
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Structural health monitoring is of multidisciplinary nature and
has a broad impact in civil, mechanical, ocean, and aerospace
engineering. The recent development can be found in Boller et al.
(2009) and Takewaki et al. (2011). The SI methodologies, catego-
rized as methods for inverse problems, play a key role in SHM.
Themodal SI and physical SI are twomajor well-known branches.
Originally, the modal SI as a popular technique was developed
extensively. It can provide the overall mechanical properties of a
structural system and has a stable characteristic (Hart and Yao,
1977, Agbabian et al., 1991, Nagarajaiah and Basu, 2009). On
the other hand, the physical SI has another advantage that the
stiffness and/or damping coefficients of the structural model can
be recovered directly and is well suited to the design of passive
control systems. This is also quite useful for the damage detection.
Nevertheless that the physical SI is preferred in SHM, its devel-
opment is quite limited and slow due to the strict requirement
on multiple measurements or the necessity of complicated math-
ematical manipulation (Hart and Yao, 1977; Udwadia et al., 1978;
Shinozuka and Ghanem, 1995; Takewaki and Nakamura, 2000,
2005; Brownjohn, 2003; Nagarajaiah and Basu, 2009; Takewaki
et al., 2011; Zhang and Johnson, 2013; Johnson and Wojtkiewicz,
2014; Wojtkiewicz and Johnson, 2014).

In the physical SI, Nakamura and Yasui (1999) proposed a
method of direct SI incorporating a least-squares method. They
investigated an issue of damage detection for steel building frames,
which were severely damaged (beam-end fracture, etc.) during
the Hyogoken-Nanbu (Kobe) earthquake in 1995. Since their
approach needs many measurement points and vibration compo-
nents due to the direct use of equations ofmotion, it was restricted
to simple shear-type building models with a small number of
vibration components. Moreover, the method of Takewaki and
Nakamura (2000) aims at a smart identification and seeks for a
unique physical-parameter SI formulation based on the work by
Udwadia et al. (1978). Takewaki and Nakamura (2000) overcame
the difficulty in the method by Udwadia et al. (1978) and enabled
the identification of stiffness and damping at a given story of a
shear building model (S model) directly from the floor accelera-
tion records just above and below the target story. They defined
and used the so-called identification function in which the limit
manipulation toward zero frequency is necessary for the identifi-
cation of stiffness and damping. In the SI method by Takewaki
and Nakamura (2000, 2005, 2010), there remained an issue to
be resolved in dealing with actual data, e.g., micro-tremors, due
to the small signal/noise (SN) ratio in the low frequency range
(Ikeda et al., 2014, 2015; Fujita et al., 2015). Furthermore, an S
model should be replaced by a more appropriate model when
dealing with high-rise buildings with large aspect ratios due to
the influence of overall bending deformation of tall buildings. The
former problem has been a critical and most difficult problem in
the field of the physical SI where the limit manipulation is needed
in the transfer function for ω → 0. An extended ARX (Auto-
Regressive with eXogenous) model with constraints on the ARX
parameters has been devised by Maeda et al. (2011), Kuwabara
et al. (2013), and Minami et al. (2013) to respond to the difficulty
caused by the noise. By applying the extended ARX model to the
abovementioned transfer functions, the difficulty encountered in
the limit manipulation for data with a small SN ratio has been
successfully avoided. On the other hand, the latter problem has

been tackled by expanding the SI algorithm to the shear-bending
model (SB model) (Fujita et al., 2013; Minami et al., 2013).

For developing a hybrid method of the modal and physical SIs,
a limited number of researchers proposed a reliable method of
SI, in which the physical parameters are identified from the pre-
identified modal parameters (Hjelmstad et al., 1995; Fujita et al.,
2017). However, it was made clear that the hybrid method needs
detailed and profound understanding of the relation between the
physical parameters and the modal parameters in addition to the
deeper theoretical investigation on inverse problem formulation
(Hjelmstad, 1996).

An SI method incorporating the Kalman filter or extended
Kalman filter was developed many years ago as another effective
approach (Hoshiya and Saito, 1984). Although the approach has a
general mathematical framework and can deal with noise issues
in an appropriate unified manner, knowledge based on strong
mathematical backgrounds is required and its simple use may be
difficult. Recently, an approach to the SI based on the Bayesian
updating is of great concern and is developing very fast (Boller
et al., 2009). The application of this approach to actual problems
is of urgent priority for development and is strongly desired.

Rather recently, Shintani et al. (2017) proposed a method of
physical SI for 3D building structures with in-plane rigid floor
diaphragm in which the stiffness and damping coefficients of
each vertical structural frame in the 3D building structure are
recovered from the measured data on floor horizontal acceler-
ations. A method based on the batch processing least-squares
estimation was proposed using many discrete time-domain data
to directly identify the stiffness and damping coefficients of each
vertical structural frame. While previous researches on SI of 3D
building structures are limited to a class of structures with regular
eccentricity, the paper by Shintani et al. (2017) removed this limi-
tation and opened a door for general identification of 3D building
structures with general properties. Their method does not need
to give the stiffness eccentricities (location of center of stiffness)
before identification and the stiffness and damping parameter
identification can be performed simultaneously. However, their
method has a difficulty that all the displacements, velocities, and
accelerations have to be provided.

A method of frequency-domain physical SI is developed here
for 3D building structures with stiffness eccentricity. Equations
of motion in the time domain are transformed into the frequency
domain. In addition to the identification of stiffness and damp-
ing coefficients, the quantities of stiffness eccentricities in all
stories can be identified using the slopes of the functions for
identification of torsional stiffness in the frequency domain. The
reliability and accuracy of the proposedmethod are demonstrated
by numerical simulations and scaled experiments.

IDENTIFICATION ALGORITHM

Object Building Model and Assumptions
Consider an N-story 3D building model, with stiffness sym-
metricity with respect to the x-axis, as shown in Figure 1. Lx, Ly
denote the x-directional and y-directional floor sizes as shown
in Figure 1. The building model is subjected to the earthquake
ground motion input in the y-direction and exhibits a torsional
response. Letmj, Ij, kyj, kθj, exj denote the j-th story mass, the j-th
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FIGURE 1 | Three-dimensional multi-story building structure model with
stiffness eccentricity subjected to unidirectional earthquake ground motion
and allocation of accelerometers.

story mass moment of inertia, the story stiffness of the j-th story,
the torsional stiffness of the j-th story around the center of mass,
and the eccentricity of the center of stiffness from the center of
mass in the j-th story, respectively. The frame in the side of the
center of stiffness is called the stiff-side frame and the frame in
the other side of the center of stiffness is called the flexible-side
frame.

The following assumptions on the building model are intro-
duced.

(1) The center ofmass in each story exists in the common vertical
line.

(2) The building model is linearly elastic and has a stiffness-
proportional damping matrix.

(3) The building model has the stiffness symmetricity with
respect to the x-axis (the center of stiffness exists on the x-
axis) and exhibits a torsional response under the y-directional
input.

(4) The floor is rigid in its in-plane deformation and the building
model can be expressed by a three-dimensional shear build-
ing model with y-directional vibration eccentricity (i.e., the
center of stiffness exists on the x-axis except the center of
mass).

In the identification, the following two conditions are used.

(1) The floor masses {mj}, the mass moment of inertia {Ij}, and
the location of the common center of mass are known.

(2) The y-directional accelerations at the stiff-side and the
flexible-side of all the floors and that on the ground floor are
measured.

Formulation of Identification Theory
The equations of motion of this building model subjected to the
earthquake ground acceleration ÿg(t) in the y-direction may be
expressed by

Mü(t) + Cu̇(t) + Ku(t) = −Mrÿg(t), (1)

where the mass, stiffness, and damping matrices M, K, C, the
displacement vector u(t) [y-directional displacements y(t) of the
center of mass and floor rotation angles θ(t)] and the influence
coefficient vector rmay be given as follows.

M =
[
m 0
0 I

]
,K =

[
Kyy Kyθ
Kθy Kθθ

]
,C =

2h1
ω1

K,

u(t) =
{
y(t)
θ(t)

}
, r =

{
1
0

}
, (2a-e)

ω1 and h1 denote the fundamental natural circular frequency and
the lowest-mode damping ratio. Other parametersmay be defined
as follows.

m = diag {m1,m2, . . . ,mN},

I = diag {I1,I2, . . . ,IN},

y(t)= {y1(t),y2(t), . . . ,yN(t)}T,

θ(t)= {θ1(t),θ2(t), . . . ,θN(t)}T,

1 = {1, 1, . . . , 1}T,

Kyy =


ky1 + ky2 −ky2 · · · 0

−ky2 ky2 + ky3
...

...
. . . −kyN

0 · · · −kyN kyN

 ,

Kθθ =


kθ1 + kθ2 −kθ2 · · · 0

−kθ2 kθ2 + kθ3
...

...
. . . −kθN

0 · · · −kθN kθN

 ,

Kyθ = KT
θy =

−(ky1ex1 + ky2ex2) ky2ex2 · · · 0

ky2ex2 −(ky2ex2 + ky3ex3)
...

...
. . . kyNexN

0 · · · kyNexN −kyNexN

,
(3a-h)

The Fourier transformation of Eq. 1 leads to the following
equations of motion in the frequency domain.

(−ω
2M + iωC + K)U(ω) = −MrŸg(ω), (4)

whereU(ω) = {Y(ω)TΘ(ω)T}T and Ÿg(ω) are the Fourier trans-
forms of u(t) and ÿg(t). The capital letters indicate the Fourier

Frontiers in Built Environment | www.frontiersin.org December 2017 | Volume 3 | Article 713

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Nabeshima and Takewaki Physical-Parameter Torsional Identification

transforms of variables in the time domain in the following. Eq.
4 can also be expressed as

(−ω
2M + iωC + K)Ü(ω) = ω

2MrŸg(ω). (5)

The capital letters indicate the Fourier transforms of responses
later.

The y-directional equilibrium of the free-body above the j-th
story may be expressed in the frequency domain by

ω
2

N∑
k=j

mk(Ÿk + Ÿg) =
(
kyj + iω2h1

ω1
kyj

)
×

{
(Ÿj − Ÿj−1) − exj(Θ̈j − Θ̈j−1)

}
= (kyj + iωcyj)

×
{
(Ÿj − Ÿj−1) − exj(Θj − Θ̈j−1)

}
,

(6)

where Ÿ0 = 0, Θ̈0 = 0 and the viscous damping coefficient cyj in
the j-th story is given by

cyj =
2h1
ω1

kyj. (7)

Rearrangement of Eq. 6 with respect to kyj and cyj yields

kyj + iωcyj =

ω2
N∑
k=j

mk(Ÿk + Ÿg)

(Ÿj − Ÿj−1) − exj(Θ̈j − Θ̈j−1)

=

ω2
N∑
k=j

mkŸ abs
k

(Ÿ abs
j − Ÿ abs

j−1) − exj(Θ̈j − Θ̈j−1)
, (8)

where Ÿ abs
j indicates the Fourier transform of the absolute accel-

eration at the center of mass in the j-th floor and Ÿ abs
0 = Ÿg.

Since the y-directional accelerations at the stiff-side and the
flexible-side of all the floors are measured, it is tried to express
the absolute acceleration at the center of mass in terms of the
accelerations at the stiff-side and the flexible-side. If the location
parameter of the center of mass is denoted by α (given parame-
ter/dividing ratio), the absolute acceleration Ÿ abs

j at the center of
mass can be expressed by

Ÿ abs
j = αŸ abs

j,F + (1 − α)Ÿ abs
j,S , (9)

where Ÿ abs
j,F and Ÿ abs

j,S denote the Fourier transform of the y-
directional absolute accelerations at the flexible-side and the stiff-
side in the j-th story, respectively. The denominator of Eq. 8
indicates the inter-story quantity of absolute accelerations at the
center of stiffness and is expressed by

(Ÿ abs
j − Ÿ abs

j−1) − exj(Θ̈j − Θ̈j−1) = βj(Ÿ abs
j,F − Ÿ abs

j−1,F)

+ (1 − βj)(Ÿ abs
j,S − Ÿ abs

j−1,S),
(10)

where βj is a parameter for defining the location of the center of
stiffness and is given by

βj = α − exj
Lx

= βj(exj). (11)

Substitution of Eqs 9 and 10 into Eq. 8 provides

kyj + iωcyj =

ω2
N∑
k=j

mk

{
αŸ abs

k,F + (1 − α)Ÿ abs
k,S

}
βj(Ÿ abs

j,F − Ÿ abs
j−1,F) + (1 − βj)(Ÿ abs

j,S − Ÿ abs
j−1,S)

= fy(ω, βj(exj)), (12)

where Ÿ abs
0,F = Ÿ abs

0,S = Ÿg. This function will be called “the lateral
identification function” and used for identification of kyj.

On the other hand, the rotational equilibrium of the free-body
above the j-th story leads to the function in terms of kθj and cθj.

kθj + iωcθj =

ω2
N∑
k=j

IkΘ̈k

Θ̈j − Θ̈j−1
+ fy(ω, βj(exj))exj

Ÿ abs
j − Ÿ abs

j−1

Θ̈j − Θ̈j−1

=

ω2
N∑
k=j

Ik
(
Ÿ abs
k,F − Ÿ abs

k,S

)
(
Ÿ abs
j,F − Ÿ abs

j,S

)
−

(
Ÿ abs
j−1,F − Ÿ abs

j−1,S

)
+ fy(ω, βj(exj))(α − βj)L2x

×

{
αŸ abs

j,F + (1 − α)Ÿ abs
j,S

}
−

{
αŸ abs

j−1,F + (1 − α)Ÿ abs
j−1,S

}
(
Ÿ abs
j,F − Ÿ abs

j,S

)
−

(
Ÿ abs
j−1,F − Ÿ abs

j−1,S

)
= fθ(ω, βj(exj)).

(13)

In Eq. 13, the following relations are used.

cθj =
2h1
ω1

kθj, (14a)

Θ̈j =
Ÿ abs
j,F − Ÿ abs

j,S

Lx
. (14b)

Equation 13 will be called “the torsional identification func-
tion” and used for identification of the distance of eccentricity exj.

Identification of Distance between Center
of Mass and Center of Stiffness
Equations 12 and 13 mean that, if the true distance of eccentricity
(between the center of mass and the center of stiffness) is given,
the real part and the imaginary part of the identification functions
become constant with respect to frequency. On the contrary, if
an erroneous distance of eccentricity is used, those functions
are not constant. This property may be able to be used for the
identification of the distance of eccentricity. In this paper, Eq. 13
is used because the torsional stiffness is sensitive to the variation
of the distance of eccentricity compared to the lateral stiffness.
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Identification of Lateral Stiffness
It is assumed that the distance of eccentricity has been identified
in Section “Identification of distance between center of mass and
center of stiffness.” The identification algorithm of the lateral
stiffness can be summarized as follows.

(Step 1) Focusing on the fundamental natural circular fre-
quency with high S/N ratio, pick up M data points from the
identification result.
(Step 2) Classify M data points into the classes that have a
particular range of values and compute the mean value from
data points that lie in the class of the highest frequency.
(Step 3) Compute the coefficient of variation by using themean
value.
(Step 4) Vary the sample numberM and repeat Steps 1–3.
(Step 5) Find the value corresponding to the smallest coeffi-
cient of variation and regard this as the identified value.

The detailed explanation of Steps 1–2 can be found in Figure 2.
The number of classes can be defined from the Sturges’ rule by

Number of classes = 1 + log2M. (15)

The range width per class (upper and lower limits of each class)
can also be determined by using the number of classes.

VERIFICATION OF ACCURACY OF THE
PROPOSED METHOD USING NUMERICAL
INVESTIGATION

Analysis Condition
To investigate the accuracy of the proposed identificationmethod,
the numerical response analysis data, i.e., the accelerations at the
stiff-side and flexible-side, are used as substitutes of measured
data.

The object building model is a five-story shear model with
unidirectional eccentricity. Two models (model A and model B)
are considered (see Table 1). The plan sizes are different in two
models and the eccentricity ratios (eccentricity distance/radius of
stiffness) are different. However the fundamental natural period
is the same (0.4 s) and the lowest mode is a straight line for the
model without eccentricity. The stiffness-proportional damping
matrix is assumed and the lowest-mode damping ratio is 0.03.

The input ground acceleration is El Centro NS 1940 and the
Newmark-betamethod (constant accelerationmethod) is used for
time integration.

To take into account the influence of measurement noise level
on the accuracy of identification, the data generated by using the
following equation were used.

Noise level = RMS value of band limited white noise
RMS value of signal without noise

. (16)

Noise-free data and data with 5% noise were used for identifi-
cation. The band-limited white noise was added to the response
analysis results and the input ground motions.

Prediction of Distance of Eccentricity
To predict the distance of eccentricity, it was varied parametrically
and the identification functions for torsional stiffness were inves-
tigated. Figures 3A and 4A show the identification functions for
torsional stiffness in the first story for the model A and model
B without noise. In addition, Figures 3B and 4B indicate the
identification functions for torsional stiffness in the first story for
themodel A andmodel B with noise of 5%. It can be observed that
the functions exhibit horizontal constant distributions for the true
distance of eccentricity (ex = 3.254m formodel A and 2.438m for
model B).

Identification of Lateral Stiffness and
Lateral Damping Coefficient
By using the distance of eccentricity predicted in Section “Predic-
tion of distance of eccentricity,” the lateral stiffness is identified
first. Figures 5A and 6A show the real part of the lateral iden-
tification functions defined in Eq. 12 for identification of lateral
stiffness in the first story for the model A and model B without
noise. Furthermore Figures 5B and 6B indicate the real part of the
lateral identification functions defined in Eq. 12 for identification
of lateral stiffness in the first story for the model A and model B
with noise of 5%. It can be observed that the functions exhibit hor-
izontal constant distributions around 8–20 rad/s, which indicate
the lateral stiffness in the first story. When the noise is free, the
function exhibits a constant value in a wide range. On the other
hand, when the noise exists, it shows a stable constant value even
in a narrow range.

FIGURE 2 | Identification procedure in frequency domain (Steps 1–2).
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TABLE 1 | Physical properties of torsionally coupled building.

Model Story Lx Ly m I exj kyj kθ j cyj α Eccentricity ratio

(m) (m) (kg) (kgm2) (m) (N/m) (Nm/rad) (Ns/m) (–) (–)

1 3.25 1.28×109 2.30×1011 5.31×106 0.25
2 3.25 1.19×109 2.15×1011 4.70×106 0.25

A 3 24 12 3.46 2.07×107 1.99 1.02×109 1.84×1011 4.03×106 0.5 0.15
4 1.99 7.67×108 1.38×1011 3.02×106 0.15
5 1.99 4.26×108 7.67×1010 1.68×106 0.15

1 2.44 6.40×108 4.60×1010 2.55×106 0.30
2 2.44 5.97×108 4.30×1010 2.38×106 0.30

B 3 12 12 1.73×105 4.15×106 1.66 5.12×108 3.68×1010 2.04×106 0.5 0.20
4 1.26 3.84×108 2.76×1010 1.53×106 0.15
5 1.26 2.13×108 1.53×1010 8.52×105 0.15

A B

FIGURE 3 | Identification result of torsional stiffness (model A), (A) noise level 0%, (B) noise level 5%.

A B

FIGURE 4 | Identification result of torsional stiffness (model B), (A) noise level 0%, (B) noise level 5%.

A B

FIGURE 5 | Identification result of lateral stiffness (model A), (A) noise level 0%, (B) noise level 5%.

Figures 7A and 8A show the imaginary part, divided by circular
frequency, of the lateral identification functions defined in Eq.
12 for identification of lateral damping coefficient in the first
story for the model A and model B without noise. Furthermore,
Figures 7B and 8B indicate the imaginary part, divided by circular

frequency, of the lateral identification functions defined in Eq. 12
for identification of lateral damping coefficient in the first story
for the model A and model B with noise of 5%. It can be seen that
the identification of damping is rather unstable compared to the
identification of stiffness.

Frontiers in Built Environment | www.frontiersin.org December 2017 | Volume 3 | Article 716

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Nabeshima and Takewaki Physical-Parameter Torsional Identification

A B

FIGURE 6 | Identification result of lateral stiffness (model B), (A) noise level 0%, (B) noise level 5%.

A B

FIGURE 7 | Identification result of lateral damping coefficient (model A), (A) noise level 0%, (B) noise level 5%.

A B

FIGURE 8 | Identification result of lateral damping coefficient (model B), (A) noise level 0%, (B) noise level 5%.

TABLE 2 | Identified value of lateral stiffness (N/m) and lateral damping coefficient (Ns/m) in each story (number in parenthesis: ratio to the true value).

Identified parameter Story Model A Model B

Noise level 0% Noise level 5% Noise level 0% Noise level 5%

Lateral stiffness 1 1.259×109 (0.984) 1.256×109 (0.982) 6.299×108 (0.985) 6.324×108 (0.989)
2 1.175×109 (0.984) 1.174×109 (0.983) 5.879×108 (0.985) 5.853×108 (0.980)
3 1.007×109 (0.984) 1.000×109 (0.977) 5.039×108 (0.985) 5.043×108 (0.986)
4 7.554×108 (0.984) 7.581×108 (0.988) 3.779×108 (0.985) 3.816×108 (0.995)
5 4.197×108 (0.984) 4.188×108 (0.982) 2.099×108 (0.985) 2.120×108 (0.995)

Lateral damping coefficient 1 4.937×106 (0.980) 4.989×106 (0.990) 2.514×106 (0.985) 2.528×106 (0.991)
2 4.661×106 (0.991) 4.669×106 (0.993) 2.337×106 (0.981) 2.401×106 (1.008)
3 3.999×106 (0.992) 3.796×106 (0.942) 2.004×106 (0.982) 1.592×106 (0.780)
4 3.003×106 (0.993) 3.439×106 (1.137) 1.504×106 (0.983) 1.300×106 (0.850)
5 1.670×106 (0.994) 1.552×106 (0.924) 8.359×105 (0.983) 7.368×105 (0.866)

While the previous approach using the special identification
function has a difficulty in conducting the limit manipulation
at zero frequency due to the influence of noise, the proposed
method enables the evaluation of the identified value around the
fundamental natural frequency having a smooth property. This
makes the proposed method robust for noise.

Table 2 shows the identified values of lateral stiffness and
lateral damping coefficient in each story for the model A and B
without and with noise. The values in the parenthesis indicate the
ratios of the identified values to the true values. It can be found
that the errors in lateral stiffness are within 2% for all the noise
levels. However, it can also be observed that the errors in lateral
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FIGURE 9 | Experimental setup.

damping coefficient are larger than those in lateral stiffness. This
phenomenon is compatible with usual identification results.

VERIFICATION OF ACCURACY OF THE
PROPOSED METHOD USING SCALED
EXPERIMENT

To verify the accuracy of the proposed identification method, the
static test and the shaking table test have been conducted. The
static test identified the lateral stiffnesses and those values are used
as reference values for the identification using the shaking table
tests.

Experimental Setup
Figure 9 shows the experimental set-up of a scaled two-story shear
building model. Each story consists of two acrylic columns and
two styrene columns. Each two columns have the same stiffness.
Let kyj, kSj, kFj denote the j-th story stiffness in the y-direction, the
stiff-side story stiffness, and the flexible-side story stiffness. The
y-directional accelerations at the stiff-side and the flexible-side of
all the floors and that on the ground floor are measured.

Identification of Lateral Stiffness by Static
Test
Formulation of Lateral Stiffness
Figure 10 shows the overview of the static loading test. Let PFj, PSj
denote the loads at the flexible-side and the stiff-side in the j-th
story as shown in Figure 11. The springs in Figure 11 represent
the stiffnesses of columns in the experimental setup shown in
Figure 9. It is assumed that PFj and PSj are applied independently
as shown in Figure 11. Let δFj, δSj denote the inter-story drift at the
flexible-side subjected to PFj and that at the stiff-side subjected to
PSj in the j-th story.

The apparent story stiffnesses of the stiff-side and the flexible-
side are defined by

k̄Sj =
PSj
δSj

, (17a)

k̄Fj =
PFj
δFj

. (17b)

FIGURE 10 | Static loading test.

The lateral stiffness kyj will be expressed in terms of the above-
defined apparent story stiffnesses k̄Sj, k̄Fj of the stiff-side and the
flexible-side in the following.

The inter-story drifts δFj, δSj at the flexible-side and the stiff-
side in the j-th story can be obtained by solving the statically
indeterminate structures defined in Figure 11. By substituting δFj,
δSj into Eqs 17a,b, the apparent story stiffnesses k̄Sj, k̄Fj of the
stiff-side and the flexible-side can be related to the actual story
stiffnesses kSj and kFj as follows.

k̄Fj =
(kSj + kFj)2 + 4kSjkFj

5kSj + kFj
, (18a)

k̄Sj =
(kSj + kFj)2 + 4kSjkFj

kSj + 5kFj
. (18b)

In Eqs 18a,b, the relation Lx/Ly = 1 is used. From Eqs 18a,b, the
following relation can be derived.

k̄Fj(5kSj + kFj) = k̄Sj(kSj + 5kFj). (19)

If we introduce a coefficient rj defined by kFj = rjkSj, it can be
expressed by

rj =
k̄Sj − 5k̄Fj
k̄Fj − 5k̄Sj

. (20)
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FIGURE 11 | Mechanical model and loading condition for horizontal stiffness identification, (A) loading case of PFj, (B) loading case of PSj.

A B

FIGURE 12 | Load–deformation relation in each story, (A) first story, (B) second story.

Finally, kSj is expressed by

kSj =
rj + 5

r2j + 6rj + 1
k̄Fj. (21)

KFj can be derived by using kFj = rjkSj and kyj can then be
obtained as follows.

kyj = kFj + kSj =
(rj + 1)(rj + 5)
r2j + 6rj + 1

k̄Fj. (22)

Load–Deformation Relation and Prediction of Lateral
Stiffness
Figures 12A,B show the force-deformation relations in the first
story and the second story of the stiff-side and flexible-side frames
derived by the static test. The static test was conducted cyclically
(three cycles) and those data were analyzed statistically by using
the least-squares method. The dotted lines indicate the least-
squares fit. The symbol ρ indicates the correlation coefficient. It
can be observed that the force-deformation relation of each frame
is linear up to about 5mm (1/30 rad).

The results from the least-squares fit are employed as the lateral
stiffnesses k̄Sj, k̄Fj of frames in the stiff-side and the flexible-side
in the j-th story. Those lateral stiffnesses identified from the static
loading test are shown in Table 3.

TABLE 3 | Lateral stiffness identified from static loading test.

Story k̄Sj k̄Fj kSj KFj Kyj

(N/m)

1 2,258 1,565 1,831 1,048 2,879
2 2,235 1,541 1,814 1,030 2,844

TABLE 4 | Parameters of experimental model.

Story Lx Ly α mj Ij kyj

(m) (m) (–) (kg) (kg·m2) (N/m)

1
0.15 0.15 0.5

1.142 5.087×10−3 2,879
2 1.135 5.067×10−3 2,844

Identification of Lateral Stiffness by
Shaking Table Experiment
The parameters of the experimental model are shown in Table 4.
It was assumed that the center of mass exists at the center of the
floor and the parameter α= 0.5 was used. Four ground motions
(El Centro NS 1940, Taft EW 1952, Hachinohe NS 1968, Band-
limited white noise) with the maximum acceleration 0.4m/s2
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A B

FIGURE 13 | Identification results of torsional stiffness, (A) first story, (B) second story.

A B

FIGURE 14 | Identification results of lateral stiffness, (A) first story, (B) second story.

were employed as the input ground motions. The sampling time
increment is 0.01 s.

Prediction of Distance of Eccentricity
The distance of eccentricity was predicted by using the identifica-
tion function for torsional stiffness. Figure 13 shows an example.
The fundamental and second natural circular frequencies, ω̂1 =
30.2(rad/s) and ω̂2 = 43.5(rad/s), are also plotted in Figure 13. It
can be observed that the distance of eccentricity is 0.0102m in the
first story and 0.0103m in the second story. Using these distances
of eccentricity, the lateral stiffnesses are identified next.

Identification of Lateral Stiffness
The identification results of the lateral stiffness (Eq. 12) are shown
in Figures 14A,B, and the identified lateral stiffnesses are shown
in Table 5. The values in the parenthesis indicate the ratios of
the identified values to the true values. It can be observed that,
as in the numerical investigations, the identification results are
stable around the fundamental natural frequency, i.e., exhibits a
horizontally constant property. In addition, the maximum dis-
crepancy is within 5%, and it may be concluded that the proposed
method is rather accurate and reliable. As for damping, the prop-
erty of damping (stiffness-proportional or not) may be uncertain
in the actual situation. The identification of damping in actual
situation will be investigated in future.

CONCLUSION

A new method of frequency-domain physical-parameter SI has
been developed for three-dimensional building structures with
stiffness eccentricity. The conclusions may be summarized as
follows.

TABLE 5 | Identified value of horizontal stiffness in each story under various input
waves.

Input wave Story ky (N/m)

El Centro 1940 NS 1 2,744 (0.953)
2 2,850 (1.002)

Hachinohe 1968 NS 1 2,740 (0.952)
2 2,858 (1.005)

Taft 1952 EW 1 2,732 (0.949)
2 2,840 (0.999)

Band limited white noise 1 2,746 (0.954)
2 2,863 (1.007)

(1) The dynamic equilibrium of the free body above the j-th story
can be used to identify the j-th story stiffness and damp-
ing. It is required to measure the horizontal and rotational
accelerations at all stories to identify the story stiffnesses and
damping coefficients of all stories. Compared to the previous
approach using the special identification function, the limit
manipulation at zero frequency is unnecessary and thismakes
the proposed method robust for noise. It should be reminded
that, even if we try to derive the special identification function
for 3D building structures including the limitmanipulation, it
seems difficult to obtain such identification function because
of the complexity of governing equations for models with
eccentricity.

(2) The quantities of eccentricities of all stories can be identified
using the slopes of the functions (called the identification
functions) for identification of torsional stiffness in frequency
domain. If the true distance of eccentricity is given, the real
part and the imaginary part, divided by circular frequency,
of the lateral identification functions become constant
with respect to frequency. On the contrary, if an erroneous
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distance of eccentricity is used, those functions are not con-
stant. This property can be used for the identification of the
distance of eccentricity.

(3) Numerical investigation demonstrated that the proposed
identification method is reliable and possesses an acceptable
accuracy. However, it should be noted that the identification
of damping is rather unstable compared to the identification
of stiffness as usual in general identification problems.

(4) Experiments using scaled models made clear the reliability
and accuracy of the proposed identification method.
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