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This work aims to introduce a new layered approach to the nonlinear analysis of initially

straight Euler-Bernoulli beams by the Boundary Element Method (BEM). The beam is

studied in the context of both geometrical and material nonlinearity. The governing

differential equations, derived by applying the principle of minimum total potential energy,

are coupled and nonlinear, while the boundary conditions are the most general and may

include elastic support or restraint. The boundary value problem, regarding the axial and

transverse displacements, is solved using the Analog Equation Method (AEM), a BEM

based method, together with an iterative procedure. Although a direct solution to the

geometrical nonlinear problem has already been presented, in this work an alternative

layered analysis is proposed. The discretization is applied in both the longitudinal

direction and the cross-sectional plane, and an iterative process is commenced. First,

initial fictitious load distributions are assumed at beam’s each cross-section, and the

displacements, as well as their derivatives, are computed using the AEM. Second,

the two stress resultants, i.e., the axial force and bending moment, are evaluated by

appropriate integration over the cross-section. In the end, the derivatives of the stress

resultants are evaluated, and the equilibrium of the governing equations is checked.

If the equilibrium is satisfied, the process is terminated. Otherwise, the fictitious load

distributions are updated, and the procedure starts over again. Several representative

examples are studied, and the results are compared with those presented in the literature,

validating the reliability and effectiveness of the proposed method.

Keywords: beams, geometrical nonlinear analysis, material nonlinear analysis, Boundary Element Method (BEM),

layered analysis, shape memory alloys (SMA)

INTRODUCTION

Beam elements have historically found applications in the process of structural modeling and
analysis in a wide range of engineering disciplines, from civil (e.g., buildings, bridges) tomechanical
(e.g., shafts, wind turbine parts, nuclear reactor components) to aeronautical (e.g., aircraft wings,
spacecraft parts) (Hodges, 2006) to name only a few. For this reason, considerable research has
been directed at studying the static and dynamic structural behavior of beams. Over the years, the
exponential growth in computational power in conjunction with significant advances in numerical
methods have led tomore sophisticated simulations; the initially simplifyingmodeling assumptions
have been gradually diminished, and more realistic nonlinear formulations are employed.

In general, two conventional sources of nonlinearity may affect the response of structural
elements: material and geometrical (Reddy, 2005a). On the one hand, material nonlinearity stems

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2018.00052
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2018.00052&domain=pdf&date_stamp=2018-10-09
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gtsiatas@upatras.gr
https://doi.org/10.3389/fbuil.2018.00052
https://www.frontiersin.org/articles/10.3389/fbuil.2018.00052/full
http://loop.frontiersin.org/people/438310/overview
http://loop.frontiersin.org/people/605552/overview
http://loop.frontiersin.org/people/161817/overview


Tsiatas et al. A Layered BEM Nonlinear Analysis

from the inherent nonlinear constitutive behavior of several
materials. In this case, the stress-strain relation may be a function
of the combined or individual stress, strain or strain rate andmay
also be path dependent about the load history. Nonlinearmaterial
behavior in solid mechanics can be rate-independent or rate-
dependent (Taylor, 1996). On the other hand, the geometrical
nonlinearity results from maintaining the square of the slope in
the strain-displacement relations (Katsikadelis and Tsiatas, 2003).
In this case, the transverse deflection affects the axial force, and
the resulting governing equations are coupled nonlinear with
variable coefficients.

An analytical solution to the mathematical model describing
the behavior of the beam cannot be obtained when general
boundary conditions are imposed at its ends; therefore, a
numerical approach should be adopted (Katsikadelis and
Tsiatas, 2003). The most widely used numerical methods in
Computational Mechanics are the Finite Element Method
(FEM), the Boundary Element Method (BEM), and the Finite
Difference Method (FDM) (Banerjee and Butterfield, 1981;
Becker, 1992). Firstly, FDM can be applied to any system of
differential equations by substituting the differential operators
with algebraic ones at representative nodes after the problem
domain discretization. It is the simplest of the three methods
and relatively easy to program. However, it is not suitable for
problems with irregular domain geometries and rapidly changing
variables, due to the difficulty of establishing a non-uniform grid
of nodes. Secondly, according to FEM, the domain of the solution
is decomposed into a finite number of smaller subdomains, called
finite elements. On each subdomain the behavior of the whole
body is approximated, and then continuity and balance rules
are applied at the boundaries of the elements to obtain the
solution for the entire domain (Plevris and Tsiatas, 2018). FEM
is appropriate for problems with geometrical complex solution
domains. However, discretizing the whole body results in a large
number of finite elements leading to significant computational
cost. Lastly, BEM, applying the concept of the Fundamental
Theorem of Calculus, transforms the governing differential
equations into equivalent integral ones, thus transferring the
solution domain to its boundary, where a discretization scheme
is then established. In this respect, the dimension of the problem
is reduced by one order while the number of unknowns is also
significantly reduced (Plevris and Tsiatas, 2018). Moreover, the
BEM allows the evaluation of the derivatives of the solution
at any point of the original solution domain (before the initial
integration), whereas it is suitable for the analysis of structures
with complex boundaries and geometric peculiarities, such as
cracks (Katsikadelis, 2016).

To the problem at hand, FEM has been adopted by many
researchers for the materially and/or geometrical nonlinear
analysis of beams. In particular, Mondkar and Powell (1977),
examined structures accounting for large displacements with
finite strains and formulated the incremental equations ofmotion
using the principle of virtual displacements. Argyris et al.
(1978a,b, 1979), to circumvent the complications emerging from
the noncommutative nature of rotations about fixed distinct axes,
presented the concept of semi-tangential rotation in the matrix
displacement analysis of geometrically nonlinear structures.

Bathe and Bolourchi (1979) studied the behavior of a beam
element undergoing large displacements and large rotations
formulating a total Lagrangian and an updated Lagrangian
approach. Yang and McGuire (1986) presented a nonlinear
analysis of beams with a doubly symmetric cross-section
employing an updated Lagrangian finite element formulation.
Cai et al. (2009) performed a large deformations-large rotations
finite element analysis of a three-dimensional frame with
members of arbitrary cross-sections by the nonlinear Von
Karman theory of deformation.

Furthermore, linear and nonlinear analysis of beams has also
been performed employing BEM. Banerjee and Butterfield (1981)
and Providakis and Beskos (1986) employed BEM in order to
solve the static and dynamic problems of Euler-Bernoulli beams,
respectively. Further, the Analog Equation Method (AEM), a
numerical technique based on BEM, was applied to the nonlinear
static (Katsikadelis and Tsiatas, 2003) and dynamic (Katsikadelis
and Tsiatas, 2004) flexural analysis of beams with variable
cross-section. Sapountzakis and Mokos (2008) and Sapountzakis
and Panagos (2008) studied the nonlinear flexural behavior of
beams of doubly symmetric constant and variable cross-section
using BEM and adopting the assumptions of the Timoshenko
beam theory. Tsiatas (2010) examined the nonlinear problem of
non-uniform beams resting on a nonlinear elastic foundation
presenting a boundary integral equation solution. Sapountzakis
and Dourakopoulos (2010) formulated a BEM solution to
the moderate large deflections flexural-torsional analysis of
Timoshenko beams of a constant cross-section of arbitrary shape
under general boundary conditions. Sapountzakis and Dikaros
(2011) adopted a BEM methodology to examine the effects of
warping and rotary inertia to the moderate large deflections and
twisting rotations flexural-torsional dynamic analysis of beams.

In formulating a one-dimensional element for the linear or
nonlinear analysis of beams, two considerations have to be made:
First, the prediction of the cross-sectional response. Second, the
integration of the cross-sectional response over the length of the
element to obtain its response regarding the available degrees of
freedom (Izzuddin et al., 2002). Although the latter consideration
has been extensively presented in the previous works, an open
issue remains regarding the former consideration.

As far as cross-sectional response is concerned, three main
approaches have been widely adopted (Izzuddin et al., 2002):
According to the first one, explicit expressions for cross-sectional
response parameters (e.g., stress-strain functions) are provided.
The second one utilizes interaction relationships based mainly
on principles of plasticity. The third approach, known as the
fiber approach, utilizes a cross-sectional decomposition into a
finite number of subdomains adequately small to readily evaluate
stresses and strains at representative points. The fiber approach
is the most general, as it can be applied even in cases where
the stress-strain relation is not a priori known, or even if a
mathematical function can not explicitly describe it, but only by
sets of experimental data.

In this respect, the fiber model has been extensively applied
in the analysis and design of beams. Kaba and Mahin (1984)
first introduced a beam element divided into fibers for the
analysis of reinforced concrete or steel members assuming
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that plane sections remain plane. They used both force and
displacement shape functions to compute the element flexibility
and the element-resisting forces, respectively. Filippou et al.
(1991) presented a FEM solution for the problem of reinforced
concrete members under cyclic loading conditions that induce
biaxial bending and axial force. Zbiciak (2010) presented
a formulation of an initial-boundary-value problem for the
Euler-Bernoulli beam made of pseudoelastic shape memory
alloy (SMA). A 2D finite difference discretization scheme
was established in the longitudinal sense and on the cross-
sectional plane dividing the cross-section into layers of constant
thickness. More recently, Sapountzakis and Kampitsis (2017)
developed a hybrid domain BEM formulation for the geometrical
nonlinear analysis of inelastic Euler-Bernoulli beams resting on
viscous inelastic Winkler foundation, employing an inelastic
redistribution modeled through a fiber approach. Finally, Tsiatas
et al. (2018) presented a first step toward the solution of the
problem presented in this work, employing a fiber approach to
the large deflections analysis of beams by BEM. In this solution,
the material nonlinearity of the beam was not considered.

In this work, a layered approach to the nonlinear analysis
of initially straight Euler-Bernoulli beams by BEM is presented.
The beam is studied in the context of both geometrical and
material nonlinearity. It must be noted that in the current
analysis, the cross-sections under consideration are rectangular.
In this case, the fiber model can be reduced to a layered
model; more specifically, fibers can be substituted by layers of
constant thickness. The formulation of the problem is based
on the displacements, and the equations of equilibrium, derived
from the principle of minimum total potential energy, are
coupled and nonlinear. The solution to the system of those
equations is achieved using AEM according to which the
obtained equations of equilibrium are substituted by the same
number of uncoupled linear equations (Analog Equations) of the
same order of differentiation for each displacement component,
i.e., a second order for the axial deformation and fourth order for
the transverse deformation respectively. It is worth noting that,
from a physical point of view, each substitute linear equation
describe the response of a beam with unit stiffness, for the
axial and bending problem respectively, subjected to unknown
fictitious loads (Katsikadelis and Tsiatas, 2003). Although a direct
solution to the problem at hand has already been presented
by Katsikadelis and Tsiatas (2003), in this work, an alternative
layered analysis is proposed. In this case, a discretization is
applied in both the longitudinal direction and the cross-sectional
plane, and an iterative numerical process is commenced. First,
initial fictitious load distributions are assumed at beam’s each
cross-section and the displacements and their derivatives are
computed using AEM. Consequently, the stress resultants are
evaluated by appropriate integration over the cross-section. In
the end, the derivatives of the stress resultants are evaluated,
and the equilibrium of the governing equations is checked. If
the equilibrium is satisfied, the process is terminated. Otherwise,
the fictitious load distributions are updated, and the procedure
starts over again. Several representative examples are examined
considering not only geometrical nonlinearity but material
nonlinearity as well. The reliability and effectiveness of the

FIGURE 1 | Forces and moments acting on the element.

proposedmethod are validated by comparing the obtained results
with those presented in the literature or produced by other Finite
Element models.

STATEMENT OF THE PROBLEM

Kinematics
An initially straight beam of length L is considered. The beam
has variable axial and bending stiffness EA and EI (Figure 1),
respectively, which may result from the variation of the cross-
section,A = A(x) and I = I (x), and/or from the inhomogeneous
nature of the linearly elastic material, E = E(x). The x axis
of the beam is assumed to coincide with its neutral axis. The
beam is subjected to the combined action of the distributed
loads px = px(x) and pz = pz(x), along with the x and z-
direction, respectively, and it is bent in its plane of symmetry xz
(Katsikadelis and Tsiatas, 2003).

The bending of the beam is studied in the context of the Euler-
Bernoulli beam theory, according to which plane cross-sections
of the beam perpendicular to the beam axis before deformation
remain (i) plane, (ii) rigid, and (iii) perpendicular to the
(deformed) axis after deformation. Following these assumptions,
the displacement field is written as.

ū
(

x, y, z
)

= u (x) − zw,x (x) , (1)

v̄
(

x, y, z
)

= 0, (2)

w̄
(

x, y, z
)

= w(x), (3)

where (�) ,x denotes differentiation with respect to x; ū, v̄, w̄ are
the displacements of an arbitrary point of the beam along the
x, y, z axes respectively and u,w are the displacements of a point
on the neutral axis.

The components of the three-dimensional Green-Lagrange
strain tensor are given (Reddy, 2005a)

εxx = ū,x +
1

2

[

(ū,x)
2 + (v̄,x)

2 + (w̄,x)
2
]

, (4)

εyy = v̄,y +
1

2

[

(

ū,y
)2

+
(

v̄,y
)2

+
(

w̄,y
)2

]

, (5)
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εzz = w̄,z +
1

2

[

(ū,z)
2 + (v̄,z)

2 + (w̄,z)
2
]

, (6)

γxy = 2εxy =
(

v̄,x + ū,y
)

+
(

ū,xū,y + v̄,xv̄,y + w̄,xw̄,y
)

, (7)

γyz = 2εyz =
(

w̄,y + v̄,z
)

+
(

ū,yū,z + v̄,yv̄,z + w̄,yw̄,z
)

, (8)

γzx = 2εzx = (ū,z + w̄,x) + (ū,zū,x + v̄,z v̄,x + w̄,zw̄,x) . (9)

Assuming that the strains are small, the terms (ū,x)
2, εzz , ū,xū,z

are negligible compared to u,x (Reddy, 2005a) and substituting
the displacement components from Equations (1)–(3) to the
strain-displacement relations (4)–(9) the only non-vanishing
component of the strain tensor is

εxx(x, z) = u,x +
1

2
(w,x)

2 − zw,xx. (10)

Furthermore, the only non-vanishing stress component of the
second Piola-Kirchhoff stress tensor is

Sxx = Eεxx. (11)

Governing Equations of the Problem and
Boundary Conditions
To establish the equations of equilibrium of the beam, the
principle of minimum total potential energy is employed. To this
end, the total potential energy of the elastic beam is

5(u,w) = U + V , (12)

where U,V are the strain energy of the beam and the potential
of the external forces, respectively. The strain energy per unit
volume is given by the integral

Uo =

εxxw

0

Sxxdεxx =

εxxw

0

Eεxxdεxx =
1

2
Eε2xx, (13)

and the total strain energy of the beam is

U =
w

V

UodV =
w

V

1

2
Eε2xxdV . (14)

The potential of the external forces applied to the beam is
equivalent to the work done on the beam by them

V =

lw

0

[

−pxu− pzw
]

dx. (15)

The stress resultants, namely the axial force N and the bending
momentM are defined as

N =
w

A

SxxdA M =
w

A

SxxzdA. (16)

According to the principle of minimum total potential energy,
the first variation of the total potential energy of the beam must
be equal to zero

δ5 = δU + δV = 0. (17)

Substituting Equations (14), (15) in Equation (17) and by virtue
of Equations (10), (11), (16) leads to

lw

0

{N [(δu) ,x + w,x (δw) ,x]−M (δw) ,x}

+

lw

0

(

−pxδu− pzδw
)

dx = 0. (18)

By applying the Gauss-Green theorem (integration by parts) and
collecting the coefficients δu and δw, we obtain

lw

0

{(

−N,x − px
)

δu+
[

− (Nw,x) ,x −M,xx − pz
]

δw
}

dx

+ [Nδu+ (Nw,x +M,x) δw+Mδ (w,x)]
l
0 = 0 (19)

Since δu, δw are arbitrary and independent of each other in the
interval

(

0, l
)

, by virtue of the fundamental lemma of calculus of
variations the governing equations become

− N,x − px (x) = 0, (20)

− (Nw,x) ,x −M,xx − pz (x) = 0. (21)

In case the stress-strain relation is a known function, and
analytical integration can be performed on Equation (16), then
with respect to Equation (10) the stress resultants in terms of the
displacements are written as

N = EA

[

u,x +
1

2
(w,x)

2

]

, (22)

M = −EIw,xx. (23)

Using Equations (22), (23) the governing equations take the form

[

EA
(

u,x +
1
2w,

2
x

)]

,x = −px (x) , (24)

− (EIw,xx) ,xx +
[

EA
(

u,x +
1
2w,

2
x

)

w,x
]

,x = −pz (x) . (25)

Examining now the boundary terms of Equation (19), we
conclude that (Reddy, 2005b):

• δu, δw, δw,x are the primary variables, and their specification
constitutes the essential boundary conditions of the problem.

• N, Nw,x + M,x, M are the secondary variables, and their
specification constitutes the natural boundary conditions of
the problem.

Among the values comprising the pairs (u,N), (w,Nw,x +M,x),

(w,x,M) only one can be prescribed.
Moreover, the boundary conditions of the problem can be

written as (Katsikadelis and Tsiatas, 2003)

a1u (0) + a2N (0) = a3, (26)

a1u
(

l
)

+ a2N
(

l
)

= a3, (27)

β1w (0) + β2 (Nw,x +M,x) (0) = β3, (28)

β1w
(

l
)

+ β2 (Nw,x +M,x)
(

l
)

= β3, (29)
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γ1w,x (0) + γ2M (0) = γ3, (30)

γ1w,x
(

l
)

+ γ2M
(

l
)

= γ3, (31)

where ακ , ᾱκ , βκ , βκ , γκ , γ κ (κ = 1, 2, 3) are known constants.
In Equations (26)–(31) the most general boundary conditions of
the problem are described. It is worth noting that they include the
case of elastic support of the beam, as well.

Equations (20), (21) in terms of stress resultants or (24),
(25) in terms of displacements, along with Equations (26)–
(31) constitute the boundary value problem that describes the
nonlinear bending of the beam. Analytical solution of the
problem is somewhat cumbersome, so a numerical scheme has
to be introduced.

NUMERICAL FORMULATION

The AEM Solution
A direct solution to the boundary value problem described by
the coupled Equations (24) and (25) together with the boundary
conditions (26)–(31) is achieved on the basis of the AEM
formulation for the large deflection analysis of beams of variable
stiffness as developed in Katsikadelis and Tsiatas (2003). Briefly
discussed, let u = u (x) and w = w (x) be the sought solutions
of the problem, having continuous derivatives up to the 2nd and
4th order respectively in (0, L). According to the analog equation
principle, the two coupled nonlinear equations can be substituted
by the following analog equations

u,xx = b1 (x) , (32)

w,xxxx = b2 (x) , (33)

applying the linear differential operators of the second and
fourth order respectively to u = u (x) and w = w (x). Both
operators have known fundamental solutions. It is noteworthy
that Equations (32) and (33) are attributed independently to the
linear response of a beam of constant unit stiffness under the
fictitious loads b1 and b2 for the axial and bending problem
respectively. According to the AEM, the solution of the system of
Equations (24) and (25) can be achieved by solving the uncoupled
system of Equations (32) and (33) under the same boundary
conditions (26)–(31), after the determination of the fictitious load
distributions b1, b2. Accordingly, a procedure can be developed
by the integral equation method. In this sense, the integral
representations of the solutions of Equations (32) and (33) take
the following form

u (x) = c1x+ c2 +

lw

0

G1 (x, ξ) b1 (ξ) dξ , (34)

w (x) = c3x
3 + c4x

2 + c5x+ c6 +

lw

0

G2 (x, ξ) b2 (ξ) dξ , (35)

where ci (i = 1, 2, . . . 6) are arbitrary integration constants that
will be determined from the boundary conditions and

G1 = 1
2 |x− ξ | , (36)

G2 = 1
12 |x− ξ | (x− ξ)2, (37)

are the fundamental solutions (free space Green’s functions) of
Equations (32) and (33), respectively.

By direct differentiation of Equations (34) and (35) the
derivatives of u and w can be obtained as

u,x (x) = c1 +

lw

0

G1,x (x, ξ) b1 (ξ) dξ , (38)

u,xx (x) = b1 (x) , (39)

w,x (x) = 3c3x
2 + 2c4x+ c5 +

lw

0

G2,x (x, ξ) b2 (ξ) dξ , (40)

w,xx (x) = 6c3x+ 2c4 +

lw

0

G2,xx (x, ξ) b2 (ξ) dξ , (41)

w,xxx (x) = 6c3 +

lw

0

G2,xxx (x, ξ) b2 (ξ) dξ , (42)

w,xxxx (x) = b2 (x) . (43)

Substituting Equations (38)–(43) into Equations (24) and (25)
they can be written in terms of the unknown fictitious sources
b1and b2.

The next step of the AEM requires the discretization of
the domain (0, L) into N elements, not necessarily equal. On
each element the variation of each fictitious load b1 and b2 is
approximated by a predefined law (constant, linear, parabolic,
etc.). In what follows, the elements are considered equal and the
constant law is adopted (constant elements).

Subsequently, the integral representation of Equations (34)
and (35) can be written in matrix form as

u(x) = H1(x)c1 + G1(x)b1, (44)

w(x) = H2(x)c2 + G2(x)b2, (45)

where G1(x) and G2(x) are 1 × N known matrices obtained
by integrating the kernels G1(x, ξ ) and G2(x, ξ ) on the constant
elements, respectively; H1(x) =

[

x 1
]

and H2(x) =
[

x3 x2 x 1
]

;

c1 = {c1, c2}
T ; c2 = {c3, c4, c5, c6}

T ; b1, b2 are vectors containing
unknown fictitious loadings at the N nodes. Likewise, Equations
(38)–(43) can be written as

u,x(x) = H1x(x)c1 + G1x(x)b1, (46)

u,xx(x) = b1, (47)

w,x(x) = H2x(x)c2 + G2x(x)b2, (48)

w,xx(x) = H2xx(x)c2 + G2xx(x)b2, (49)

w,xxx(x) = H2xxx(x)c2 + G2xxx(x)b2, (50)

w,xxxx (x) = b2, (51)

where G1x(x), G2xx(x),. . . G2xxx(x) are 1 × N known matrices,
stemming from the integration of the derivatives of the kernels
G1(x, ξ ),G2(x, ξ ) on the elements;H1x(x) is a 1×2 knownmatrix
resulting from the differentiation of H1(x), whereas H2x(x),
H2xx(x), H2xxx(x) are 1 × 4 known matrices resulting from the
differentiation ofH2(x).
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The final step of the AEM is the collocation of the Equations
(24) and (25) at the N internal nodal points and the substitution
of the displacements and their derivatives according to the
Equations (44)–(51)

F1 (b1, b2, c) = −px, (52)

F2 (b1, b2, c) = −pz , (53)

where Fi(b1, b2, c) are generalized stiffness vectors, and c =

{c1, c2, . . . c6}
T . Equations (52) and (53) constitute a system of

2N nonlinear algebraic equations of 2N + 6 unknowns. The
additional six equations required to solve the system can be
derived from the exploitation of the boundary conditions of the
problem. To this end, the related derivatives are substituted into
Equations (26)–(31) to give

fi (b1, b2, c) = 0 (i = 1, 2, . . . 6). (54)

The nonlinear Equations (52)–(53) in combination with the
Equations (54) constitute a system of 2N + 6 algebraic equations
with respect to the unknown vectors b1, b2 and c. The solution of
the system by any numerical technique provides the values of the
fictitious loads at the internal nodal points.

However, when the stress resultants and their derivatives
cannot be evaluated analytically, the following layered analysis
should be employed.

The Layered Analysis
As a first step to the layered analysis, an appropriate number of
monitoring cross-sections is defined along the length of the beam.
For convenience purposes, the position of each cross-section
coincides with the nodal points of the longitudinal discretization
and the two points that correspond to the ends of the beam.
Consequently, each cross-section is decomposed into a number
of layers of constant height. At the center of each layer, the strain
is expressed in terms of the nodal displacement components.
Next, given the strain expressions, stresses are computed
and employing an appropriate integration scheme, stress
resultants are evaluated. The discretization scheme is depicted in
Figure 2.

An odd number of layers k is selected so as the center of the
beam’s cross-section is located at the middle of the

(

k+ 1
)

/2
layer. The constant height of the layers is 1h. The z coordinate
of the center of the i-th layer is written as

zi =

(

k+ 1

2
− i

)

1h. (55)

The axial forceNi and the bending momentMi for each layer can
be computed as

Ni = Sixx1Ai, (56)

Mi = Sixxzi1Ai, (57)

where Sixx, 1Ai are the stress component at the center of each
layer and the area of each layer respectively. Therefore, the stress

FIGURE 2 | Discretization of the beam into monitoring cross-sections and

cross-section layers.

resultants can be approximated as

N =

k
∑

i= 0

Sixx1A, (58)

M =

k
∑

i= 0

Sixxzi1Ai. (59)

After evaluating the axial force and the bending moment at
each nodal point, their derivatives must be computed to check
if the equations of equilibrium hold. To this end, the procedure
thoroughly described in Tsiatas and Charalampakis (2017) is
adopted.

Having established the numerical expressions of the stress
resultants and their derivatives in terms of the unknown fictitious
loads, the nonlinear Equations (52)–(54) are solved iteratively.
The first iteration starts with an initial guess for the unknown
fictitious loads. Next, the displacements and their derivatives are
evaluated at all the definedmonitoring cross-sections of the beam
using the respective integral representations. Subsequently, the
stress resultants are computed at each layer using Equations (56),
(57) and the whole cross-section by applying Equations (58),
(59). Lastly, the governing Equations (20) and (21) are checked
for equilibrium. In case the equilibrium is satisfied, the process
is terminated. Otherwise, the fictitious load distributions are
updated, and the procedure continues with further iterations.

NUMERICAL EXAMPLES

Based on the presented numerical procedure, a computer
program has been developed, and representative examples have
been studied to demonstrate the accuracy and the efficiency of
the proposed method of nonlinear analysis.
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FIGURE 3 | Fixed beam in Example 1.

Example 1: Beam With Fixed Ends Under
Concentrated Loading
The first example deals with the geometrical nonlinear static
analysis of a fully fixed beam under concentrated loading applied
at the midspan. The cross-section of the beam is rectangular b×h
and its length is L. The geometrical characteristics of the beam
and the cross-section are shown in Figure 3. The beam is made
of a linearly elastic material. The employed data for the elastic
properties of the material and the geometry of the beam are:
E = 2.07 × 108kN/m2, b = 0.0254m, h = 0.003175m, and
L = 0.508m.

The present example has been also examined in the studies of
Katsikadelis and Tsiatas (2003) and Mondkar and Powell (1977).
It is noted that in the study of Katsikadelis and Tsiatas (2003) a
BEM scheme for the longitudinal problem is also established, but
an analytical procedure to obtain the stress resultants is adopted.
Furthermore, Mondkar and Powell (1977) modeled the half of
the beam using five eight-node plane stress elements and applied
a 2×2 Gauss quadrature. Results from both these works are used
herein for comparison purposes.

Figures 4A,B show the profiles for the vertical and horizontal
displacements respectively, corresponding to load value
Pz = 3.11kN. The results of the proposed method are
compared with those presented by Katsikadelis and Tsiatas
(2003); it can be seen that they are in excellent agreement.
In Figure 5, the variation of vertical displacements w at the
middle of the beam with respect to the force Pz is presented
for the layered approach as well as for both the references
above; the identification of the results is noteworthy. In
Table 1, deflections at the middle of the beam length are
presented for several numbers of longitudinal elements and
layers; it can be observed that satisfactory convergence can be
achieved for a small number of layers. Finally, Figures 6A–C
depict the bending, axial, and shear stress resultants
respectively.

FIGURE 4 | Profiles of the (A) deflection and (B) axial displacement in

Example 1.

TABLE 1 | Deflection at the midspan in Example 1.

Number

of Fibers

k

Number of beam elements N

31 41 51 61 71

Deflection at the midspan

5 −0.012828 −0.012945 −0.013008 −0.013047 −0.013073

7 −0.012817 −0.012933 −0.012996 −0.013035 −0.013060

9 −0.012813 −0.012928 −0.012991 −0.013029 −0.013055

11 −0.012810 −0.012926 −0.012989 −0.013027 −0.013052

13 −0.012809 −0.012925 −0.012987 −0.013025 −0.013050

15 −0.012808 −0.012924 −0.012986 −0.013024 −0.013049

17 −0.012808 −0.012923 −0.012986 −0.013024 −0.013049

19 −0.012808 −0.012923 −0.012985 −0.013023 −0.013048

21 −0.012807 −0.012922 −0.012985 −0.013023 −0.013048

23 −0.012807 −0.012922 −0.012985 −0.013023 −0.013048

25 −0.012807 −0.012922 −0.012985 −0.013023 −0.013048

Example 2: Simply Supported Beam Made
of Nonlinear Material
For comparison reasons, in the second example an initially
straight beam made of a nonlinear elastic material is examined.
The cross-section of the beam is rectangular b× h and its length
is L. It is pinned at its both ends and is subjected to a uniformly
distributed vertical load pz . The employed geometrical data, as
shown in Figure 7, is: b = 0.10m, h = 0.50m, L = 2.0m. The
constitutive law of the nonlinear elastic material is given by the
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FIGURE 5 | Deflection versus Load at the center of the beam in Example 1.

FIGURE 6 | Profile of the (A) bending moment, (B) axial force, and (C) shear

force in Example 1.

FIGURE 7 | Simply supported beam in Example 2.

relation

σ = σ0
ε

√

ε2 + ε20

, (60)

where σ0 = 410000 kPa, ε0 = 0.017143512. The stress-strain
curve is depicted in Figure 8. In this example, the geometrical
nonlinear effect is not considered.

In the context of the presented layered methodology, static
geometrical linear-material nonlinear analyses are performed for
several loading values. The beam length is discretized into 51
elements, and the cross-section is decomposed into 21 layers.
The obtained results are compared with corresponding results
obtained from two FEM models: (i) a FEM model with 51
beam elements, and (ii) a solid FEM model comprising 12500
hexahedral 8-node elements.
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FIGURE 8 | Stress-strain curve for the nonlinear material in Example 2.

FIGURE 9 | Deflection at the middle of the beam vs. load in Example 2.

FIGURE 10 | Profile of deflections for pz = 4541.42kN/m in Example 2.
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Figure 9 presents the vertical deflections at the middle of
the beam versus the vertical load pz . It can be readily observed
that the layered model satisfactorily converges to the solid
FEM solution, while the beam FEM solution exhibits significant
discrepancies for a relatively low value of loading. In Figure 10

the deflection profile for pz = 4541.42kN/m is shown. It is
remarkable that the layered analysis yields deflections along the
beam that are in excellent agreement with the ones obtained from
the solid model.

Example 3: Shape Memory Alloy Beam
Under Concentrated Loading
In order to demonstrate the range of applications of the proposed
methodology of analysis, in this final example, an initially straight
clamped beam made of a superelastic Shape Memory Alloy
(SMA) is considered. One of the most important mechanical

FIGURE 11 | Fixed beam in Example 3.

property of SMAs is that they can undergo large inelastic
strains recoverable upon load removal (Superelasticity). The
SMA’s stress-strain relation adopted herein was obtained by
interpolating the experimental curve presented in Charalampakis
and Tsiatas (2018).

The beam under consideration has a uniform rectangular
cross-section b×h, and length L, as shown in Figure 11. It is fixed
at its both ends and is subjected to a concentrated vertical load Pz
at the middle of its length. The geometrical data is: b = 0.50m,
h = 0.80m, and L = 1.0m. The beam is divided into 51 elements
along its length, and the cross-section is discretized into 21 layers.

In this example two cases of analysis are performed, for several
loading values: (i) geometrical linear analysis, and (ii) geometrical
nonlinear analysis. It is noted that material nonlinearity is
taken into account in both cases, and the stress-strain relation
is depicted in Figure 12. In Figure 13, the deflections at the
midspan vs. the loading variation are presented for both cases of
analysis. The effect of geometrical nonlinearity in the decrease
of the central deflection for a specific loading range is verified.
This effect can also be verified in the comparison of the stress
resultants. More specifically, Figure 14A shows the bending
moment profiles (Pz = 400kN) where it can be readily observed
the decrease of the bending moment, in case of the geometrical
nonlinear case, due to the contribution of the axial forces to the
loading carriage. Finally, Figure 14B shows the axial force profile
(Pz = 400kN) only for the geometrical nonlinear case since in
the geometrical linear analysis the axial force is zero.

CONCLUSIONS–FUTURE RESEARCH

In this work, a layered approach to the nonlinear analysis of
beams has been presented. The beam is studied considering both
geometrical andmaterial nonlinearity. The governing differential
equations were obtained with a variational approach and their
systemwas solved using the AEM in conjunction with an iterative
numerical process. To this end, a discretization scheme was

FIGURE 12 | Stress-strain curve for the nonlinear SMA material in Example 3.
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FIGURE 13 | Deflection at the middle of the beam vs. load in Example 3.

FIGURE 14 | Profile of the (A) bending moment, and (B) axial force, for

Pz = 400kN in Example 3.

established in both the longitudinal sense and the cross-sectional
plane. According to the presented analysis and the numerical
results, the following main conclusions can be drawn:

a) The layered method has proven to be very competent and
together with the AEM can be employed in the solution of
difficult nonlinear coupled problems.

b) The method can treat both geometrical and material
nonlinearity in a more general context, as compared to
existing direct solution methods which are confined only to
handling geometrical nonlinearity.

c) The numerical solution is efficient and stable, while a small
number of line elements and layers are adequate to achieve
significant accuracy for the displacements and the stress
resultants.

d) In comparison with the FEM beam model, the layered
approach model is capable of giving results that
better converge to the ones obtained by a FEM solid
model.

e) The proposed layered approach can be easily extended to solve
problems of curved beams, as well as beams with arbitrary
cross-sections.

f) Furthermore, the limitation of the number of monitoring
cross-sections only in locations of high-stress concentration
(e.g., beam supports) can be considered as a future application
of the layered approach.
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