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Discouraged by the high-cost and lack of connectivity of indoor air quality (iAQ)

measurement equipment, we built a platform that would allow us to investigate what

kinds of iAQ evolution information could be collected by a low-cost, distributed sensor

network. Our platform measures a variety of iAQ metrics (CO2, HCHO, volatile organic

compounds, NO2, O3, temperature, and relative humidity), can be flexibly powered by

batteries or standard 5W power supplies, and is connected to an infrastructure that

supports an arbitrary number of nodes that push data to the cloud and record it in real-

time. Some of the sensors used in our nodes generate data in standard units (like ppm or
◦C), and others provide an analog signal that cannot be directly converted into standard

units. To increase the relative precision of measurements taken by different nodes, we

placed all 6 pairs of the nodes used in our deployments in the same environment,

recorded how they reacted to changing iAQ, and developed calibration functions to

synchronize their signals. We deployed the comparatively cross-calibrated nodes to

two different buildings on Princeton University’s campus; a fabrication shop and an

office building. In both buildings, we placed nodes at key positions in the ventilation

supply chain, providing us with the ability to monitor where indoor air pollutants were

being introduced, and when they tended to be introduced—enabling us to monitor the

evolution of pollutants temporally and spatially. We find that the occupied space of the first

building’s fabrication shop and the second building’s open-plan office have higher levels

of volatile organic compounds (VOCs) than outside air. This indicates that both buildings’

ventilation systems are unable to supply enough fresh air to dilute VOCs generated inside

those spaces. In the second building, we also find indications that other parameters are

being driven by set-backs and occupancy. These first deployments demonstrate the

ability of low-cost distributed iAQ sensor networks to help researchers identify where

and when indoor air pollutants are introduced in buildings.

Keywords: sensors, distributed sensing, Wireless Sensor Networks (WSN), Indoor Air Quality (IAQ), Internet of

Things (IoT), microcontrollers, comparative calibration, ventilation
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BACKGROUND

Indoor Air Quality
Indoor air pollution presents building occupants with a variety
of chronic health risks (Chan et al., 2015). It has consistently
been placed by the US Environmental Protection Agency (EPA)
as one of the top five risks to environmental public health
(US EPA OAR., 2015). Many indoor pollutants have known
adverse health effects on humans, ranging from irritation of
nasal and mucous membranes to permanent or cancer causing
effects (Spengler and Sexton, 1983). Increased levels of CO2 in
indoor air have statistically significant correlations to declines in
cognitive performance, even at levels that are deemed acceptable
by standards like ASHRAE (Allen et al., 2016). VOCs can cause
ear, nose, and throat irritation, and particulate can contribute to
lung disease (Kim et al., 2010). Levels of indoor air pollutants can
be two to five times as high as outdoor levels, sometimes reaching
100 times as high (US EPA OAR., 2015). This is particularly
alarming when we consider that urban populations spend as
much as 90% of their time indoors (Spengler and Sexton, 1983).
Given the proportion of their time we spend indoors, it is
important that we understand what is in the air we breathe.

Contemporary building design and construction practices
produce buildings that rely on numerous systems working
in tandem 24/7 to deliver the services we expect. HVAC,
plumbing, wiring, and finishes deliver comfort and convenience
to occupants, but they can also unintentionally degrade indoor
environment quality. Air pollution levels indoors are determined
by the complex balance between the potency of indoor sources,
modes of air penetration through the building envelope, and
outdoor air pollution levels. Indoor and outdoor air pollution
sources can be categorized several ways; they may be mobile
or static, and with stochastic or continuous pollution signals.
Additionally, static sources may be point sources or zonal
polluters. Each type of source poses a unique challenge to the
mediation of pollution in indoor air, and similarly a unique
challenge to measuring it. Figure 1 provides some examples of
where different sources fall into such a categorization scheme.

There are many sources of air pollution indoors. The
breathing of humans and pets, as well as combustion, contribute
water vapor and CO2. Volatile organic compounds (VOCs)
are released by building finishes and cleaning products. Plants,
animals, humans, and printers all contribute particulate to indoor
air, though they are only a subset of a large number particulate
polluters (Fisk and de Almeida, 1998). Currently, we have the
technological capability to better understand pollutant levels in
buildings with inexpensive sensor networks, and more easily
attempt to spatially identify both static and mobile sources of
pollution. By analyzing variation across time and space, we
believe it is also possible to determine if they are continuous or
stochastic polluters.

Current Ventilation Control Challenges
With the ongoing push to tighten up the building envelope,
modern buildings often rely exclusively on mechanical
ventilation to dilute indoor pollutants to acceptable levels.
Ventilation systems are commonly operated on simple air

exchange rate standards and rules of thumb, and without
information about actual air pollution levels. These conditions
necessitate a greater understanding of the dynamics of air quality
in buildings, and how these relate to the ever-changing state of
air quality outside of them.

Air exchange rates are usually mandated as functions of
the maximum number of occupants and the floor area, in
addition to maximum acceptable levels of pollutants (ASHRAE,
2009). As actual pollutant levels are rarely monitored by HVAC
systems, standard practice is to simply ensure a room volume is
ventilated at a constant, pre-calculated rate. With fixed airflow
rates, over-ventilation is a serious energy concern (ASHRAE,
2009). The Federation of European Heating, Ventilation and Air
Conditioning Association’s REHVA Guidebook No. 6 provides
quantification of the effect of increased ventilation rates on
occupant productivity in offices (Wargocki, 2006). In response to
these figures, a Dutch study found that to increase productivity
and occupant satisfaction with air quality, it is more effective to
remove indoor air polluters than it is to increase ventilation rates
(Kurvers and Leyten, 2010). This result supports the need for
developing iAQ monitoring systems that are able to detect the
location of indoor air pollution sources, such that sources can be
removed rather being dealt with by increasing ventilation rates,
or not dealt with at all.

A natural evolution of ventilation control logic is to use timer-
controlled setbacks, programmed according to use patterns. This
is often done for office buildings with typical working hours.
Setbacks acknowledge thatmany of themost aggressive degraders
of indoor air—like people—are mobile and their presence varies
at quasi-regular intervals. Energy consumption is reduced by
turning ventilation systems down or off for several hours at a
time. The fundamental weakness of this technique is that it does
not account for occupation of spaces outside of preprogrammed
schedules, and requires manual reprogramming for changes in
timing. Some consumer HVAC controls, like the Nest Learning
Thermostat R©, try to address this issue by making schedule
detection an intrinsic part of the control logic, using motion
sensors to learn the pattern of space usage (Nest Labs, 2017).

Sensor Based Demand Controlled
Ventilation (SBDCV)
Sensor based demand controlled ventilation adds a feedback
layer to scheduled ventilation control. This technique commonly
uses feedback from CO2 sensors to modulate flow rates. As
CO2 levels are increased by exhalation, it can be used as a
proxy for measuring occupancy. Still, ensuring low CO2 levels
alone does not guarantee indoor air quality (iAQ). There is
little correlation between CO2 and traffic related pollutants for
instance (Chatzidiakou et al., 2015). When we look holistically at
iAQ, there is likely a very poor correlation between the occupancy
artifacts (CO2) and the amount of other pollutants, like VOCs
emitted by static building materials. Also of major concern is that
the standards that dictate target levels of CO2 in buildings have
recently been proven insufficient to guarantee well-being (Allen
et al., 2016). Passive infrared (PIR) motion detectors are used
in some buildings for ventilation control, but these systems are
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FIGURE 1 | Pertinent to the sensing of indoor air quality is whether a particular source pollutes continuously or stochastically, and whether a source is mobile or static.

Common sources of indoor air pollution are categorized as examples.

fraught with issues. PIRmotion detecting is unable to detect static
people, and can turn off ventilation when people are static long
enough. Particulate sensors have been used in high concentration
spaces, like smoking lounges, but high quality particulate sensors
have historically been expensive (Fisk and de Almeida, 1998),
though drops in prices have made them more accessible.
Moisture sensing is used in some residential ventilation controls,
but SBDCV systems are commonly univariate.

The issue persists that ventilation rates determined by the
value of a single iAQ metric disregards the complexity of the
factors that determine iAQ.When SBDCV is unable to accurately
characterize pollution levels, dilution will be insufficient, and a
gradual increase in pollution levels can happen over time (White
et al., 1987). Common across applications of SBDCV is the
assumption that outdoor air is “cleaner” than indoor air. While
this may be generally true, building systems never empirically
confirm this, and do not possess the faculties to. When a
stochastic pollution event happens, inside or outside, building
controls are usually unaware and are incapable of increasing
preprogrammed ventilation rates in response to the degradation
of indoor air.

We propose that future SBDVC should look holistically at
indoor environment quality, supplying the necessary amount of
outdoor air to ensure low enough levels of all iAQ metrics, not
just one or two. Further, systems should be able to detect when
air quality is satisfactory, such that ventilation can be decreased,
or turned off entirely, and the associated energy savings can
be reaped. The purpose of the on-going development of our
indoor environment quality (iEQ) sensor network is to determine
whether a holistic and spatially explicit characterization of iAQ
can be accomplished, with hardware of a sufficiently low-cost
that SBDVC could conceivably be employed in many kinds of
buildings, not just expensive ones.

Existing Tools
Indoor air quality is often experimentally verified with handheld
equipment. Devices like the TSI Q-Trak 7575, used by Allen
et al. in his seminal study on the effects of CO2 on cognition
(Allen et al., 2016), can cost more than $3,000 USD. Professional
grade equipment like this can be prohibitively expensive when
looking at the number of devices needed to address questions
of spatial and temporal evolution. Even at this price point,
handheld devices lack connectivity, making any kind of real-time
monitoring impossible. The explosion of IoT devices has brought

a few iAQ measuring devices to the consumer market, but these
are limited in the range of iAQ parameters they measure. The
Netatmo weather station also used by Allen et al. costs $100 USD
per node and can only measure temperature, humidity, and CO2.
To make iAQ evolution monitoring possible at a high temporal
and spatial resolution, we need to develop new tools.

The Need for Distributed Sensing
Until now, deployments of iAQ sensing equipment in buildings
have primarily studied how the chemical concentrations that
sensors are exposed to change over time. “Efforts to access health
risks associated with indoor pollution are limited by insufficient
information about the number of people exposed, the pattern
and severity of their exposures, and the health consequences of
exposures” (Spengler and Sexton, 1983). By allowing researchers
to monitor the spatial and temporal evolution of indoor air
pollutants, we hypothesize that iEQ sensor networks like ours
have the potential to provide the kinds of information Spengler
and Sexton are referring to. Until now, research on building
low-cost multivariate iAQ sensor networks have been primarily
to prove that the technological feat of collecting data by such
a system is possible (Kim et al., 2010; Abraham and Li, 2016),
using data gathered to feed models (Jin et al., 2017), or were
of a low spatial resolution (Blondeau et al., 2005). Researchers
have built and calibrated low-cost, networked, sensor nodes but
there is limited literature focused on the deployment of these
technologies to study iAQ spatially in buildings. We hope to
address the lack of spatially oriented iEQ analysis in buildings by
deploying sensor nodes, measuringmany parameters, in different
buildings to study the evolution of indoor pollution through time
and space.

Existing Distributed iAQ Sensor Systems
While CO2 sensing has been available in certain demand
controlled ventilation systems for a few decades (Emmerich
and Persily, 1997; Fisk and de Almeida, 1998), they don’t
provide a comprehensive view of indoor air. The building
management systems (BMS) that hold the data often have a
low temporal resolution, insufficient storage capacity, and a
steep learning curve; making iAQ insights difficult to gather,
and nearly impossible to acquire in real-time, or near real-time.
In response to this, researchers have developed microcontroller
based iAQ nodes capable of addressing many of these
issues.
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In 2010, Kim et al. published a paper describing their attempt
to address the need for distributed iAQ sensing (Kim et al., 2010).
Their battery powered nodes could measure CO2, CO, VOC,
O3, and particulate, and their network infrastructure was built
around the ZigBee transceiver for its strong energy consumption
to range ratio. Minimizing unit costs were stated to be the
driving design consideration. Their platform was thoughtfully
executed, though their network architecture had a level of
complexity necessitated by their use of ZigBee. Their architecture
required the transceivers on each node to communicate through
gateways to a base station that was physically connected
to a PC.

In 2013, a paper published inMedical Engineering and Physics
by Yu et al. details their iAQ wireless sensor network (WSN)
nodes and network typology (Yu et al., 2013). Using the ZigBee
protocols, Yu et al. built nodes that could measure temperature,
humidity, and CO2 concentrations, and were able to remove the
base station and tethered computer from Kim et al.’s network.
This new strategy could jump communication from multiple
locations to the Internet, where data was aggregated and stored
on an application server off-site. While they could measure fewer
metrics than Kim et al., their infrastructure was less complex and
more scalable.

In 2016, the International Journal of Information Networks
published a detailed account of the development of an iAQ
sensor network by Abraham and Li (2016). Their network is
structured similarly to Yu et al.’s but their nodes support more
iAQ parameters, thanks in part to their inclusion of an open
source microcontroller. Their nodes support CO2, VOC, O3,
temperature, and humidity sensors. The addition of a dedicated
microcontroller for data acquisition (DAq) likely doubles the unit
cost of the DAq and communications components on each node.

A recent paper (Pantelic et al., 2018), describes the
development and application of a sensor network work that
breaks away from the ZigBee protocol norm. In its place, the
microcontroller platform Particle.io is utilized. This platform
leverages a combined microcontroller and WiFi communication
chip to deliver processing and communication in a very cost
effective package. This typology removes the need for gateways
and base Stations that are required by the ZigBee protocol. In
a first iteration, their nodes host NO2, CO2, CO, O3, VOC,
Particulate, temperature and humidity, curating out CO, O3,
NO2 in the second version so only highly calibratable sensors
would be used. While the cost of DAq and communications in

their nodes is about half that of Abraham and Xinrong’s, it is at
the expense of greater power consumption.

In the following section, we describe the development of
a similar network architecture to Rysanek and Pantelic. On
our nodes we embrace low-cost, less easily calibrated sensors,
as a tool to spatially identify points sources of pollution,
and track their evolution in relative terms though space
and time.

METHODS

Infrastructure
To be able to study the evolution of air quality in and around
buildings, with a high temporal and spatial resolution, it was
imperative that we developed an underlying infrastructure that
was flexible and scalable. We used a wide variety of existing
sensor components and assembled them around the WiFi
enabled microcontroller platform from Particle.io. Data can be
published to a Server-Sent Event (SSE) stream, but is limited
to a single publish per controller per second. To extract 7 iEQ
data points per node per second, we developed a firmware
side encoding structure. To capture data, we wrote software
to monitor the SSE stream, decode incoming packets, and
logged to an instance of the open source InfluxDB database.
Data is graphed in real-time by the open-source software
Grafana, allowing us to catch errors and monitor readings.
This infrastructure and data flow enables us to carry out many
experiments concurrently, and monitor results in real time
(Figure 2). During the period of highest demand on the system,
it supported data acquisition and visualization from 60 nodes,
measuring 100 parameters.

Nodes
The microcontrollers used afford great flexibility in the kinds
of sensors we can record data from. Each node is built from a
combination of the sensors in Table 1. We grouped sensors onto
one of two nodes, based on power requirements and cost. We
milled circuit boards to increase the robustness of deployed nodes
over breadboards, and 3D printed cases to mitigate sensitivity
to high velocity airflow in ducts. We produced 6 duplicates
of each node configuration, a dozen nodes in total (Figure 3).
The first node configuration included a factory calibrated high
sensitivity CO2 sensor, that returns digital values in parts per
million. The second configuration had Ozone, formaldehyde,

FIGURE 2 | Data collection system overview. Data from an arbitrary number of microcontrollers (A) is published to Particle.io’s Cloud API (B). Our server (C) scrapes

the data, and stores it in an instance of InfluxDB, where client (D) can view the data in Grafana and download for analysis (E).
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nitrogen dioxide, VOCs, humidity, and temperature. Except for
temperature and humidity which are digital, these sensors return
voltages which are read into themicrocontroller with a resolution
of 4,096 points.

Comparative Calibration
While the low-cost of the sensors selected make large scale
deployments possible, they do require calibration. Many of the
most common instrument calibration techniques and associated
literature have been written or developed for absolute calibration
(Osborne, 1991). Absolute calibration determines the calibration
curve of a device whose measurements deviate from true
values by an unknown amount, using the measurements of
an instrument with known or negligible error. With these
two data sets one may use linear regression—referred to as
Eisenhart’s Classical Estimator (Osborne, 1991) in the context
of comparative calibration—to determine the calibration curve
by considering the regression of Y on X (Shukla, 1972). Where
Y represents the measurements made with the device to be
calibrated, and X represents the measurements of the device
whose readings are assumed to be the true values. Finding the

TABLE 1 | All sensors used in node configurations.

Sensor iAQ metric

Telaire T6713 CO2

MiCS-5524 VOC

WSP2110 HCHO

MiCS-2714 NO2

MQ131 Ozone

DHT-22 Temp. and relative humidity

slope (β1) and Y intercept (β0) of the line of best fit for Y | X will
produce the estimator.

E ( Y | X = x)=β0+ β1x (1)

Equation 1: Eisenhart’s Classical Estimator.
We did not have absolutely calibrated instruments to calibrate

our multi-parameter nodes with. In lieu of a set of true values, X,
we created a substitute to calibrate the individual sensors against.
While it is common in this scenario to choose one measuring
device, and set it as the standard to calibrate the other measuring
devices against, we elected to generate a new series that better
accounted for the spread of measurements at any specific time.
We started by placing the 6 multi-parameter nodes and 6 single
parameter nodes on a table in the lab where they would not
be disturbed. The configuration was like the arrangement in
Figure 3, where all the sensors fit into a roughly 14′′ × 14′′ space,
and would be exposed to the same changing conditions over
time. We let the sensors record continuously for 3 days. We fed
the resulting data to a python script that employed Eisenhart’s
Classical Estimator to generate calibration functions for each raw
signal. For each iEQ parameter being recorded, a median signal
was generated from the 6 raw signals. Each raw signal was then
regressed with the median signal, using the polyfit function of
Python’s Numpy library. The function generates the line of best
fit by minimizing the squared error, the operation used is found
in Equation (2).

E =

k
∑

j=0

|p
(

xj
)

− jj|
2

(2)

Equation 2: The statistical operation employed by Python polyfit
function. Used for calibrating all sensor signals used in our
experiments.

FIGURE 3 | The six multi-iEQ parameter nodes, in their convection blocking enclosures, and six carbon dioxide nodes deployed to buildings on Princeton University’s

Campus.
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Units
The dissimilar nature of signals from specific types of low-
cost gas sensors make using uniform units problematic. Some
sensors are digital, and output values are within preprogrammed
ranges. Some sensors are analog, and responses are translated
from voltage to digital values by the microcontroller’s analog-
digital-converter (ADC). In some cases, we do not know the
possible voltage range of analog signals, and by extension the
range in possible ADC readings. In other cases, we know the
range of voltages, and have been provided a translation function
by the manufacturer. Due to these differences, it is not possible
to convert all outputs to the same units for the comparison. As
such, we will generally present data in generic “units.” We will
be comparing signals of like sensors whose magnitudes, in units,
change synchronously to changing chemical concentrations. This
will be the case except when it is possible to use the actual units
recorded; like when we are discussing ppm CO2, or variation in
ADC readings of the same model of sensor.

Deployment Locations
We deployed our iEQ nodes in two pilot experiments on
Princeton University’s campus. The first is to a large singe-
volume fabrication building, the Embodied Computation Lab
(ECL). The second is to a combination office and research lab
space, the Andlinger Center for Energy and the Environment
(ACEE).

In the deployment to the ECL, we placed sensor nodes at
three points in the ventilation supply chain: the Fresh Air
duct, the Supply diffuser, and across the space on a Flammable
materials cabinet. Qualitatively, we hoped this selection of spatial
positions would give us an understanding of the proportional
increase/decrease of iAQ parameters as outdoor air entered the
building, was affected by the air handler, and then diffused
across the large assembly space, to the farthest point from the
supply vent. In addition to being on the farthest wall from
the supply vent, the cabinet was specifically chosen because we
suspected it to be a major contributor of pollution to the interior
environment. Presumably, this position would be representative
of the worst-case scenario of air quality in the space. The nodes
were left running for an 8-day period.

For the second experiment, we moved to the ACEE building,
where we scaled up the deployment size to 6 points in the
ventilation supply chain. For this deployment, we placed 3
sensors in the air handling unit; one at the fresh air intake,
one after the filter, and one after the heating and cooling coils.
Additionally, we placed 3 in an open-plan graduate student office,
serviced by the air handler. We placed sensors at the more
populated west side of the room, as well as at the less populated
east side of the room. A sixth position was selected in front of the
air return grill in the plenum of the space.

RESULTS

Calibration
Using the outlined comparative calibration methodology, we
significantly increased the relative precision of the calibrated
sensor signals. For the 7 iEQ metrics being calibrated, we saw

the average range in sensor responses decrease by 89.1%, and
an 89.2% decrease in standard deviation. More specifically, the
calibration methodology produced the greatest reduction in
range of signals for the ozone sensors, with a 96.5% reduction
in range. Similarly, the average standard deviation during the
calibration experiment was reduced by 96.1%. The calibration
methodology produced the lowest reduction in range for the
signals produced by the NO2 sensors, where it was reduced by
75.7% on average, with a 76.7% reduction in standard deviation.
The complete results of the calibration of sensor outputs are
found in Table 2.

Our calibration methodology reduced the spread and
standard deviation of the digital CO2 sensor signals by 91%. The
other gas sensors used were effectively comparatively calibrated
to the precision needed for relational observations, as elaborated
in the next section, but require further experimentation in a lab
to correlate response curves to absolute ppm accuracy.

VOCs in the Embodied Computation Lab
Building
After assessing the 7 iEQ parameters measured, the parameter
with the clearest trends was VOC concentrations, shown in
Figure 4. Periods where the sensor lost connectivity were
removed for legibility. We plot first the raw ADC response for
each of the three locations at the supply, the diffusor in the space,
and in the space near the flammables cabinet. We then plot the
difference between each of these points.

There are clear points where the buildings doors are open
and the fresh air is mixing causing similar values at all sensors,
and clear points where the VOC’s rise in the room, both at the
diffusor and near the flammables. There is a dramatic increase
in VOC concentrations between when fresh air is brought into
the building’s ventilation system and when it mixes with the air
in the main volume, on average a 177% increase. There is a
much less dramatic increase in the VOC concentrations of the air
between the point where fresh air is mixed with existing air, and a
probable point source of VOCs, the flammables cabinet located
about 50 feet away. This difference is only a 33.7% increase
on average. Figure 4 shows that air with a low VOC content
is consistently being brought into the ventilation system from
outside. However, that fresh air becomes polluted with VOCs
almost immediately after exiting the diffusor, suggesting a high
volatility and diffusivity of the pollutant in the air volume.

Multi-Parameter iEQ Monitoring at ACEE
Building
Figure 5 shows the VOC signals from 6 comparatively calibrated
sensors. The calibration of these sensors yielded a comparative
precision of±0.7 units (2σ). We found that the graduate student
space consistently had VOC levels higher at desk height (PhD
East and PhD West) than the buildings fresh air stream. The
difference between the mean desk height VOC reading in the
graduate space and the fresh air stream was a 7.5% increase on
average (1.3 units). The post filter air consistently had the lowest
VOC levels in the supply chain; on average 40.4% lower (7.2
units) than the fresh air stream. Between the post coil section of
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TABLE 2 | Summary statistics from the uncalibrated and calibrated sensor signals, during the calibration experiment.

Signal Uncalibrated Calibrated % Reduction

Parameter Ave. spread Ave. st. Dev Ave. CI Ave. spread Ave. st. Dev Ave. CI spread Std. Dev CI

CO2 129.47 51.00 1.31 11.49 4.24 0.11 91.1 91.7 91.7

HCHO 0.50 0.18 0.01 0.02 0.01 0.0002 96.1 96.0 96.3

VOC 20.21 6.87 0.18 0.90 0.35 0.01 95.5 94.9 94.9

NO2 362.31 150.94 3.86 88.18 35.24 0.90 75.7 76.7 76.7

Ozone 145.37 48.29 1.24 5.03 1.87 0.05 96.5 96.1 96.1

Temp 1.40 0.51 0.01 0.33 0.12 0.003 76.8 76.4 76.3

Humidity 16.45 6.63 0.17 1.35 0.50 0.01 91.8 92.5 92.5

Metric used are average spread (Ave. spread), average standard deviation (Ave. st. Dev), and average confidence interval (CI).

FIGURE 4 | The calibrated VOC sensor signals recorded in the Supply air duct, at the supply air Diffuser and at Flammables cabinet in the Embodied Computation

Lab (top). The difference between the calibrated ADC readings of the VOC sensors at the Supply and the Diffuser, and between the Diffuser and Flammables cabinet

(bottom).

the air handler and the desks of the graduate room, an average
increase of 56.1% in VOC levels (6.4 units) occurred.With regard
to the spatial evolution of pollutants across the entire ventilation
supply chain, this dataset suggests that the air handling unit’s
filter consistently lowers the VOC content in the air. By the time
the air passes the heating and cooling coils in the air handler VOC
levels rise slightly. Supply air in the graduate space is provided
at ceiling level, by desk height the air consistently sees the
highest levels of VOCs in the supply chain. While the difference
between the west (more populous), and east (less populous) part
of the graduate student area was close to the 2σ (two standard
deviation) margin of error for calibration, there does appear to be
a consistently higher VOC concentration in the west part of the

room from the 16th of August to the 20th. The air in the plenum
(in front of the exhaust duct) appears to have roughly the same
VOC content as the fresh air stream of the building.

In Figures 6, 7 we investigate the inter-parameter iEQ
relationships in the PhD West (more populous) side of the
graduate space, facilitated by the 7 low-cost sensors included
in each cluster. The 7th parameter, ozone, has been omitted
from the graph and subsequent analyses; a bug in the firmware
rendered the values recorded unrepresentative of the true
ozone concentrations in the space. Narrowing the focus of the
probe to one spatial location allows us to investigate questions
of periodicity, and the correlation of periodicity between
parameters. We produced 24-point curves, where each point
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FIGURE 5 | The comparatively calibrated signals of 6 VOC sensors across the ACEE ventilation supply chain.

represents the average hourly value over the 8-day experimental
period. Several of these graphs are found in Figure 7. For NO2

and VOC levels, the highest concentration appears at 6 a.m.
and 5 a.m., respectively. This is likely an indication that the
concentration of these chemicals builds up over the course of
the night, when the air is being replaced at a reduced rate due
to setbacks, and drop away over the course of the day, once the
ventilation systems switches to its day turnover rates at 6 a.m.
The correlation of these two parameters are studied in Figure 7A,
where the average hourly VOC values are regressed against the
average hourly NO2 values. The same is done for HCHO and
relative humidity (RH) in Figure 7B. The resulting R2 value for
VOC and NO2 is 0.475, indicating a likelihood of being similarly
influenced by setback controls. However, for HCHO and RH
the R2 value is 0.051, indicating the unlikeliness of a common
influence on those parameters.

To demonstrate the ability of our low-cost iAQ sensor
network to identify more complex pollutant evolution drivers,
we investigated CO2 levels in the graduate student office
(Figure 8). Predictably, we found that they directly correlated
with occupancy in the room. The highest levels of the day
occurred at 11 a.m. (510 ppm), followed by a decline in levels
while occupants left for lunch. We saw a mild increase in CO2

after the return of occupants from lunch. The lowest CO2 levels of
the day were observed between 7 p.m. and 8 p.m., after which they
begin to rise, corresponding to the ventilation system entering
night mode. This reiterates the trends seen in the gradual rise of
NO2 andVOCs in the space overnight. The plenum—which feeds
the exhaust air duct—showed consistently higher CO2 levels than
the desk height sensors.

DISCUSSION

Significance of Results
The initial results from the ECL space characterize a ventilation
system that is consistently unable to dilute indoor concentrations

of VOCs. The ECL deployment showed through the analysis
of VOC levels over time, and through space, that low-cost
distributed sensor clusters can be used to identify where
pollutants are being introduced in a simple ventilation supply
chain, even at a low spatial resolution. The investigation of iAQ in
the ECL was an initial investigation, and the broader deployment
used at the ACEE building can easily be used to refine the anlaysis
in future work.

We were able to derive meaningful insights about the spatial
and temporal evolution of air quality in ACEE. Focusing on
the spatial evolution of iEQ, the data describes a building
with internally driven VOC concentrations. More specifically,
VOC levels in ACEE were found to be highest at desk height
in the office. Finer resolution still, we found that the more
occupied part of the office consistently had higher VOC levels
than the less occupied part. With this spatial resolution of
data, we can begin to demonstrate evidence of a correlation
between occupancy and the evolution of VOC levels, which is
useful then to justify investigation into the exact mechanisms
that cause VOC levels to be affected by occupancy. The BMS
system of ACEE has no capacity to measure VOCs, so it
would require at least as many expensive unconnected handheld
sensors as spatial positions in our experiment—with operators
recording the data—to arrive at the same conclusion. The data
provided by our multi-parameter nodes also describe a building
with NO2 and VOC concentrations driven by ventilation set-
backs, and CO2 concentrations driven by both occupants and
ventilation set-backs. Again, the BMS system of ACEE has no
capacity for measuring NO2 or CO2. To arrive at the same
conclusions about periodicity and correlation, we would have
had to purchase another set of expensive gas sensors. If it
were possible to source the necessary handheld sensors with
data logging capability, independent of the associated expense,
there is still the issue of data aggregation and time-stamp
synchronization. In our Internet of Things (IoT) based solution,
aggregation and synchronization of data become standard parts
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FIGURE 6 | All iEQ parameters measured at the west location in the PhD student office (PhD West) over the full duration of the ACEE experiment (Except ozone).

FIGURE 7 | Average hourly values from the NO2 and VOC sensors at the PhD West location (A), demonstrating an R2 of 0.47, indicating the likelihood of a common

influence. Average hourly values from the HCHO and relative humidity sensors (B), R2 of 0.05, indicates an unlikely common influence.

FIGURE 8 | Average hourly CO2 levels in the graduate office of ACEE, for the whole experimental period.
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of the way the system works, rather than another task a
researcher must do before knowledge can be generated from data
streams. A distributed, IoT based system of low-cost iEQ sensors
dramatically lowers the barrier to collect data on the spatial and
temporal evolution of iEQ. We believe that this kind of system
opens the opportunity for a much larger base of researchers to
study this topic than have historically, and will empower that
body of researchers to study more buildings, more quickly, and
with less resources than traditional methods.

Infrastructure and Nodes
When trying to spatially and temporally evaluate the evolution
of iEQ parameters, the flexibility and ease of hardware revision
afforded by cloud connected microcontrollers creates important
new opportunities for deployment. The ability to tweak firmware
wirelessly is of great advantage when air quality is being
monitored in places that are not easily accessible. This proved
valuable in the ductwork of ACEE and the ECL. Likewise, when
many devices have been deployed through a space, all firmware
revisions can be handled remotely, removing the need to collect
and redeploy sensors, and minimizing the time spent on-site.
After catching the ozone sensor bug mentioned in section VOCs
in the Embodied Computation Lab Building, all 6 of the affected
nodes were quickly reprogrammed from our lab. The built-in
Wi-Fi radio makes deployments plug-and-play at most locations
on campus. Without the need for additional infrastructure, costs
were kept down; allowing us to buy more sensors and build more
nodes.

Particle’s cloud services limit each microcontroller to one data
publish per second. We wrote a simple encoding structure that
we used to publish around 10 sensor readings, per node, per
second. This made the maximum temporal resolution—every
second—independent of the number of sensors on each node,
invaluable as the number of sensors per node grew. This temporal
resolution is much higher than that of the BMS system in the
test buildings (∼1 reading per 2min). The primary limitation
of Particle.io’s infrastructure, that published data is not stored,
was overcome with relative ease by writing an aggregation and
archiving script. To this end InfluxDB proved to be a strong
choice for its time-series functionality, making querying archives
simple, and connectivity to graphing software like Grafana low-
effort. Being open source was very much in line with our desire
to keep costs as low as possible. Real-time visualization proved
useful for providing real-time feedback about the conditions in
the test buildings, and was very helpful for detecting circuitry and
connectivity issues.

We built sensor nodes at a cost that was consistently
an order of magnitude less expensive than handheld iAQ
measuring equipment, and less expensive than consumer iAQ

like Netatmo
TM

. Distributing sensors across multiple nodes was
a helpful design choice, prohibiting hardware failure of one node
from stopping all data collection at a particular location, because
they were physically on different circuits.

We endeavored to understand and develop the techniques
to describe the evolution of air quality from intake, through
building systems, and into occupied spaces, using data from
low-cost iEQ sensors. The deployment to the ECL had an

additional position to the three previously discussed. The 4th
position was in the exhaust air duct, which we chose to give a
more complete cross section of the evolution of air quality in the
space. Wi-Fi connectivity proved too problematic to maintain in
that part of the ventilation system, and we experienced hardware
failure of one of the two nodes at that location. We tried in
vain to improve connectivity in the duct by adding an external
antenna. The node that failed was one of our prototype bread
boarded nodes and a short circuit destroyed it. This confirmed
it was necessary to use only milled circuit boards for all our
deployments from then onwards.

In the ACEE building, we designed an experiment that would
increase the complexity and completeness of the ventilation
supply chain cross-section being studied. Three of our six spatial
positions were in an office, and availability of power outlets let
us run the nodes over the full experimental period. For the
other three, which were placed in the office’s air handling unit,
wired power could not be delivered, and we were limited to
collecting data for the duration allowed by lithium-ion batteries.
Our 10 ampere hour batteries lasted about 20 h per charge, and
we replaced them three times. The air handler is pressurized,
and we required the assistance of Princeton Facilities to shut it
down before entering the unit. This precluded us from swapping
batteries more often, and speaks the necessity of working closely
with the test building’s owner, operator, or managers for this kind
of research.

Calibration
For the purposes of our immediate research, we desired to test the
ability of low-cost hardware to monitor the spatial and temporal
evolution of indoor air pollutants. In this context, we believe it
was more valuable to have many sensors, relatively calibrated,
than it was to have a few absolutely calibrated sensors. The
makers of many low-cost iAQ sensors leave calibration to the
user, so it would require lab testing to determine response curves
to exact levels of gases. We theorized it would be possible to
spatially identify pollution sources in a ventilation supply chain
using low-cost iEQ sensors. However, since absolute values of the
iEQ parameters measured by these sensors are not known, it is
especially important to have well-correlated responses from like
sensors. To this end, we statistically synchronized the outputs
of like sensors as closely as possible. Looking at the difference
between the readings of sensors measuring the same conditions,
we found some sensors had offset error and some also had
gain error, necessitating comparative calibration. Though much
less literature is available discussing comparative calibration
techniques than absolute calibration techniques (Osborne, 1991),
we saw a strong improvement in relative precision after applying
our linear calibration functions to the sensor signals. To ensure
the time/expense of calibrating large numbers of sensor kits
was kept minimal, a python script was written to automate
this process of finding the calibration function of each sensor.
The time and expense required to obtain a dataset that can
be used to absolutely calibrate low-cost sensors is prohibitive
in some cases, and runs counter to the desire to use low-cost
equipment.

Frontiers in Built Environment | www.frontiersin.org 10 August 2018 | Volume 4 | Article 28

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Coleman and Meggers Sensing of Indoor Air Quality

CONCLUSIONS

We have developed a low-cost distributed sensor system for
studying the spatial and temporal evolution of iAQ parameters.
Most of the low-cost sensors used did not record at the accuracy
of ppm/ppb, so to maximize the usefulness of data we developed
an effective comparative calibration technique which was used to
quickly, and with no associated cost, synchronize sensor outputs.
After cross-calibrating the 7 iAQ signals from each of the 6
nodes, our methodology decreased the range between signals
from different nodes by 89.1% on average. The standard deviation
in these signals also decreased by 89.2% on average.

The ECL deployment characterized a building where the
evolution of VOC levels was internally driven, and illustrated
that low-cost distributed sensor clusters can be used to identify
where pollutants are being introduced in a simple ventilation
supply chain. The ACEE deployment increased the spatial
resolution of VOC monitoring, and found variation between all
spatial positions. The variation again described a building with
internally driven VOC evolution. Having a spatial resolution
Finer than the scale of a room, we detected a trend toward higher
VOC levels where more people are present. This deployment also
allowed us probe periodicity in iEQ evolution, which correlated
to occupancy and HVAC set-backs.

We demonstrate through deployments on Princeton’s campus
that low-cost, IoT based, iEQ sensing systems have the capacity
to detect spatial and temporal evolution of indoor environment
quality, making this kind of research more accessible. We believe
this kind of research will help close the knowledge gap of how
exterior and interior air quality are dynamically linked.

FUTURE WORK

Future work will include node refinement, larger deployments,
and further engagement with building managers as the research
serves as an important opportunity for using the campus as a
living laboratory, bringing research and practice together. We
have begun to purchase high-cost, factory calibrated gas sensors,
to comparatively calibrate our low-cost sensors to. Following this,
we plan to further investigate newmodes of calibration and refine
our workflow to quickly and easily calibrate large numbers of
sensors. These two steps will add the dimension of severity of
exposure to indoor pollutants to the dimensions of spatial and
temporal evolution. As our deployments increase in scale, we
also plan to broaden the iEQ parameters measured to include

metrics like carbon monoxide, and particulate (pm 2.5–10). We
may also include parameters of thermal, visual, and acoustic
comfort as well. Further development on the nodes will involve
the fabrication of weather resistant enclosures and the addition
of larger batteries, such that nodes can be used more reliably
indoors and out. With these new node designs, we will investigate
the full evolution of chemical concentrations from the outside of
buildings inwards, and investigate the ability of HVAC systems to
dilute or remove pollutants once they have entered the building
envelope. Our long-term goal is to generate a data set capable
of illuminating how effectively different ventilation systems and

schemas deliver health and well-being promoting environments
through the protection of iAQ.
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