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Dams are a critical infrastructure system for many communities, but they are also one of

the most challenging to inspect. Dams are typically very large and complex structures,

and the result is that inspections are often time-intensive and require expensive,

specialized equipment and training to provide inspectors with comprehensive access

to the structure. The scale and nature of dam inspections also introduce additional

safety risks to the inspectors. Unmanned aerial vehicles (UAV) have the potential

to address many of these challenges, particularly when used as a data acquisition

platform for photogrammetric three-dimensional (3D) reconstruction and analysis, though

the nature of both UAV and modern photogrammetric methods necessitates careful

planning and coordination for integration. This paper presents a case study on one

such integration at the Brighton Dam, a large-scale concrete gravity dam in Maryland,

USA. A combination of multiple UAV platforms and multi-scale photogrammetry was

used to create two comprehensive and high-resolution 3D point clouds of the dam and

surrounding environment at intervals. These models were then assessed for their overall

quality, as well as their ability to resolve flaws and defects that were artificially applied

to the structure between inspection intervals. The results indicate that the integrated

process is capable of generating models that accurately render a variety of defect

types with sub-millimeter accuracy. Recommendations for mission planning and imaging

specifications are provided as well.

Keywords: infrastructure inspection, computer vision, structure from motion, dam inspection, 3D scene

reconstruction, aerial robots, structural health monitoring, unmanned aerial vehicles

1. INTRODUCTION

Dams provide vital service and protection for many communities, however, their complex nature
poses many challenges for an efficient and reliable inspection. These infrastructure systems can
experience a range of problems during their service life, and improper operation and maintenance
result in major issues. Furthermore, dams can be deteriorated due to weathering, alkali-aggregate
reaction (AAR, or alkali-silica reaction, ASR), freezing and thawing, or other chemical reactions.
The Federal Emergency Management Agency (FEMA) publishes the Guidelines for Dam Safety
(U.S. Dept. Of Homeland Security, Federal Emergency Management Agency, 2004), and suggests
that formal inspections occur at least every 5 years. They also recommend informal, intermediate
and special inspections as needed. The Maryland Department of Environment also recommends
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that owners inspect their dams after extreme rainfall and formally
once every 5 years (Maryland Department of Environment,
1996). According to the American Society of Civil Engineers’
(ASCE) 2017 Infrastructure Report Card (ASCE, 2017) the
average age of the 90,580 dams in the United States is 56 years,
with 17% rated as high-hazard potential dams necessitating
additional inspections.

The conventional standard of practice requires a detailed
visual inspection not just of the primary structure, but of
the subsystems and the surrounding watershed as well. Dam
inspections often require expensive and specialized equipment
to provide inspectors access to difficult to reach regions of the
structure and the costs for these inspections typically range into
the hundreds of thousands of dollars, comprising an outsized
portion of annual operating budgets. The scale and nature of
dam inspections also introduce additional safety risks to the
inspectors. Typically, a limited number of photographs, and
occasionally videos, are captured to provide a visual record of the
current state of the structure. By themselves, these recordings are
not ideal data products, as reviewing them can be tedious and the
lack of spatial context can prove disorienting to data analysts and
engineers.

Among conventional nondestructive evaluation (NDE)
techniques, Impact-Echo has been widely used to investigate the
condition of concrete and extent of cracking in concrete dams
(Sack and Olson, 1995). This stress-wave propagation method is
one of the most promising NDE approaches due to the fact that it
only requires to access one side of a test member, and is capable of
determining member thickness as well as flaw depth while being
less sensitive to the heterogeneity of concrete in comparison to
other methods (e.g., ultrasonic) (Malhotra and Carino, 2003).
In the work by Olson and Sack (1995), the Spectral Analysis
of Surface Waves (SASW) method was utilized for evaluation
of surface damage and determining the depth of freeze/thaw
defects in a large concrete dam located on the Muskegon River in
western Michigan. For monitoring of a large hydraulic structure
affected by ASR, an Ultrasonic Pulse Velocity (UPV) method
was used, which enabled the identification of a major tensile
crack (Rivard et al., 2010). UPV is an effective way for detecting
internal cracking and other defects as well as changes in concrete
such as deterioration due to aggressive chemical environment
and freezing and thawing (Malhotra and Carino, 2003). In the
study by Colombo and Comi (2016), a bi-phase damage model of
an existing concrete arch dam subjected to ASR was generated by
taking into account the effects of both temperature and humidity
on the hydraulic structure through a heat diffusion analysis
and a moisture diffusion analysis, respectively. Although these
NDE methods can be used to further evaluate the condition of
the concrete structures, periodic visual inspection is still the
dominant method to assess the structural integrity of dams
and appurtenant structures (U.S. Dept. Of Homeland Security,
Federal Emergency Management Agency, 2004).

Recently, there have been advancements in the use of 3D
imaging systems for capturing the in-situ 3D state of civil
infrastructure systems (Fathi et al., 2015). The most widely
used technology for generating 3D models, or point clouds, is
Terrestrial Laser Scanning (TLS). A lower-cost alternative and

somewhat complimentary approach is to use photogrammetric
methods to extract 3D geometries from large sets of two-
dimensional (2D) digital images. In either case, the result is
a scale-accurate, high-resolution virtual model of a structure
and its surrounding areas. These digital models capture current
conditions of the entire structure that can be used for archival and
analytical purposes (Ghahremani et al., 2016; Jafari et al., 2017;
D’Altri et al., 2018). However, both 3D imaging approaches suffer
from the same access challenges that hinder conventional visual
inspections.

Unmanned aerial vehicles (UAV) are a disruptive innovation
(Christensen, 1997) with potential to transform traditional dam
inspection methodologies by expanding the capabilities of 3D
imaging in these environments. While UAV have been in use for
some time, their recent popularity is in part due to reductions
in hardware costs, improvements to software interfaces, and to
the expanded range of sensor payload options (Turner et al.,
2012). The portability, mobility, and low cost of UAV canmitigate
the need for expensive inspection access equipment and reduce
safety risks to inspectors (Khaloo et al., 2018). Furthermore, UAV
serve as an almost ideal data collection platform for modern 3D
reconstruction techniques. Critically, the nature of both UAV
and 3D reconstruction methods necessitate careful planning and
coordination to properly integrate and tailor these technologies
for dam inspection.

1.1. Prior Work on Modern Dam Inspection
The reduced accessibility of dams, both for uptake needs and for
their strategic nature, and the large amount of time needed for an
inspection by traditional methods do not facilitate direct visual
inspection. Therefore, novel methods that integrate modern
remote sensing tools, robotics and computer vision techniques
have been investigated in the past few years. In the work by Ridao
et al. (2010), an Autonomous Underwater Vehicle (AUV) was
designed to collect images from a hydroelectric dam which was
later used to generate photomosaic (with approximate resolution
of 1 pixel/mm) of the inspected area to help with the visual
inspection. González-Aguilera et al. (2008) studied the viability
of utilizing TLS systems to generate 3Dmodels of a large concrete
dam and further assessed its capability for structural monitoring.
However, due to the limited access for data acquisition, the final
model lacked the necessary completeness to capture the entire
dam. Berberan et al. (2011) studied using TLS for deformation
monitoring of the downstream face of the Cabril Dam in Portugal
using 3Dmodels generated at two different times for comparison
purposes. Although both of the aforementioned studies proved
the value of 3D modeling using TLS for dam inspection, they
were not able to capture the overall geometry and resolve the
fine-scale (1-mm) details needed for accurate visual inspection.

There have also been a series of recent studies on the use
of UAV for dam inspection. In the study by González-Jorge
et al. (2014), photogrammetric 3Dmodeling using UAV acquired
imagery was tested for the monitoring of dam breakwaters.
Recently, researchers have focused on using camera-equipped
UAV to facilitate dam visual inspection through 3D modeling
(Henriques and Roque, 2015; Ridolfi et al., 2017). In the work
by Ming-Der et al. (2016), the capability of rotary UAV platform
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for image data collection and later 3D model generation was
investigated for landslide dam monitoring. A full-scale test
structure was built and two sets of image data was collected
before and after damaging it, in order to mimic dam failure
due to severe flooding. The generated 3D data was later used to
identify the reduced volume upon dam failure. In a similar effort
by Zekkos et al. (2016), the image data of a collapsed uniform
earthfill dam, captured using a rotary UAV, was used to generate
a 3D model which later utilized for cross-sectional analysis of
the failure region. Hallermann et al. (2015) used 1600 high-
resolution aerial images to generate a 3D model of the Rappbode
Dam, the highest dam in Germany, as well as an orthomosaic
image of the downstream face. In the study by Oliveira et al.
(2014), an orthomosaic image of the downstream face of a
concrete dam, located in Portugal, was generated using 99 UAV-
acquired images. Later, a defect map was manually generated
by overlaying the marked anomalies on the orthomosaic image
in AutoCAD. In the recent work by Buffi et al. (2017), UAV-
based photogrammetry was used as a new tool for surveyors
to generate a complete 3D model of the Rideacoli Dam in
Italy. The generated model was compared against conventional
techniques such as total stations, TLS and Global Positioning
System (GPS) to assess the overall geometry captured through
3D photogrammetric approach. The evaluation results showed an
accuracy within 2 cm, but the surface resolution (point density)
of the model was estimated to be an average of one point every
1 cm2 which may be inadequate for detailed visual inspection of
smaller scale damages such as cracks.

1.2. Contributions of This Work
While UAV have previously been used to generate 3D
reconstructions of dams, a multi-UAV approach has yet to be
evaluated. Furthermore, the efficacy of such an approach for
representing small scale inspection details has not been evaluated,
rather only large volumetric analyses have been undertaken in
prior works. To address these needs, this paper presents a case
study on integrating multiple UAV platforms and 3D computer
vision for the visual inspection of a large gravity dam in the
United States. The results of this case study indicate how these
technologies can be integrated and evaluated for suitability in
inspection scenarios, and provide guidance to future efforts
with regards to the imaging and flight operations specifications
necessary to attain a desired level of 3D model quality.

In this study, a combination of multiple UAV platforms
and photogrammetric approaches was used to create two
comprehensive 3D point clouds of a dam and surrounding
environment that were then assessed for their relative quality
and ability to render artificially applied defects. The Brighton
Dam, located in Brookeville, Maryland and managed by the
Washington Suburban Sanitary Commission (WSSC), was
selected as the subject of this study (Figure 1). The dam was put
into service in 1944, and is representative of a large-scale gravity
dam in-service across the United States.

The key technical contributions of this work include the
development and assessment of a multi-UAV system for
generating massive, dense, and comprehensive 3D point clouds
(contain more than one billion points) of the targeted dam

system, as well as an evaluation of the imaging specifications
necessary to render small-scale inspection details. It is also the
first time, to the authors’ best knowledge, that a multi-scale
photogrammetric 3D reconstruction technique has been used
to capture the overall geometry of a large-scale complex gravity
dam, capable of resolving fine structural flaws on the order of 1
mm using multiple UAV platforms for data acquisition.

The details of the data collection procedure are presented
first, followed by reporting of the operations on two inspection
mission days. This is followed by a presentation of the data
processing and analysis methodologies. An evaluation of the
results of the methodological approach for the Brighton Dam
inspection is included as well. The paper concludes with a
summation of the findings of the research team and avenues for
future work in this domain.

2. DATA COLLECTION

2.1. Logistics and Planning
The goal of the field testing was to collect two comprehensive
sets of digital images to be converted into 3D point clouds,
using a combination of DSfM and rigid registration techniques.
The point clouds needed to have the point density—analogous
to resolution—necessary to resolve inspection details on the
millimeter scale while comprehensively capturing the overall
spatial context of the dam. To achieve this, image acquisition
in terms of camera positioning, the number of captured images,
adjacent image overlapping, and image quality were all carefully
considered.

A variant of the DSfM process previously developed by the
research team was chosen to generate 3D point clouds (Khaloo
and Lattanzi, 2016; Khaloo et al., 2018). This process, referred
to as Hierarchical Point Cloud Generation (HPCG), is designed
to integrate images captured at a wide range of standoff distances
from a structure into one complete model. From a data collection
standpoint, images were collected in networks of similar standoff
distances. The images from each network were then integrated
and merged into a global, multi-scale point cloud model, as
presented in the later sections of the paper.

Both fixed-wing and multi-rotor UAV platforms with
mounted cameras were used to acquire image networks. The
concept was to use the fixed wing UAV to capture the global
geometry of both the upstream and downstream faces of the
dam, and for the multi-rotor UAV to generate a series of oblique
image networks from varying standoff distances. UAV flight
planning that resulted in images with greater than 80% overlap
between adjacent photos was desired to minimize the ground
sample distance (GSD) and consequently maximize the spatial
resolution. The minimum standoff distance from the dam was
held to approximately 2.5 m. This corresponded to a pixel size
of approximately 0.0024 (mm/pixel) and a GSD of 0.6 mm in
the plane of the dam façade for the lowest resolution sensor used
during the project.

These images networks were collected over the course of two
distinct days, in order to simulate variances in field conditions
between inspection intervals and provide a basis for temporal
analysis between the subsequent models. Data collection on the
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FIGURE 1 | The Brighton dam.

first day was designed to comprehensively image the entire dam
and environs using a combination of three different UAV. Data
collection on the second day focused on an isolated section of the
dam that was selected for the defect analysis portion of the study,
as will be discussed later.

A custom-built fixed wing mounted with a Sony Alpha Series
5100 camera (24.3-megapixel) with a Sony E-PZ 16–50 mm lens
was used to capture a series of nadir angle shots that covered the
dam and the surrounding area. The utilized UAV’s airframe was
the Super Sky Surfer fixed wing expanded polyolefin (EPO) foam
frame. It wasmodified in order to custom fit various components,
such as the autopilot, GPS module, airspeed sensor, camera
payload, motor and batteries. The communication between the
UAV and ground control station (GCS) was done through radio
telemetry.

Two DJI Inspire 1 aircrafts mounted with 12-megapixel (MP)
cameras were used to separately capture oblique imagery of the
downstream and upstream portions of the dam. On the second
day of data collection, in addition to capturing the entire dam
structure, the mission was to focus on a specific region of the
dam, Bay #5 of the downstream facade with preinstalled targets,
which required maneuvering a UAV in a confined space. For
this task, a DJI Phantom 4 Pro with a 16-MP camera, a smaller
quadcopter aircraft, was selected due to its better maneuverability
and collision avoidance features relative to the other available
aircraft.

The logistics of flying multiple UAV over the two mission
days, along with the complexities of the dam environment,
meant that proper planning was essential. After the UAV pilots
confirmed the test site was not in a restricted airspace, and that

safe operations were feasible, the team began to target dates for
data collection.

The performance of UAV inspection imaging is primarily
dependent on operating conditions that do not impede piloting of
the UAV itself. In particular, cold weather was a key consideration
when identifying mission dates. The team determined that the
battery life of the selected UAV would not operate sufficiently
in temperatures below 5 degrees Celsius. Rain, snow, and high
winds were also weather phenomena that dictated the ability
to operate the UAV safely. Secondary to selecting mission days
with viable UAV operating conditions, radiometric conditions
that optimized the consistency of UAV imagery were preferred.
High contrast lighting, typically due to bright sun conditions,
can create strong shadows that degrade the performance of the
DSfM process (Remondino et al., 2014; Khaloo and Lattanzi,
2016). Having considerable changes in exposure, white balance
and lighting can cause inaccuracies at both image matching and
dense multi-view reconstruction stages (see section 3).

Recently, researchers (Gaiani et al., 2016) have developed
methods to lessen the impact of radiometric factors through
series of 2D image processing algorithms such as color
enhancement, image denoising, and image content enrichment
prior to initiating the 3D scene reconstruction. However, due
to the relatively high quality of the acquired images, these pre-
processing steps were not implemented in this study.

2.2. Day One Operation
Mission planner software was used to develop a flight plan for
the fixed wing nadir imaging that would allow the aircraft and
camera to operate autonomously. A lawnmower pattern for an
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area of 174,502 m2 (Figure 2) was selected, at an elevation of 75
m. A camera intervalometer frequency of 1.69 seconds/image was
specified, resulting in 558 nadir images (Figure 3). Total flight
time for the fixed wing UAV was 26 min.

The two rotary UAV were piloted manually, with a second
operator controlling the camera and gimbal in order to guarantee
the specified 80% overlap between images and maintain standoff
distances, specified to maximize the quality of the DSfM
reconstructions (Figure 4).

In total 2,020 images of the structure were captured using all
three aircrafts.

2.3. Day Two Operation
The second day of operations also focused on Bay #5, on the
downstream face of the dam. The goals of this day’s operations
were to generate a point cloud for comparisons with the point
cloud generated through Day One operations, as well as to
assess the quality of the UAV point cloud generation process for
resolving small-scale structural defects.

Prior to UAV flight and imaging inside Bay #5, a series
of controlled and simulated defects with known dimensions
were applied to the dam structure, serving as a benchmark for
reconstruction accuracy and analytical testing. Overall, three
different types of defects were applied: linear markings with
controlled thickness (Type 1), square surface area markings
(Type 2), and spherical volumes (Type 3).

Type 1 defects were designed to simulate cracking and crack-
like defects. Line thicknesses of 0.7 mm, 1 mm, and 3 mm widths
were applied, with lines varying in length from 12.7 to 152.4
mm for each width. The sets of lines were applied using both
black and white chalk on the sides of Bay #5 (Figures 5A,B).
Type 2 defects were designed to simulate localized area defects
such as concrete efflorescence, or staining due to corrosion.
These defects took the form of a series of square chalk markings
(Figure 5A) with dimensions varying from 645 to 1,6129 mm2.
Type 3 defects simulated volumetric changes, such as concrete
spall off. As physically removing portions of the dam structure
was not permissible, volumes were instead temporarily added
to the structure. Three Styrofoam hemispheres, with diameters
of 127, 203.2, and 304.8 mm (Figures 5C,D) were painted and
textured to have the visual appearance of concrete, and placed on
the lateral brace of Bay #5.

2.4. Laser Scanning
For comparative purposes, a phase-shift based Faro Focus3D laser
scanner was used to collect data from downstream face of the
dam. The quality of the data collection was set to 6x in order
to reduce the noise in the scan data and thus increases the scan
quality. Due to placement limitations, it was not possible to
capture the upstream face of the dam with the scanner. A total of
9 scans was collected andmerged using the Faro SCENE software.

3. 3D POINT CLOUD GENERATION

From the available algorithms for image-based 3D reconstruction
techniques, in this work a variant of the Structure-from-Motion
(SfM) process was chosen. SfM is based on the simultaneous

recovery of both the 3D geometry (structure) of a scene and
the camera pose (motion) using a sparse set of correspondences
between image features, and has been shown to produce results
comparable to laser scanners (Seitz et al., 2006; Remondino et al.,
2014).

Generally speaking, the first step in the SfM process is to
automatically detect keypoint feature descriptors (pixel locations
that are highly distinctive) such as the Scale Invariant Feature
Transform (SIFT) (Lowe, 2004) in each input image. Next,
feature descriptors are matched between pairs of images by
finding a correspondence in the second image using a nearest
neighbor similarity search (Muja and Lowe, 2014) to construct
the relationship of feature points between image pairs, called
tracks.

Because corresponding points in two images are subject to
the epipolar constraints (describe by the fundamental matrix),
filtering the matches by enforcing these constraints removes
false correspondences (Hartley and Zisserman, 2003). By using
the normalized eight-point algorithm (Hartley, 1997) in tandem
with the RANSAC (RANdom SAmple Consensus) (Fischler and
Bolles, 1981) paradigm, it is possible to minimize the number of
wrong matches across images.

Next, an initial image pair with a large number of matched
features and a long separation distance is selected and their
camera parameters are estimated using the 5-point algorithm
(Nistér, 2004), followed by triangulation of the matched
features using the polynomial method (Hartley and Sturm,
1997). Subsequently, new images are added by using the
correspondences between 3D points and image features through
the Perspective n-Point (PnP) algorithm with RANSAC and
Gauss-Newton optimization (Lepetit et al., 2009).

After the orientation of each image, bundle adjustment (a
nonlinear least-squares problem) is performed to minimize
the sum of re-projection errors using the Levenberg-Marquardt
algorithm (Wu et al., 2011). In this process intrinsic camera
parameters matrix, K, along with the pose of each particular
camera described by rotation, R, and the position of its optical
center,C, as well as the positions of the 3D pointsX are optimized
simultaneously.

∑

j

∑

i∈j

‖xij − (KjRj(Xi − Cj))‖
2 → min

Kj ,Rj ,Xi ,Cj

(1)

Where i ∈ j indicates that the point Xi is visible in image j,
and xij denotes the projection of 3D points Xi onto image j.
This procedure is repeated until an orientation is available for all
images within each imaging network. The result of this pipeline is
a relatively sparse set of 3D points, due to only utilizing extracted
feature points in the 3D reconstruction. For this study, Agisoft
PhotoScan software (Agisoft, 2014) was used to register images
and generate sparse 3D point clouds.

In order to densify the reconstructed models and produce a
model dense enough to capture small geometric changes, multi-
view stereo algorithms (Seitz et al., 2006) are used to capture
information from all pixels in the input 2D images. In this work,
the Semi-Global Matching (SGM) algorithm (Hirschmüller,
2008) was used to perform pairwise dense matching, as it has
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FIGURE 2 | Flight path for fixed wing UAV.

FIGURE 3 | Orthomosaic generated using the fixed wing imagery dataset.
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FIGURE 4 | Camera poses using oblique imagery dataset captured by rotary UAVs (downstream face).

FIGURE 5 | Controlled simulated damages: (A) 2D image of Type 1 and 2 defects; (B) 3D point cloud rendering of Type 1 and 2 defects; (C) 2D image of Type 3

volumetric defects; (D) 3D point cloud rendering of Type 3 volumetric defects.
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been shown to provide a high level of point density relative to
other methods utilized for densification (Remondino et al., 2014;
Khaloo and Lattanzi, 2016). The SGM algorithm uses a pixel-
wise matching cost for compensating radiometric differences
of registered images within the depth map estimation. Later,
individual depth maps are merged together through depth map
fusion technique to generate a single, globally consistent 3D
representation (Fuhrmann and Goesele, 2011). In this work,
SURE (SUrface REconstruction from imagery) (Rothermel et al.,
2012) software was used, which implements an adaptation of
the SGM algorithm that reduces processing time with low
memory consumption. This software is based on Libtsgm, which
prepares a core functionality for image rectification, dense
matching, image triangulation and a user interface for C/C++
programming.

The HPCG approach used in this study is designed for
seamlessly matching and integrating images with different scales,
viewpoints, and cameras into one single reconstruction (Khaloo
and Lattanzi, 2016). The HPCG process begins by first generating
3D point clouds separately for each image network, using the
aforementioned photogrammetric process. The point clouds
generated for each network are thenmerged together into a single
model using the Iterative Closest Point (ICP) algorithm (Besl and
McKay, 1992). The ICP approach refines the alignment assuming
an initial coarse registration of the 3D models is provided. This
initial alignment can be performed through pair-wise matching
of 10 manually selected point correspondences in order to reduce
the inherent sensitivity of the ICP algorithm regarding the initial
positions of the 3D models.

The rigid transformation between two sets of corresponding
3D point sets X = {x1, x2, ... , xN} and Y = {y1, y2, ..., yN}
extracted through utilizing kd-trees (Friedman et al., 1977; Muja
and Lowe, 2014), can be formulated as the solution of the least-
squares problem:

(R, t) = argmin
R,t

N
∑

n=1

‖(RXn + t)− yn‖
2 (2)

Where rotation matrix R and translation vector t can be derived
by arranging the point in two 3 × N matrices X̄ and Ȳ that have
x̄n and ȳn as columns:

x̄n = xn −
1

N

N
∑

n=1

xn, ȳn = yn −
1

N

N
∑

n=1

yn (3)

By computing the Singular Value Decomposition (SVD) of the
3×3 covariancematrix X̄ȲT ,U

∑

VT = SVD(X̄ȲT), the optimal
R and t are given by:

R = V





1
1

det(VUT)



UT , t =
1

N

N
∑

n=1

yn − R
1

N

N
∑

n=1

xn

(4)
These rotations and translations are then used to align the
individual point clouds for each network and form the complete
global model. The result is a multi-scale/resolution 3D model

that allows for higher resolution and emphasis in critical regions
of structures. This approach also increases the rate of image
registration during the SfM process, thereby improving model
accuracy, resolution and completeness.

3.1. Brighton Dam Model Generation
For this process to work properly there must be a global point
cloud that captures the overall geometry of the structure, and
into which the other point clouds are merged through ICP. In
this work, this geometry network was captured using the fixed
wing UAV. The second key criterion is that the standoff distances
between merged point clouds cannot vary excessively. This was
accomplished by capturing images at varying standoff distances
(range from 2.5 to 10 m).

4. CASE STUDY RESULTS

The images collected on Day One and processed using the
HPCG technique yielded a point cloud of 1,469,690,005 points
(Figure 6). The Day Two mission resulted in a model with
997,799,119 points.

4.1. Point Cloud Quality Analysis
Four metrics were used to assess the generated point clouds:
(i) local noise level, (ii) local point density, (iii) dimensionality
descriptors, and (iv) ability to resolve the controlled synthetic
defects applied on mission Day Two.

The noise level in a point cloud is defined as the residual
between each point and the best fitting plane computed on its

FIGURE 6 | Generated 3D Point cloud of the Brighton Dam: (A) Downstream

face; (B) Upstream face.
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local k-sized nearest neighbours (k-NN). Digital image noise,
radiometric parameters, nonconformity of the neighbourhood
of a point, imperfect data registration, and DSfM reconstruction
inaccuracies can all affect this characteristic.

This noise residual is defined as the lowest valued eigenvalue
of the covariance matrix for a local neighborhood around a point
in a cloud. For the k points that form the neighborhood of a 3D
point pi in a point cloud, the 3×3 covariance matrix,C, is defined
as (Hoppe et al., 1992):

C3×3 =
1

k

k
∑

i=1

(pi − p̄)T(pi − p̄); p̄ =
1

k

k
∑

i=1

pi (5)

where p̄ is the arithmetic mean within pi’s neighborhood
(Npi ) and C represents a symmetric positive-definite matrix.
By performing Singular Value Decomposition (SVD) on the
covariance matrix, it is possible to compute the eigenvectors
V (v2, v1 and v0) and their corresponding eigenvalues λ (λ2 ≥

λ1 ≥ λ0). Within this approach v0 approximates the point’s pi
normal, while λ0 quantitatively describes the variation along the
normal vector to provide an estimation of the local noise level
(i.e., roughness). In addition, the normalized surface variation
or change of curvature (σ ) can be defined as λ0

λ2+λ1+λ0
, which is

invariant under rescaling (Pauly et al., 2002). For this study a
value of k=30 nearest neighbour points was empirically specified
for roughness calculations (Figure 7). Utilizing k-NN rather than
the fixed distance neighbourhood (FDN) avoids the problem of
point density variation within point clouds (Samet, 2006; Khaloo
and Lattanzi, 2017).

Although surface variation (σ ) can be used to estimate the
change in curvature, as defined by Pauly et al. (2002), for
local shape analysis other fundamental quantities defined in
differential geometry such as local Gaussian, mean and principal
curvature values were taken into account (Crosilla et al., 2009).

The second metric, local point density, is a characteristic
analogous to pixel resolution in 2D digital images. It corresponds
to the ability of a 3D point cloud to resolve structural defects
and small-scale details. It also provides insight in the variations
in point cloud quality that stem from the multi-UAV imaging
approach. The local density ρ at a point pi is defined as

ρ = k+1
4
3πr3

k−NN

, where rk−NN is the radius of the spherical

neighbourhood of the k closest neighbours of a 3D point. In this
study, rk−NN was set to 0.62 cm to achieve an enclosing volume
of 1 cm3.

For a given 3D point pi and its k closest neighbourhood, the
derived eigenvalues (λ2 ≥ λ1 ≥ λ0) using the described method
can directly be exploited to estimate the order/disorder of 3D
points within the local neighbourhood (Weinmann et al., 2014).
In order to achieve this, a series of local features were defined to
characterize the geometrical representation of pi and its k-NN as
linear (1D), planar (2D), or volumetric (3D) features.

Dimensionality features represent by linearity Lλ, planarity
Pλ, and scattering Sλ can be defined as:

Lλ =
e2 − e1

e2
(6)

Pλ =
e1 − e0

e2
(7)

Sλ =
e0

e2
(8)

6λ = e2 + e1 + e0 (9)

Where e2, e1 and e0 are the normalized eigenvalues
derived by dividing the three eigenvalues λ2, λ1 and λ0

by their sum 6λ. By choosing e2 as the denominator, the
dimensionality features can be considered as the probabilities
(since Lλ + Pλ + Sλ = 1) of each point to be labelled as 1D,

FIGURE 7 | Estimated noise level (lowest eigenvalue λ0) for Bay#5; low to high noise level ranges from dark to light intensity.
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2D, or 3D (Weinmann et al., 2014). These features can be
used as metrics to evaluate the quality of the point clouds
in reconstructing geometrically accurate models. Figure 8

illustrates a representation of the aforementioned dimensionality
features for Bay#5. Since this part of the dam consists of
planar surfaces, it was expected to have higher values of Pλ in
comparison with other dimensional features, indicating with a
high probability that the majority of the points can be labeled as
2D features (Figure 8). Furthermore, the sum of the eigenvalues
6λ can represent the total amount of variation in all three
directions, an additional evaluation of the level of noise in the
3D point clouds (Weinmann et al., 2014).

The last evaluative metric was to measure the defects applied
to Bay #5 during the second mission day, in the resulting 3D
point cloud. Both Type 1 and 2 simulated damages weremanually
measured from the point cloud models and the results was
compared against the field measurements. In order to lessen
the error, the Euclidean distance measurement for each pairwise
point selection was repeated 10 times and the average values
were compared against the ground-truth values measured in the
field.

Volumetric defects (Type 3) weremeasured by using the direct
cloud-to-cloud (C2C) distance estimation technique (Girardeau-
Montaut et al., 2005) to track and quantify geometrical changes
in the already registered 3D point clouds. Upon finding the
closest point correspondences in the two registered clouds, the
Hausdorff distance (Huttenlocher et al., 1993) was utilized to find
the distance between points in the first dataset and their closest
points in the second dataset. Given two finite point sets P =

{p1, p2, ..., pn} and Q = {q1, q2, ..., qm}, the two-sided Hausdorff
distance H(P,Q) is defined as:

H(P,Q) = max(max
p∈P

min
q∈Q

‖p− q‖, max
q∈Q

min
p∈P

‖q− p‖) (10)

Note that this notation of distance is purely geometric and does
not make any assumptions on the uniformity of the point cloud
density. By using the Hausdorff distance method, it was possible
to automatically estimate the radius of the hemispheres used
in experimental testing, which was then used to estimate their
volumes. This measurement process was not intended to serve as
a general-purpose volumetric analysis technique.

4.2. Point Cloud Analysis Results
The results of the point cloud quality analysis are shown
in Table 1. Model density from the January UAV flights was
substantially higher than those generated through TLS or during
the April flights. The differences between the two HPCG models
is likely due to the change in sensor resolution between mission
days and changes in the flight protocols, as the April flights
focused on Bay #5. Average roughness and curvature values
for the three models are all of a similar order of magnitude,
indicating relatively similar 3D geometric accuracy. As can be
seen, the point cloud generated by the laser scanner consists
of significantly fewer points than the models generated through
HPCG. This was due to the limited options for scanner
placement, particularly with respect to the higher elevation
regions of the dam facade and the upstream facade. Point cloud

quality analysis for the Bay #5 region of the dam are shown in
Figure 9 and Table 2.

These results highlight the advantages of using a UAV for
point cloud generation. Both HPCG models had over twice
the density and mean roughness values less than half those
of the laser scanner. These performance improvements can be
attributed to the ability of the UAV to capture high-resolution
images at the higher elevations of the bay, whereas the laser
scanner could only scan those areas from the ground. Compared
to the overall point cloud models, the results for the HPCG
models are more similar for Bay #5.

Table 3 presents the analysis of the local dimensionality
features in the Bay#5 region of the model. These results
indicate that, by utilizing the multi-scale HPCG approach in
tandem with smaller quadcopter to capture image data from
inside of the targeted part of the dam, it was possible to
reconstruct the planar surfaces with a higher accuracy (higher
planarity mean value). The Generalized Extreme Value (GEV)
probability density function (PDF) was determined to be the
most accurate representation of the dimensionality features
distribution characteristics and the presented mean values are
based on the estimated GEV parameters.

In addition, similar to both mean roughness and change of
curvature values, the total variation metric also illustrates a lower
noise level in the image-based model generated using the data
from April 2017.

In order to assess how image resolution affectedmodel quality,
the images captured via UAV during the April mission were
downsampled to 50, 25, and 12.5% of the original image size
using the bicubic image interpolation. The downsampled images
were then used to regenerate point clouds of Bay #5. The resulting
model assessments are shown in Table 4.

With a loss of image resolution, the density of the models
was reduced, as expected. This reduction did not scale linearly
with the number of pixels, but quadratically. Notably, the average
cloud roughness increased with a reduction in image resolution,
as can be seen in the images disparity maps (Figure 10). This
suggests that the reduced number of feature points used for
SfM reconstruction along with excessive noise within the depth
map estimation and fusion (Figure 10) affected the accuracy and
quality of the resulting dense 3D point clouds.

Figure 11 illustrates the changes in curvature values (σ ) for
models generated using different images resolutions. By using
lower resolution images, the surface variation became more
evenly distributed in the generated 3D models, which indicates
higher local noise level. For instance, the curvature values for the
model based on the full resolution (16 MP) images were more
skewed toward lower values; in contrast, the model based on the
downsampled (2 MP) images had a relatively even distribution
across curvature values, consequently resulting in a higher mean
value (Table 4).

To further compare the quality of the generated 3D models,
the dimensionality features were again utilized (Table 5). A
decrease in image resolution corresponded to a reduction in
planarity values, which suggests reduced geometric accuracy. The
increase in the total variation also illustrated the excessive noise
levels in the models generated using lower resolution images.
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FIGURE 8 | Illustration of the three dimensionality features for Bay#5. Color bar represents the normalized value of each descriptor.

TABLE 1 | Point cloud quality analysis.

3D model Number of points Local point density Mean roughness Mean change

(points/cm3) (mm) of curvature

TLS (April 2017) 63,688,823 26.97 2.22 0.026

HPCG (January 2017) 1,469,690,005 53.94 1.47 0.029

HPCG(April 2017) 997,799,119 29.58 1.01 0.023

FIGURE 9 | Local point density for Bay#5; low to high density ranges from dark to light intensity: (A) Day One dataset; (B) Day Two dataset.

TABLE 2 | Point cloud quality analysis for Bay #5.

3D model Number of points Local point density Mean roughness Mean change

(points/cm3) (mm) of curvature

TLS (April 2017) 28,356,650 20.81 2.21 0.036

HPCG (January 2017) 108,286,272 56.19 0.92 0.026

HPCG (April 2017) 159,579,984 69.31 0.58 0.018

It is notable that there was a correlation between the local
noise level indicators (such as total variation and roughness)
and the scattering (Sλ) dimensionality feature. Scattering can
be used to label the points located on higher order surface

such as edges, where an increase in local noise levels are most
likely to occur (see Figures 7, 8). The previous analysis reported
in Table 3 also indicated the same relation between these
metrics.
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TABLE 3 | Point cloud quality analysis for Bay #5 using mean values of dimensionality features.

3D model Number of points Linearity Planarity Scattering Total variation

TLS (April 2017) 28,356,650 0.1864 0.5702 0.1071 1.0180e-04

HPCG (January 2017) 108,286,272 0.3113 0.6875 0.0425 2.2326e-05

HPCG (April 2017) 159,579,984 0.2559 0.7533 0.0359 1.1052e-05

TABLE 4 | Bay #5 3D point cloud generation using various image resolutions.

Image resolution Number of points Local point density Mean roughness Mean change

(megapixel) (points/cm3) (mm) of curvature

16 MP 159,579,984 69.31 0.58 0.018

8 MP 49,111,922 17.78 1.34 0.032

4 MP 12,820,420 4.71 2.41 0.047

2 MP 3,841,665 1.38 4.33 0.104

FIGURE 10 | (A) Original input image; (B) depth map reconstructed for the 16 MP image; (C) depth map reconstructed for the 8 MP image; (D) depth map

reconstructed for the 2 MP image. Each depth value encodes the distance from the camera center to the geometry.

Figure 12 shows the planarity (Pλ) feature for the generated
models based on different image resolutions. Using lower
resolution images resulted in a lack of accuracy in generating the
relatively planer surfaces in Bay#5.

4.3. Evaluation of Flaw Resolving
Capabilities
Tables 6, 7 summarize the comparisons between the ground-
truth dimensions of the Type 1 defects and the dimensions
measured in the point cloud. For the 1 and 3 mm defect
widths, the point clouds generated using 16 MP images were
able to resolve all of the flaws to a degree that highly accurate

measurements were possible. However, as image resolution
decreased, measurement accuracy decreased. For models using
4 MP or less in resolution, most flaws were not resolved at
all in the models and so measurements were not possible.
None of the models were able to reconstruct the 0.7 mm
flaws.

These results suggest that a point density somewhere between
18 points/m3 and 69 points/m3 was necessary to guarantee the
reconstruction of Type 1 flaws in the model. During these tests,
the standoff distance from the UAV to the defects was held at
approximated 2.5 m. Given the 16 MP image resolution and the
sensor dimensions of the DJI Phantom 4 camera, each pixel in the
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FIGURE 11 | Comparison of curvature values in models generated using different image resolutions.

TABLE 5 | Bay #5 model analysis using mean values of dimensionality features.

Image resolution Number of points Linearity Planarity Scattering Total variation

(megapixel)

16 MP 159,579,984 0.2559 0.7533 0.0359 1.1052e-05

8 MP 49,111,922 0.2325 0.7272 0.0399 3.6032e-05

4 MP 12,820,420 0.2426 0.6962 0.0666 1.3787e-04

2 MP 3,841,665 0.2458 0.5869 0.1645 5.2111e-04

FIGURE 12 | Comparison of planarity values in models generated using different image resolutions.
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TABLE 6 | Measurement accuracy of 1 mm width type 1 defects at various image

resolutions.

Ground truth defect length

(mm)

Length measured in point cloud (mm)

16 MP 8 MP 4 MP 2 MP

12.7 13 – – –

25.4 27 23 – –

76.2 73 72 – –

152.4 150.2 142 – –

TABLE 7 | Measurement accuracy of 3 mm width type 1 defects at various image

resolutions.

Ground truth defect length

(mm)

Length measured in point cloud (mm)

16 MP 8 MP 4 MP 2 MP

12.7 13 10 – –

25.4 27 23 – –

76.2 73 72 68 –

152.4 151 142 139 –

TABLE 8 | Measurement accuracy of type 2 defects at various image resolutions.

Ground truth defect

length (mm × mm)

Size measured in point cloud (mm × mm)

16 MP 8 MP 4 MP 2 MP

25.4 × 25.4 26 × 25 26 × 24 – –

50.8 × 50.8 51 × 50 52 × 51 – –

76.2 × 76.2 76 × 76 76 × 76 62×70 –

101.6 × 101.6 100 × 100 97 × 100 98×93 –

127 × 127 127 × 127 125 × 125 121 × 125 –

images corresponded to approximately 1 mm in the plane of the
defects.

The measurements for Type 2 defects are shown in Table 8.
For these defects, the models derived from either the 16 MP
(69 points/m3) or the 8 MP (18 points/m3) images were able
to accurately resolve the flaws. However the 4 MP and 2 MP
image models were not able to consistently resolve defects. This
corresponds to a minimum pixel size of 1.5 mm in the plane of
the defect.

Themeasurement results for the Type 3 volumetric defects are
shown in Figure 13 and Table 9. For this test, all levels of image
resolution were able to generate models that captured all three
volumetric changes. However, the reduction in image resolution
resulted in systematic under prediction of volumemeasurements.

4.4. Limitations and Sources of Error
The process used to generate the point clouds has two key
potential sources of error. The first is the possibility of
misalignment of cameras at the image matching stage. The
second is possible misalignment of individual networks models
during ICP registration. The quality and comprehensiveness
of the point clouds was also impacted by the inability of the
UAV to access certain regions of the structure. Specifically,

TABLE 9 | Measurement accuracy of Type 3 volumetric defects at various image

resolutions.

Ground truth defect

length (mm3)

Volume measured in point cloud (mm3)

16 MP 8 MP 4 MP 2 MP

536,265 430,145 367,809 190,852 166,519

2,196,540 2,113,300 2,032,190 18,552,990 1,526,810

7,413,330 7,210,900 7,068,580 6,65,2890 6,253,830

Mean error 8.8% 14.5% 30.1% 38.4%

FIGURE 13 | Volumetric 3D change analysis.
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certain interior regions and underwater sections of the dam
were not imaged, and thus not included in the point cloud. It
is recognized that both of these areas would be critical for any
inspection and assessment, and other methods of 3D imaging,
such as handheld photogrammetry or laser scanning could be
used in these circumstances. Furthermore, photogrammetric
reconstruction techniques are sensitive to severe changes in
lighting and occlusions. In this case study, UAV flight operations
were restricted to minimize this effect, and further study on the
impact of radiometric changes on model quality are warranted.
Lastly, it is worth noting that the large number of points
generated through this process (numbered in the billions)
inhibited rendering and visualization. Out-of-core memory
processes that decouple rendering efforts from the scale of the
data in order to overcomememory limitations, are recommended
to allow higher rendering frame rates and higher rendering
quality during user interactions.

5. CONCLUSIONS

This study highlights the potential of using a combination of
UAV and photogrammetry for the inspection and assessment of
dam infrastructure. Ultimately, the goal was to generate models
with sufficient density and quality to resolve a variety of critical
inspection details at the millimeter scale. The mission protocols
specified to achieve this were flight path planning that guaranteed
sufficient image overlap at multiple standoff distances, as well
as a minimum standoff distance that corresponded to a pixel
size of 1mm, to guarantee reconstruction of defects at that
scale. The assessment of the resulting models indicates that

these specifications resulted in point clouds capable of rendering
millimeter scale details, while lower density models generated
with larger pixel sizes were often unable to resolve the artificial
defects.

Future work seeks to study how to merge other sources
of 3D point clouds, such as laser scanning and hand-
held photogrammetry, with the model generated via UAV.
Furthermore, using AUV as a platform to collect imagery dataset
from underwater sections of the dam can certainly improve
the overall completeness of the generated 3D model and has
the potential for future investigation. Additionally, the process
should be validated for a variety of infrastructure material
types, and under varying radiometric conditions, to assess the
reliability and consistency of the presented UAV inspection
approach.
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