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A system identification problem is investigated for high-rise buildings to identify the story
stiffnesses of a shear-bending model (SB model). In the previously proposed stiffness
identification method due to the present authors, the shear and bending stiffnesses of
the SB model were identified by means of the subspace and inverse-mode methods. The
lowest mode of horizontal displacements and floor rotation angles of the objective building
was identified first by using measured data of both horizontal and rotational accelerations
via the subspace method. Taking into account the resolution in the measurement of floor
rotation angles in lower stories, floor rotation angles in all stories were predicted from
the floor rotation angle at the top floor. However, it was difficult to obtain the bending
stiffnesses reliably in the previous method. In this paper, to overcome the difficulty in the
stiffness identification method using the SB model, a statistical model-updating approach
is proposed, where the probability distribution of floor rotation angles in the lowest mode
is obtained for the identified SB model, and a conditional probability problem is applied
by providing additional measured data on floor rotation angle. The proposed stiffness
identification method is useful for the structural health monitoring of high-rise buildings.
For investigation of the validity of the proposed stiffness identification method, a 10-story
plane-building frame is examined under micro-tremor.

Keywords: system identification, stiffness identification, model-updating, shear-bending model, high-rise building

INTRODUCTION

The structural health monitoring (SHM) has a long history (Hart and Yao, 1977; Boller et al.,
2009; Nagarajaiah and Basu, 2009; Takewaki et al., 2011). A variety of techniques are utilized in
SHM and the methodologies of system identification (SI) play a central role in SHM. It is well
acknowledged that the modal parameter technique and physical parameter technique are twomajor
areas in SI. Much interest has been directed to the modal parameter technique (Hart and Yao, 1977;
Agbabian et al., 1991; Nagarajaiah and Basu, 2009; Takewaki and Nakamura, 2010), which has a
stable characteristic and can determine the overall mechanical properties of a structural system.
On the other hand, the physical parameter technique has a different property that the physical
parameters (e.g., stiffness, damping) can be found straightforwardly. From the viewpoint of damage
detection, this is quite effective. Although the physical parameter technique is preferred in the
reliable development of SHM, its research advancement is limited because of the strict requirement
on measurements (multiple measurement points) or the necessity of complex manipulation (Hart
and Yao, 1977; Udwadia et al., 1978; Shinozuka and Ghanem, 1995; Takewaki and Nakamura, 2000,
2005; Brownjohn, 2003; Nagarajaiah and Basu, 2009; Takewaki et al., 2011; Zhang and Johnson,
2013a,b; Johnson andWojtkiewicz, 2014;Wojtkiewicz and Johnson, 2014; Fujita andTakewaki, 2016;
Song et al., 2017; Takewaki et al., 2017).
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In the physical parameter technique, a smart identification
method was developed by Takewaki and Nakamura (2000). They
devised a unique SI formulation based on the original work by
Udwadia et al. (1978). Udwadia et al. (1978) identified the phys-
ical parameters (stiffness and damping coefficients) of a specific
story in a shear-building model (S model) by using the directly
related floor acceleration records, i.e., ones just above and below
the target story. In their formulation, the so-called identification
function consisting of the transfer function between the directly
related floor acceleration records was introduced. In the approach
developed by Takewaki and Nakamura (2000, 2005), a crucial
issue resulting from the small signal/noise (SN) ratio in the low-
frequency range exists when applying to actual micro-tremors. In
addition, it should be noted that an S model is not necessarily an
appropriate model for SI of tall buildings with large height:width
ratios. This is because overall bending deformation influences
greatly the accuracy of SI of such buildings. The former noise-
bias problem has been a troublesome problem in the physical
parameter technique because the noise affects the accuracy of the
limit value evaluation of the transfer function at zero frequency.
To overcome this difficulty, the Auto-Regressive with eXogenous
(ARX) model with constraints on the ARX parameters has been
introduced and developed by Maeda et al. (2011), Kuwabara et al.
(2013), and Minami et al. (2013). By using the ARX model in
the analysis of transfer functions, the difficulty has been avoided
in the evaluation of limit value for a small SN ratio data. On
the other hand, the latter modeling problem has been tackled
by expanding the SI algorithm to the shear-bending model (SB
model) (Fujita et al., 2013; Minami et al., 2013). The SB model is
regarded as an effective model in the SI of tall buildings because
the influence of overall bending deformation on the structural
response, e.g., interstory drifts, can be evaluated appropriately
in the SB model. In addition, comparing with the S model, the
lower natural frequencies of the identified SB model correspond
precisely to those of the objective building.

To develop a modal parameter and physical parameter hybrid
method in SI, some investigators developed a natural and reliable
method of SI in which the parameters of stiffness and damping
are recovered from the modal parameters determined previously
(Hjelmstad et al., 1995; Hjelmstad, 1996). In developing such SI
method, it seems absolutely necessary to consider the relation
between the modal parameters and the physical parameters. Fur-
thermore, the sophisticated investigation on inverse problem is
inevitable.

The present authors proposed a hybrid SI method for high-rise
buildings, where both modal parameters and physical parameters
of the SB model are identified simultaneously (Fujita et al., 2017).
In this method, the shear stiffnesses and bending stiffnesses of
the SB model were found by means of the subspace method for
modal SI and the inverse-modemethod for physical SI. The lowest
mode of the building was obtained first by applying the subspace
method to recorded data of horizontal displacements and floor
rotation angles because the inverse-mode method can lead to the
shear and bending stiffnesses of the SB model. By using the maxi-
mum amplitude of transfer function in the subspace method, the
identification of lowest mode was performed. In addition, since
the resolution issue exists in the measurement of floor rotation
angles in lower stories, the floor rotation angles in all stories were

guessed from the floor rotation angle at the top floor. This scenario
was based on the non-simultaneous measurement system, where
a few sensors are relocated repeatedly. An empirical estimation
equation on floor rotation angle was proposed by investigating
the lowest mode shape of floor rotation angles of various building
models. However, since the distribution of the bending stiffnesses
of practical building frames is strongly influenced by the differ-
ence of column sections in each story, the applicability of the
empirical equation may be arguable from the practical viewpoint
of SI.

In this paper, to identify the shear and bending stiffnesses of the
SB model more accurately, a new SI method based on the statisti-
cal model-updating approach is presented, where the lowestmode
shape of floor rotation angles is corrected by using additional
measurement data. Compared with the previously proposed SI
method, it is supposed that the floor rotational acceleration at the
middle story can be used in the identification in addition to that
at the top floor. By using the additional floor rotational response,
it can be expected that the identified bending stiffnesses are
corrected through a model-updating approach based on the sta-
tistical analysis. Similar studies on the statistical model-updating
approach have been proposed, where the Bayesian’s method is
applied to determine some identification parameters (Beck and
Yuen, 2004; Saito and Beck, 2010). Compared with such studies,
it is shown that the lowest mode shape of floor rotation angles is
updated from the empirical formula in the proposed SI method
by applying the conditional probability problem based on the
additional measured floor rotation angles. For investigation of the
validity of the proposed method of SI, a 10-story plane-building
frame is examined under micro-tremor.

STIFFNESS IDENTIFICATION BY
SUBSPACE AND INVERSE-MODE
METHODS IN SB MODEL

A new stiffness identification method is presented in this section
for an SB model. The method takes full advantage of the subspace
and inverse-mode methods. In the previous works (Fujita et al.,
2013; Minami et al., 2013) on the SI method using the SB model,
only the horizontal accelerations were measured to recover both
shear and bending stiffnesses. Because the measurable data were
restricted in the previous identification method, it was required
to incorporate some minimization algorithms of error in the
adjustment of modal parameters, i.e., natural frequencies. This
procedure caused some accuracy problems in the identification
of bending stiffnesses. On the other hand, it is supposed that the
floor rotational responses can be used for estimation of the lowest
mode shape of rotational angle in this paper.

Inverse-Mode Method for SB Model
Consider an N-story SB model, as shown in Figure 1, consisting
of the shear and rotational springs and having 2N degrees of
freedom, i.e., N for horizontal responses and N for rotational
responses. These springs are linked in series. Under the ground
acceleration üg(t), the equations of motion can be described by

Mü(t) + Cu̇(t) + Ku(t) = −Mr üg(t), (1)

Frontiers in Built Environment | www.frontiersin.org February 2018 | Volume 4 | Article 92

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Fujita and Takewaki Stiffness Identification by Model-Updating

whereM, C, and K are the mass, damping, and stiffness matrices
of the SB model. The vector u(t) denotes a set of displacements
consisting of N for horizontal responses and N for rotational
responses

u(t) = {u1(t), u2(t), . . . , uN(t), θ1(t), θ2(t), . . . ,θN(t)}T, (2)

where uj(t) and θj(t) are the N-th story horizontal displacement
and floor rotation angle of the SBmodel. In Eq. 1, r is the influence
coefficient vector defined by {1, . . . ,1, 0, . . . ,0}.

Considering the undamped eigenvalue problem of the SB
model, the shear and bending stiffnesses ks = {ks1, ks2, . . . ,ksN},
kb = {kb1, kb2, . . . ,kbN} of the SB model can be directly derived by
the lowest mode shapes U= {U1, U2, . . . ,UN, Θ1, Θ1, . . . ,ΘN}T
of both horizontal displacements and floor rotation angles. In the
proposed stiffness identificationmethod,U can be obtained by the
subspacemethod explained in the next section.Figure 2 illustrates
the scheme of the identification of the shear and bending stiff-
nesses using the lowest mode shape. As seen in Figure 2, sj and ϕj
are the interstory shear deformation and the inter-floor rotation
angle. In addition, mj, Ij, and Hj are the floor mass, the floor
rotational inertia, and the story height of the j-th story, respec-
tively. Let ω1 denote the fundamental natural circular frequency
of themode. In this paper, we call the following formulation as the
inverse-modemethod. In the inverse-modemethod, ks and kb can
be determined by

{ks1, ks2, . . . , ksN, kb1, kb2, . . . , kbN}T = A−1F, (3)

FIGURE 1 | Shear-bending model.

where

A =



s1 −s2 0 0 0
s2 −s3

. . .
0 sN 0 0

−H1s1 ϕ1 −ϕ2 0
−H2s2 ϕ2 −ϕ3

. . . . . .
−HNsN ϕN


,

F = ω1
2



m1u1
...

mNuN
I1Θ1
...

INΘN


(4a,b)

sj =

{
Uj − HjΘj (j = 1)
Uj − Uj−1 − HjΘj (j = 2, . . . ,N)

,

ϕj =

{
Θ1 (j = 1)
Θj − Θj−1 (j = 2, . . . ,N)

. (5a,b)

Evaluation of Transfer Function via
Subspace Method
To identify the shear and bending stiffnesses of the SB model via
the inverse-mode method, the lowest mode components of the
SB model are required, i.e., horizontal displacements and rotation
angles. The method of estimation of the lowest mode shape is
presented for the SB model in this section by using the subspace
method.

First of all, the subspacemethod is explained briefly (Katayama,
2005). This method can provide a sequence of the state vector in
the state space described for each step k= 1, 2, . . . ,Nd as

x(k + 1) = Ax(k) + Bw(k) (6)

y(k) = Cx(k) + Dw(k), (7)

FIGURE 2 | Scheme of inverse-mode method for shear-bending model.
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FIGURE 3 | Essential schematic diagram of lowest mode identification in non-simultaneous measurement system.

FIGURE 4 | Estimation of floor rotation angles in lowest mode by linear interpolation on cumulative distribution function (CDF).

where w(k), y(k), x(k), and Nd are the input, output, state vectors,
and data length, respectively. Furthermore,A, B, C, andD denote
the matrices including the unknown system parameters which
can be derived by the least-squares estimation using the N4SID
method in the framework of the subspace method. The transfer
function G(z) between y(k) and w(k) can be given by using A, B,
C, andD as

G(z) = C(zI − A)−1B + D, (8)

where z = eiωT0 and T0 is the sampling rate. In this paper, the
observedmicro-tremor at the first story is used as the input vector
w(t) and measured floor accelerations and floor rotation angles

are used as the output vector y(k) as
w(k) = üg(k) (9)

y(k) = {u1(k), u2(k), . . . , uN(k), θ1(k), θ2(k), . . . , θN(k)}T.
(10)

It is noted that the function of time is expressed here as the
function of step.

For the practical limitation of measurement systems, e.g.,
velocity sensors for micro-tremor measurement and recorders,
the SI using the non-simultaneous measurement is investigated
in this paper, where the horizontal and rotational accelera-
tions at each story are measured independently by shifting the
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location of sensors. In the non-simultaneous measurement sys-
tem, it was shown that the top floor horizontal acceleration is
absolutely necessary to obtain the transfer function stably in
the subspace method. This may result from the fact that the
amplitude of the transfer function at the i-th floor can change
because utilized micro-tremors may be different in the non-
simultaneous measurement system. Therefore, the input and out-
put vectors in the case of the non-simultaneous measurement are
given by

w(k) = ü(i)
g (k) (11)

y(k) = {ui(k), uN(k)}T, y(k) = {θi(k), uN(k)}T, (12a,b)

where ü(i)
g denotes the observed micro-tremor and the super-

script (i) denotes the non-simultaneous measurement index.
The lowest mode horizontal displacements and rotational

angles can be determined by the ratio of the amplitudes of transfer
function at the fundamental natural frequency. The fundamental
natural circular frequency ω1 can be obtained as the frequency
that maximizes the top floor horizontal amplitude of transfer
function. The lowest mode shape of horizontal displacements and

FIGURE 5 | Flowchart of stiffness identification in simultaneous measurement
scenario.

floor rotation angles in the non-simultaneous measurement can
be evaluated as

U =

{
Gü(1)1

(ω1)

Gü(1)N
(ω1)

,
Gü(2)2

(ω1)

Gü(2)N
(ω1)

, . . . , 1,

G
θ̈
(1)
1

(ω1)

Gü(1)N
(ω1)

,
G

θ̈
(2)
2

(ω1)

Gü(2)N
(ω1)

, . . . ,
G

θ̈
(N)
N

(ω1)

Gü(N)N
(ω1)

}
, (13)

where the subscript on G denotes the objective measured data of
the transfer function. Figure 3 shows the essence of the lowest
mode identification in the non-simultaneous measurement sys-
tem. More detailed explanation on identification of the lowest
mode in the simultaneous and non-simultaneous scenarios can be
found in the study by Fujita et al. (2017).

FIGURE 6 | 10-story building frame.

TABLE 1 | Member cross sections.

Member ID Section

B1 H-900×300×20×30
B2 H-850×300×15×30
B3 H-750×300×15×25
B4 H-600×300×12×20
C1 �-1,000×1,000×45
C2 �-1,000×1,000×35
C3 �-800×800×25
C4 �-600×600×20
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A B

FIGURE 7 | Micro-tremor: (A) time history and (B) acceleration response spectrum.

FIGURE 8 | Identified shear and bending stiffnesses in simultaneous
measurement system.

STATISTICAL MODEL-UPDATING
APPROACH FOR STIFFNESS
IDENTIFICATION

Because the reliable measurement of vertical accelerations on the
slab at lower stories is difficult resulting from the problem of low
S/N ratio and resolution, let us consider the limitation of available
measurement data of floor rotation angles. Fujita et al. (2017)
proposed an empirical equation on the lowest mode shape of floor
rotation angles derived from various building frame investiga-
tions. For simplicity, let Θ= {Θ1, Θ2, . . . ,ΘN} denote the lowest
mode shape of floor rotation angles. In the non-simultaneous
measurement scenario, it was supposed that ΘN can be obtained
from the top floor record, and the remaining components in
Θ were evaluated by applying the empirical equation on floor
rotation angle, i.e., Θj =Θj+1 − 0.004Θj+1(N− j)2 for a 10-story
model (see Fujita et al., 2017). However, the identified bending
stiffnesses of the SB model based on the empirical equation on Θ

may include estimation errors compared with the reference values
of the objective building frame.

In this paper, to identify the bending stiffnesses more accu-
rately, the statistical model-updating approach is proposed, where
the probability density function p(Θi) of the lowest mode shape
of floor rotation angles is evaluated by using the Monte Carlo
simulation for the varied set of the previously identified shear and
bending stiffnesses. Let us suppose that the shear and bending
stiffnesses k̂s, k̂b of the identified SB model follow the normal

distribution as

p
(
k̄si

)
= N

(
k̂si, σ2

s

)
, p

(
k̄bi

)
= N

(
k̂bi, σ2

b

)
(i = 1, . . . ,N),

(14a,b)
where N (µ, σ2) denotes the normal distribution with the mean
valueµ and variance σ2. In theMonte Carlo simulation,Θ(k̄s, k̄b)
is calculated for the normally distributed shear and bending stiff-
nesses k̄s, k̄b of the SB model. Finally, p(Θi) can be obtained. It is
noted that the mean values µΘi and variances σ2

Θi are different at
each floor. If we assume that pi(Θi) can be regarded as a normal
distribution, pi(Θi) is described at each floor as

pi (Θi) = N
(
µΘi, σ

2
Θi

)
. (15)

To present the statistical model-updating approach, let us sup-
pose that it is possible to make additional measurement of floor
rotation angles θ̈iA(t) at a specified floor iA except the top floor.
Let Θ̃iA denote the measured floor rotation angle at floor iA in the
lowest mode. By applying the obtained additional measurement
data at iA-th floor to the simulation-based probability distribution
piA (ΘiA), the probability distributions of Θ at all degrees of
freedom can be updated from the viewpoint of the conditional
probability problem as

p̃i(Θi) = pi (Θi| PiA)|PiA≡Pr[Θ̃iA−∆L < ΘiA < Θ̃iA+∆U]
, (16)

where p̃i denotes the updated probability of the i-th floor rotation
angle for the given situation Θ̃iA − ∆L < ΘiA < Θ̃iA + ∆U
(∆L and ∆U denote the specified small values). ∆L and ∆U are
necessary so that the previously measured Θ̃N is included in the
updated probability distribution p̃N (ΘN) at the top floor. Since
the number of simulations is limited, the non-zero region of
p̃N (ΘN) is finite.

It is necessary to determine the modified lowest mode shape of
floor rotation angles Θ̄ at all degrees of freedom corresponding
to the updated probability distribution p̃i (Θi) for the stiffness
identification. Since the rotational angles at the top and additional
floors can be measured, the linear interpolation is proposed by
using the cumulative distribution function (CDF). CDFs can be
described by using the probability

FΘi(x) =
∫ x

−∞
p̃i(t)dt. (17)
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TABLE 2 | Mean and SD of error ratio of identified stiffnesses in simultaneous measurement (10 times investigation using different micro-tremors).

Error (%) mean (SD) Story

1 2 3 4 5 6 7 8 9 10

Noise free ks 1.20 (0.035) 0.59 (0.012) 0.02 (0.019) 0.40 (0.016) 0.61 (0.025) 0.48 (0.022) 0.43 (0.026) 0.04 (0.022) 0.33 (0.038) 7.12 (0.061)
kb 0.43 (0.004) 0.05 (0.007) 1.22 (0.014) 0.74 (0.018) 2.04 (0.020) 1.44 (0.026) 3.16 (0.027) 3.69 (0.051) 5.63 (0.060) 0.87 (0.202)

Noise 5% ks 1.29 (0.167) 0.62 (0.117) 0.14 (0.019) 0.40 (0.155) 0.58 (0.084) 0.50 (0.110) 0.47 (0.066) 0.10 (0.062) 0.35 (0.088) 7.10 (0.070)
kb 0.47 (0.088) 0.11 (0.062) 1.23 (0.165) 0.62 (0.219) 1.99 (0.312) 1.65 (0.626) 3.05 (0.361) 3.42 (0.928) 6.06 (1.088) 3.45 (2.652)

Noise 10% ks 1.56 (0.411) 0.44 (0.362) 0.09 (0.061) 0.37 (0.274) 0.68 (0.225) 0.44 (0.191) 0.42 (0.147) 0.13 (0.136) 0.27 (0.146) 7.24 (0.178)
kb 0.35 (0.209) 0.27 (0.224) 1.14 (0.355) 0.88 (0.340) 1.95 (0.626) 1.66 (0.683) 3.00 (0.623) 3.48 (1.650) 6.64 (2.477) 5.45 (2.509)

The linear interpolation for CDFs at all stories can be deter-
mined by referring to the available measured amplitudes Θ̃N and
Θ̃iA of lowest mode shape. Finally, Θ̄ can be determined as

Θ̄i = F−1
Θi (L (i)) (i = 1, . . . ,N) , (18)

where F−1
Θi (y) denotes the inverse function of y= FΘi(x). The

argument of the inverse function of FΘi(x) is given by the value
of the linear interpolation equation L(i) at i-th floor described as

L(i) = − 1
N − iA

{(α − β) i − Nα + iAβ} ,

α = FΘiA(Θ̃iA), β = FΘN(Θ̃N). (19a,b,c)

Figure 4 shows the schematic diagram to explain the lin-
ear interpolation based on the updated CDF FΘi. The overall
flowchart of the proposed stiffness identification method in
the non-simultaneous measurement scenario is summarized in
Figure 5.

NUMERICAL EXAMPLES

A 10-story plane-building frame is taken as a simple example.
The story heights, story masses, and rotary inertias are con-
stant through all stories and specified as 4.0m, 1.2× 105 kg, and
1.62× 106 kgm2, respectively. The number of spans is four and
the length of span is 3.0m. Figure 6 shows the objective build-
ing frame. Table 1 shows the member section list. The output
time-history data for the micro-tremor base input, i.e., horizon-
tal and vertical accelerations at the corner column nodes, are
obtained by using the response analysis software, SNAP [see soft-
ware detail at http://www.kozo.co.jp/program/kozo/snap/index.
html (in Japanese)]. In this paper, the floor rotation angles are
evaluated by dividing the difference of the vertical accelerations at
the corner columns by the width of the objective building frame.
Because the amplitudes of floor vertical accelerations, especially
in lower stories, are relatively small and the measurement noise
can be involved easily, the reliable and exact measurement of floor
rotation angles may be difficult. In the non-simultaneous mea-
surement scenario, the shear and bending stiffnesses are evaluated
first by substituting the empirically derived floor rotation angles
in lowest mode to the inverse-mode method.

Figure 7 shows an example of the recorded time history and
the acceleration response spectrum of a micro-tremor, which is

FIGURE 9 | Identified shear and bending stiffnesses in non-simultaneous
measurement using empirical equation.

used as the base input. These micro-tremors data were obtained at
Disaster Prevention Research Institute of Kyoto University, Japan
(Fujita et al., 2015). In following numerical examples, the band-
limitedwhite noise is added to the output data as themeasurement
noise, i.e., horizontal and rotational accelerations, independently
at each story. The amplitude of the noise is determined so as to
adjust the root-mean-square (RMS) of noise to 5 or 10% of the
RMS of the horizontal and rotational response at the first story,
respectively.

To verify the validity and stability of the formulation of the pro-
posed stiffness identification, 10 different micro-tremor records
are examined. The influence of the measurement noise is taken
into account, where the horizontal and rotational response at
each story includes 0, 5, and 10% noises. Figure 8 shows the
comparison of mean value of the identified shear and bending
stiffnesses in the simultaneous measurement system with the
reference values. The reference shear and bending stiffnesses can
be derived from the static analysis result of the object-building
frame. Table 2 shows the comparison of mean and SD of the error
ratio of identified stiffnesses. As seen in Figure 8, the shear and
bending stiffnesses can be identified reliably since the lowestmode
shape can be derived stably by using all degrees of freedom. From
Table 2, it can be observed that the SD of error ratios increases
with increasing noise level. This means that the stability in the
stiffness identification is influenced by the measurement noise.
Although the noise may affect the stability of identification, the
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TABLE 3 | Mean and SD of error ratio of identified stiffnesses in non-simultaneous measurement using empirical equation (10 times investigation using different
micro-tremors).

Error (%) mean (SD) Story

1 2 3 4 5 6 7 8 9 10

Noise free ks 7.85 (0.299) 2.53 (0.484) 2.21 (0.386) 2.34 (0.149) 2.35 (0.140) 3.33 (0.280) 2.20 (0.298) 1.15 (0.125) 0.15 (0.098) 7.34 (0.227)
kb 33.4 (0.013) 23.3 (0.024) 1.35 (0.019) 4.11 (0.020) 4.01 (0.019) 9.76 (0.018) 52.6 (0.030) 57.4 (0.031) 158.1 (0.047) 192.5 (0.045)

Noise 5% ks 6.36 (1.845) 2.68 (1.073) 2.05 (0.787) 2.70 (0.580) 2.86 (0.674) 3.37 (0.387) 1.59 (0.537) 1.41 (1.059) 0.73 (0.641) 7.52 (0.795)
kb 33.4 (0.155) 23.4 (0.287) 1.30 (0.230) 4.16 (0.242) 3.96 (0.223) 9.71 (0.208) 52.7 (0.351) 57.5 (0.360) 158.3 (0.571) 192.7 (0.643)

Noise 10% ks 6.35 (2.204) 2.17 (1.050) 2.95 (1.208) 2.59 (0.932) 3.12 (1.031) 3.42 (0.890) 1.97 (0.812) 1.37 (0.795) 13.6 (28.90) 18.2 (27.03)
kb 33.4 (0.436) 23.4 (0.814) 1.33 (0.660) 4.13 (0.711) 3.99 (0.675) 9.75 (0.657) 52.6 (1.156) 57.5 (1.233) 158.2 (1.969) 192.7 (1.623)

FIGURE 10 | Relationship between cumulative distribution function and boxplot.

FIGURE 11 | Boxplot of floor rotation angle in lowest mode.

mean values of error ratios of identified stiffnesses considering the
noise are almost the same compared with those without noise.

Compared with the result by the simultaneous measurement
system, it is needed to estimate the lowest mode shape of floor
rotation angles in the non-simultaneous measurement system.
Figure 9 shows the comparison of mean value of identified stiff-
nesses based on the previously proposed SI method. Table 3
presents themean and SDof the error ratio of identified stiffnesses

FIGURE 12 | Conditioning of probability distribution based on additional
measurement data.

in non-simultaneousmeasurement system. The obtained bending
stiffnesses in the non-simultaneous measurement are slightly
different from the reference values even in the case without noise.
This may be caused by the estimation error in the lowest mode
rotation angles based on the empirical equation.

The statistical model-updating approach is applied to mod-
ify the identification accuracy from the previously identified SB
model. The variances σ2

s and σ2
b in Eq. 14 are the same for all stories

and given by 0.10 and 0.20, respectively. Some figures are shown
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to present the statistical model-updating approach by using the
boxplot. For clearly understating the result of figures, Figure 10
shows the relationship between the CDF in Eq. 17 and the boxplot.
As seen in Figure 10, the box plot is useful to show the statistical
quantities, e.g., median, quartile, and outliers.

Figure 11 shows the boxplot of the obtained lowest mode shape
of floor rotation angles in theMonteCarlo simulation based on the
previously identified SB model shown in Figure 9. The number
of samples is 105. In this figure, the red vertical lines denote the
median of the probability distribution of floor rotation angle at
each floor in the lowest mode shape, and the red cross markers are
shown as the outlier. In addition, the black and white circle mark-
ers are added to compare with the reference lowest mode shape
of the objective building frame and previously measured Θ̃10 at
the top floor, respectively. Since the mean values of k̂s and k̂b in
Eq. 14 are determined in the previously identified SBmodel in the
non-simultaneous measurement, these probability distributions
of floor rotation angles in the lowest mode are influenced by the
empirical equation.

To identify the bending stiffness of the SB model more accu-
rately, we suppose that additional measured data of the floor
rotation angles, e.g., θ(t) at fifth story, can be available. By applying
the obtained data to the subspace method again, the floor rotation
angle at the measured story in the lowest mode can be used in
the identification. The probability distribution of floor rotation
angles in the lowest mode can be updated as shown in Figure 12.
The time-history record of floor rotation angle at the fifth story
is used for conditioning of the probability distributions derived in
Figure 11. For updating the probability distributions, the proba-
bility distribution at the fifth story is conditioned so as to adjust
themedian of itself in accordance with the observed floor rotation
angles in the lowest mode. The number of samples of the updated
probability distribution is given as 103, i.e., 1% of the previously
obtained probability distribution. In this case, ∆L and ∆U are
determined as 1.86× 10−7, 1.93× 10−7, i.e., the ratios of those
small values to Θ̃5 correspond to 0.22 and 0.23%, respectively.
Although this selection of dataset in Θ5 related to the conditional
probability depends on ∆L and ∆U, it has been observed that
the corrected lowest mode shape of floor rotation angles and the
corrected bending stiffnesses can be obtained stably for varied set
of ∆L and ∆U.

As seen in the updated probability distribution at the top floor,
the previously measured floor rotation angles in the lowest mode
are not located at the median of the updated probability distri-
bution. Therefore, the floor rotation angles in the lowest mode
are estimated by the linear interpolation of the probability in the
CDF. Figure 13 shows the determination of the floor rotation
angles in the lowest mode using the liner interpolation. In this
case, the coefficients of linear interpolation can be derived by
the cumulative probability of measured floor rotation angles at
the fifth and top floors in the lowest mode. By applying the
corrected floor rotation angles in the lowest mode to the inverse-
modemethod, the bending stiffnesses can be updated as shown in
Figure 14. It can be observed that the distribution in upper stories
has been updated significantly. This indicates the effectiveness of
the proposed statistical model-updating approach.

FIGURE 13 | Determination of floor rotation angles in lowest mode based on
linear interpolation of probability in cumulative distribution function (CDF).

FIGURE 14 | Comparison of identified bending stiffnesses based on empirical
formula with modified bending stiffness using probability distribution
simulation-based method.

Since the shear and bending stiffnesses of the SB model repre-
senting the objective high-rise building can be obtained reliably
in the proposed method as shown in Figure 14, the structural
engineer can estimate the structural responsesmore accurately for
other earthquake ground motions. Furthermore, from the view-
point of the SHM, it may be possible to find structural damages
from the change of identified stiffnesses using the SB model.
Applicability of the proposed stiffness identification method to
the problem of SHM will be studied in the future.
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In the numerical example in this paper, since the steel building
frame has been investigated to identify the shear and bending
stiffnesses, the limitations of the proposed stiffness identifica-
tion method, e.g., applicability to other building types (wood,
reinforced concrete, etc.), is needed to be discussed in more
detail.

CONCLUSION

This paper proposed an identificationmethod of stiffness using an
SBmodel for tall buildingswith a relatively large aspect ratio based
on a statistical model-updating approach. The subspace method
was applied first to identify the lowest mode, i.e., horizontal
displacements and floor rotation angles. In the non-simultaneous
measurement scenario for simplification of measurement, only
the rotational response at the top floor is supposed to be measur-
able. For identifying the shear and bending stiffnesses accurately,
it is needed to identify the lowest mode shape within certain accu-
racy. By using the obtained lowest mode, the shear and bending
stiffnesses of the SB model were determined by taking advantage
of the inverse-mode method. Although an empirical equation has
been proposed to estimate the lowestmode of floor rotation angles
in the non-simultaneous measurement system, the accuracy of
the identified bending stiffnesses is not sufficient when compared
with the shear stiffnesses.

It has been demonstrated that the correction of the lowestmode
shape of floor rotation angles is possible through a newly proposed
statistical model-updating approach. In the proposed SI method,
we supposed that additional measurement data on the floor
rotation angle are available. Taking into account the conditional
probability problem using the additionally obtained lowest mode
shape of floor rotation angles, the probability distribution of floor

rotation angles can be updated. A method of linear interpolation
of the CDF was developed to determine the lowest mode shape
of floor rotation angles from the updated probability distribution.
As a verification of the proposed method, numerical simulations
were conducted for a 10-story plane-building frame. It has been
confirmed that the proposed identification method possesses an
allowable accuracy even in the non-simultaneous measurement
scenario.

The proposed stiffness identification method using the sta-
tistical model-updating approach has been presented under the
additional floor rotational measurement data at the middle story.
As shown in the numerical demonstration, although the bending
stiffnesses can be reliably corrected by using the additional rota-
tional acceleration at the fifth story, it is desirable to suggest the
number of iterations for selection of additional floor rotational
measurement and the location of such additional measurement.
This subject may depend on the building properties influencing
the lowest mode shape of floor rotation angle. The applicability of
the proposed stiffness identification method to various building
types should be discussed in the future.
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