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Shaking table tests are the most direct experimental way to evaluate structure

performance in earthquake engineering. Because of the complexity of the control

systems and the influence of specimen behavior, it is difficult for a conventional controller,

whose parameters are fixed, to achieve accurate tracking performance for different

reference input signals under different payloads. In this paper, a two-loop control method

is proposed by combining three-variable control and model reference adaptive control

based on Lyapunov stability theory. The proposed control method can adjust the

time-domain drive signal adaptively to improve the tracking accuracy and the robustness

to specimen uncertainties. Numerical simulations of a small-scale shaking table are used

to verify the effectiveness, and the performance of the controller is compared with that

of the conventional three-variable control controller. The simulation results demonstrate

that the proposed two loop control method provides better performance in both the time

and frequency domains.

Keywords: adaptive control, model reference adaptive control, lyapunov stability theory, three-variable control,

hydraulic actuator, shaking table test

INTRODUCTION

Shaking table tests are the most direct experimental way to evaluate structure performance in
earthquake engineering. Typically, a shaking table test system is composed of one or multiple
servo-hydraulic actuators, a hydraulic power supply, a rigid table, and a control system. The
purpose of the control system of a shaking table is to reproduce reference accelerations that were
recorded during an earthquake. However, because of the inherent nonlinearities in hydraulic servo
systems and control-structure interaction (CSI) effects, high-fidelity control of a shaking table
remains challenging (Dyke et al., 1995; Venanzi et al., 2016; Zhang and Ou, 2016). In the context of
shaking table tests, CSI is the coupling of the dynamics of the shaking table with the dynamics of
the specimen. The interaction can become more problematic if a specimen changes behavior and
its mass is large relative to the mass of the shaking table (Phillips et al., 2014). Hence, a controller
that deals with CSI effects is needed.
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In addition to the complexity of the shaking table system,
the tracking performance of the shaking table in following
a specified signal is another challenge. Because acceleration
measurements cannot detect constant-velocity motion, direct
acceleration feedback control is unstable (Nakata, 2010), and a
closed-loop feedback controller is required to stabilize themotion
of the shaking table. Traditionally, the hydraulic actuators used
in shaking table systems run in a displacement controlled
mode, and adopt a proportional-integral-differential (PID)
control algorithm. The PID controller can provide reasonable
performance in the low-frequency range, but the accuracy
of acceleration reproduction is not guaranteed over certain
frequency. Thus, the three-variable control (TVC) method was
proposed to improve the disadvantages of PID controller. A
controller based on TVC consists of feedback and feedforward
parts and thus six parameters need to be adjusted. The concept
of a TVC controller is to use displacement, velocity and
acceleration compensation techniques to improve the dynamics
of the shaking table system (Stoten and Shimizu, 2007; Xu
et al., 2008; Shen et al., 2011a). Compared to a conventional
hydraulic proportional position controller, the TVC controller
can enlarge the frequency bandwidth of the acceleration response
and increase the system damping ratio. However, the TVC is still
a fixed-gain control method, and cannot adjust properly, when
the system characteristic of controlled plant changes.

Various control methods for shaking table tests have been
proposed to improve the tracking performance of the shaking
table. Enokida et al. (2014) introduced a nonlinear signal-
based control method(NSBC) to for nonlinear control. NSBC
was found to provide the most accurate input identification
in all the examined cases of linear or nonlinear single-input,
single-output and single-input, multi-output (SIMO) systems.
Spencer Jr and Yang (1998) proposed the transfer-function
iteration method based on a linearized shaking table model
to describe the relationship between the command signal and
the measured acceleration. The command signal could be
generated beforehand from the desired acceleration by using the
inverse model. Twitchell and Symans (2003) used an analytical
transfer function for the shaking table dynamics, which was
calibrated using a system identification test to simplify offline
displacement tracking, and the study demonstrated improved
displacement tracking. Phillips et al. (2014) presented a model-
based multi-metric control strategy to improve acceleration
tracking performance and the susceptibility of the shaking
table to specimen dynamics by using both displacement and
acceleration measurements. Nakata (2010) developed a method
for acceleration trajectory tracking control, which combined
an acceleration feedforward controller, displacement feedback,
command shaping, and a Kalman filter for the displacement
measurement. Stoten (Enokida et al., 2015) applied composite
filters to earthquake engineering test systems and prove
that composite filters are effective for signal synthesis noise
suppression and performance improvement. Yang et al. (2015)
proposed a hierarchical control strategy that using sliding
mode control to compensate for structural nonlinearities and
uncertainties. In recent years there has been a lot of studies for
dynamical substructure testing: the hybrid scheme (HS) and the

dynamically substructured system (DSS) scheme. Enokida and
Stoten (Stoten, 2017a) compared these schemes via test, with
a prime focus on the effect of pure time delays. Later,
Stoten (2017b) carried out a unification of two methods for
controlling dynamically substructured systems. However, the
frequency response characteristic of the shaking table system
will change with change of payload, and the applicability of the
aforementioned methods is limited without consideration being
given to the specimen and variation of the payload.

Recently, adaptive control methods have been used to control
shaking table systems. Offline iterative control (OIC) requires
sufficient data to shape the command signal and reduce the
acceleration tracking error. Repetitive excitations may cause
premature damage to the specimen (Pipeleers and Swevers,
2010), while the adaptive controller allows online adjustment
of its parameters to obtain the desired output. The commonly
used ones include minimal control synthesis (MCS) (Stoten
and Gómez, 2001; Gizatullin and Edge, 2007; Stoten and
Shimizu, 2007; Shen et al., 2011b) adaptive inverse control (AIC)
(Salehzadeh-Nobari et al., 1997; Karshenas et al., 2000; Shen et al.,
2011a,b; Gang et al., 2013) and self-tuning control (Ghalibafian
et al., 2004; Plummer, 2007a,b). Adaptive algorithms achieve
high-accuracy performance after the adaptive parameters have
converged to the optimal solution. However, they may exhibit
poor performance with the initial transient parameters.

This paper proposes a two-loop control method that consists
of an inner-loop TVC controller and an outer-loop controller
based on model reference adaptive control (MRAC). Compared
with the conventional fixed-gain controller (e.g., PID or
TVC controller), the two-loop control method can adjust the
parameters adaptively during the control process, and has better
acceleration performance even when the payload of system
changes. The two-loop control method also uses inner-loop
controller to deal with the initial transient problem of adaptive
algorithm, and the shaking table system achieves high-accuracy
performance more quickly. In this paper, open-loop transfer
functions are first presented to simulate the uniaxial shaking
table system and analyse its stability and controllability. Then,
the two-loop control method combining the TVC controller and
the MRAC controller is outlined. The TVC controller consists of
feedforward and feedback parts, and MRAC controller is based
on Lyapunov stability theory. The objective of this combined

FIGURE 1 | Schematic of hydraulic systems.
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FIGURE 2 | Block diagram of hydraulic systems.

method is to improve the acceleration output accuracy as well
as the robustness to interaction between the shaking table and
the specimen. Finally, the effectiveness of the proposed strategy is
verified by shaking table tests with different payloads, particularly
for cases in which the mass of the specimen is relatively large
compared to that of the table.

SYSTEM MODELING

The shaking table is driven by the hydraulic system shown in
Figure 1, which includes a servo valve, a hydraulic actuator
and a power supply. The connections among those subsystems
make the dynamics of the hydraulic actuators complex and
nonlinear. A mathematical model of the physical system can
be obtained from De Silva (1988); Conte and Trombetti (2000);
Plummer (2007a,b); Shen et al. (2012). In this section, we derive
the dynamics and interactions among the components in the
hydraulic shaking table system.

Hydraulic Actuator Modeling
The command to the valve controls the position of the valve spool
that regulates the oil flux to the actuator chambers and drives the
hydraulic actuator. First, we formulate a relationship between the
valve command to the servo valve and the oil flux to the actuator
chambers. Equation (1) is an empirical linear model of the valve
dynamics in terms of a second-order lag plus a delay:

Gq =
xq

uq
=

e−sτ

s2

ωq
2 +

2ζqs

ωq
+ 1

(1)

where xq is the valve spool displacement, uq is the valve
command, ζq andωq are the damping ratio and natural frequency
of the servo valve, respectively, τ is the time delay and s is a
Laplace variable.

The linearized oil flux QL which is defined as QL =

(Q1 + Q2) /2, can be expressed as

QL = Gqkquq − KCpL (2)

where kq is the gain of the servo valve and pL = p1 − p2 is the
pressure drop across the actuator chambers. The term KC is the
flow pressure coefficient, which can be expressed as

KC =
∂QL

∂pL
=

Cdwxq

√

pS − pL

ρ

2(pS − pL)
(3)

FIGURE 3 | Schematic of single-degree-of-freedom shake-table system.

where Cd is the discharge coefficient, w is the constant area
gradient of the servo valve orifice, ρ is the mass density of the
fluid and pS is the hydraulic supply pressure.

Using the flow continuity equation, the oil flux, which is the
driving source of the hydraulic actuator, can be obtained as

QL = Apsxa +
Va

4β
spL + CtcpL (4)

where Ap is the effective piston area, xa is the actuator
displacement, Va is the volume of the actuator chambers, β is the
bulk modulus of the hydraulic fluid and s is a Laplace variable.
The term Ctc is the total leakage coefficient of the actuator, which
comprises the internal leakage coefficient Cip and the external
leakage coefficient Cep, and is defined as Ctc = Cip + Cep/2.
Equation (4) shows that the oil flux is influenced by the piston
movement, the chamber volume change and the oil leakage.
A block diagram of the hydraulic actuator system is shown in
Figure 2.

Governing Equation of Table Motion
A simplified unidirectional shaking table system, which consists
of a rigid table and a specimen with a single degree of freedom,
is shown in Figure 3. Here, dt is the relative displacement of
the shaking table with respect to the ground, ds is the relative
displacement of the specimen with respect to the table,mt andms

are themasses of the shaking table and the specimen, respectively,
and Fa represents the force of the actuator. To maintain the
centring capacity of the table, the shaking table is connected to a
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FIGURE 4 | Block diagram of proposed control Strategy.

reaction wall by a linear spring whose stiffness is k. The equation
of motion can be written as

ms(d̈t + d̈s)+ csḋs + ksds = 0 (5)

mtd̈t − csḋs − ksds − Fa + kdt = 0 (6)

where csand ks are the damping and elastic stiffness of the
specimen, respectively. Equations (5) and (6) can be transformed
into Equaion (7), which can be expressed as the state-space
representation shown in Equation (8):

x =
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ḋt
ds
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TWO-LOOP CONTROL METHOD

An innovative two-loop control method combining the MRAC
and TVC is proposed for uniaxial shaking table tests. The block
diagram of the two-loop control method is shown in Figure 4. In
the figure, um(t) is the reference signal, us(t) is the MRAC signal,
u(t) is the control signal of the controlled plant, xs(t) and xm(t)
are the state vectors of the outputs of the controlled plant and

FIGURE 5 | Three-variable controller. (A) Block diagrams of the reference

signal generator. (B) Block diagrams of TVC controller.

reference model, respectively, Kp and Ku are the adaptive gains
and ex(t) is the state error.

As shown in Figure 4, the two-loop control method uses
an inner-loop controller and an outer-loop controller based on
TVC andMRAC, respectively. The two-loop control method uses
MRAC for the outer loop instead of OIC to reduce the tracking
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TABLE 1 | Main parameters of shaking table system.

Parameter Value Parameter Value

AP 0.011 m2 Kdf 37.5 m/Volts

ctc 3.56 (×) 10−11(m3/s/Pa) Kvf 0 (m/s)/Volts

Kg 0.15 Kaf 0.01 g/Volts

Kc 2.5×10−11(m3/s/Pa) Kdr 100 Volts/m

Kq 4.9745×10−3(m3/s)/V Kvr 10 Volts/(m/s)

Va 2.662×10−3 m3 Kar 0 Volts/g

β 7×10−8 Pa ω0 3.14 rad/s

ξ0 0.6 ωq 628.32 rad/s

ζq 0.7 τ 0.002 s

mt 6000 kg ms 600/2500/7500/10000 kg

error and avoid causing premature damage to the specimen. The
MRAC controller can adjust its parameters online to improve the
robustness of the system dynamics. The two-loop control method
also uses TVC for the inner loop to accelerate convergence of
the adaptive algorithm. This is because the initial variation of the
adaptive gains is often accompanied by poor transient response if
only MRAC is adopted. In addition, using a TVC controller can
enlarge the frequency bandwidth and improve the stability of the
control system (Xu et al., 2008; Gang et al., 2013). In the two-loop
control method, only the table and the specimen aremodeled and
the others, e.g., the hydraulic system and the TVC controller, are
not included in reference model, so that the movement of the
table is identical with the input ground motions. Furthermore,
the reference model is designed for a specimen whose mass is
small relative to that of the shaking table to minimize interaction
with the specimen dynamics, whereas a real controlled plant may
have a specimen with a large mass. The adaptive rule is expected
to ensure that the controlled plant tracks the response of the
reference model even if the specimen mass differs between the
reference model and the controlled plant.

Three-Variable Controller Design
The TVC controller is commonly used to generate the earthquake
excitations of shaking tables (Tagawa and Kajiwara, 2007).
Block diagrams of the reference signal generator and the TVC
controller are shown in (Figures 5A,B), respectively. As shown
in Figure 5A, the reference signal generator uses the reference
acceleration signal to generate the reference states. These mainly
include the reference displacement, velocity and acceleration,
which are denoted by rd, ṙd and r̈d, respectively (Gang et al.,
2013). The transfer function of the signal generator can be
expressed as

GT =
Kg

s2 + v0s+ d0
=

Kg

d0

(

s2

ω2
0
+

2ξ0
ω0

s+ 1
) (9)

where Kg is the acceleration gain, ξ0 is the damping ratio of
the acceleration control, ω0 is the natural frequency of the
acceleration and d0 and v0 are the integral constants for rd and
ṙd, respectively. In TVC, d0 and v0 are commonly taken to be ω2

0
and 2ξ0ω0, respectively.

TABLE 2 | RMS of acceleration error for a payload of 10,000 kg in time and

frequency domains.

Earthquake

name

Time domain RMS (g) Frequency domain RMS (g2/Hz)

TVC MRAC+TVC TVC MRAC+TVC

Hachinohe(NS) 3.849 1.705 1.516 0.458

Kobe(NS) 5.810 1.753 3.540 0.738

Northridge(NS) 5.780 2.311 2.863 0.710

El Centro(NS) 6.975 2.213 8.490 1.466

Taft(EW) 7.488 1.951 3.842 1.569

NAcc1 4.528 3.238 0.530 0.468

NAcc2 6.217 1.979 6.162 1.101

NAcc3 8.160 3.970 3.251 0.907

NAcc4 8.731 4.296 6.242 1.787

NAcc5 9.371 6.214 3.218 1.039

As shown in Figure 5B, the TVC can be separated into a
feedforward controller and a feedback controller. Terms xd, ẋd
and ẍd are the measured displacement, velocity and acceleration,
respectively, and uv is the TVC output. The feedback part can
improve the control stability by means of feedback loops whose
feedback gains are Kdf , Kvf , and Kaf for displacement, velocity
and acceleration, respectively. The feedforward part can extend
the acceleration frequency and improve the reference tracking
accuracy by adjusting the feedforward gains Kdr , Kvr , and Kar ,
which are gains for displacement, velocity and acceleration,
respectively, in the feedforward loop. Note that the TVC
controller is an inner-loop controller that is in the control chain
of theMRAC controller. The signal is first processed by the outer-
loop MRAC controller, and then passed to the TVC controller.

Model Reference Adaptive Controller
Design
Based on Lyapunov stability theory, MRAC was originally
proposed in the 1960s (Parks, 1966; Landau, 1984). The method
involves creating a closed-loop controller that works on the
principle of adjusting the controller parameters by measuring
the difference between the outputs of the controlled plant and
the reference model, so that the controlled plant can follow the
behavior of the reference model. In this study, MRAC based on
Lyapunov stability theory is applied to improve the accuracy of
tracking and robustness against CSI. A shaking table system with
a small loading specimen is used for the reference model; its
output is tracked by the controlled plant, which can be a shaking
table system with a large loading specimen.

The governing equations of the controlled plant including the
TVC controller and the shaking table system are

ẋs(t) = Asxs(t)+ Bsus(t)

ys(t) = Csxs(t) (10)

where xs(t) is the state vector of the table and specimen as defined
in Equation (7), us(t) is the adaptive control input signal, ys(t) is
the output vector of the table and specimen for the controlled
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FIGURE 6 | Comparison of table performance in time domain. (A,C) Wide and narrow views of acceleration tracking for the Northridge earthquake. (B,D) Wide and

narrow views of acceleration tracking for the Taft earthquake.

plant, As is the 4× 4 state matrix of the controlled plant, Bs is its
4× 1 input matrix, and Cs is its 2× 4 output matrix.

The governing equations of the reference model are

ẋm(t) = Amxm(t)+ Bmum(t)

ym(t) = Cmxm(t) (11)

where xm(t) is the state vector of the reference model, um(t)
is the reference input signal, which is commonly a reference
acceleration time-history record, ym(t) is the output vector of the
table and specimen for the reference model, Am is the 4× 4 state
matrix of the reference model, Bm is its 4 × 1 input matrix (as
defined in Equation 8) and Cs is its 2 × 4 output matrix. The
output matrices Cm and Cs are

Cs = Cm =

[

1 0 0 0

0 1 0 0

]

(12)

In this study, the output vectors take only the displacement and
velocity of the table into account.

The tracking error and state error are denoted by ey(t) and
ex(t), respectively:

ey(t) = ym(t)− ys(t) = Cmxm(t)− Csxs(t) (13)

ex(t) = xm(t)− xs(t) (14)

The MRAC signal is defined as

us(t) = −Kp[ex(t), t]xs(t)+ Ku[ex(t), t]um(t) (15)

whereKp[ex(t), t] andKu[ex(t), t] are time-variant gain matrices.
Substituting Equation (15) into Equation (10), we obtain

ẋs(t) =
(

As − BsKp[ex(t), t]
)

xs(t)+ BsKu[ex(t), t]um(t) (16)

Then, we assume that K∗
p and K∗

u exist and satisfy

{

As − BsK
∗
p = Am

BsK
∗
u = Bm

(17)

where K∗
p and K∗

u are the corresponding parameters for
the MRAC input signal when the state vector of the
controlled plant matches that of the reference model
exactly.

In this paper, we use Lyapunov stability theory to design the
MRAC. Substituting Equations (10, 11, 15, 17) into Equation (14)
yields

ėx(t) = Amex(t)+
(

Am − As + BsKp[ex(t), t]
)

xs(t)

+
(

Bm − BsKu[ex(t), t]
)

um(t)

= Amex(t)−BsK̃p[ex(t), t]xs(t)+BsK̃u[ex(t), t]um(t)(18)

where K̃p[ex(t), t] and K̃u[ex(t), t] are the error signals of the
controller parameters and are defined as

K̃p[ex(t), t] = K∗
p − Kp[ex(t), t]

Frontiers in Built Environment | www.frontiersin.org 6 October 2018 | Volume 4 | Article 54

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Yachun et al. A Two-Loop Control Method

TABLE 3 | Median and standard deviation of RMS.

ms(kg) Time domain RMS (g) Frequency domain RMS (g2/Hz)

TVC MRAC+TVC TVC MRAC+TVC

Bare table Median 6.470 1.847 3.517 0.862

Standard deviation 1.532 1.022 1.810 0.508

600 Median 6.487 1.829 3.510 0.855

Standard deviation 1.893 0.982 1.810 0.506

2500 Median 6.578 1.985 3.486 0.864

Standard deviation 1.642 1.222 1.809 0.495

7500 Median 6.576 2.219 3.429 0.950

Standard deviation 1.660 1.253 1.806 0.466

10000 Median 6.596 2.262 3.396 0.973

Standard deviation 1.789 1.471 2.375 0.460

FIGURE 7 | Comparison of table performance in frequency domain.

Acceleration power spectral density for (A) Northridge earthquake and (B) Taft

earthquake.

K̃u[ex(t), t] = K∗
u − Ku[ex(t), t] (19)

From Lyapunov stability theory, the state matrix of the reference
model Am is the Hurwitz matrix; in other words, Am is

asymptotically stable. Thus, there exists a symmetric positive-
definite solution P to Equation (20) for any choice of symmetric
positive-definite matrix Q:

AT
mP + PAm = −Q (20)

We consider a positive-definite quadratic Lyapunov candidate
function that contains the state error vector and the error signal
of the controller parameters, namely

V(t) = eTx (t)Pex(t)+ tr
{

K̃T
p [ex(t), t]Ŵ

−1
p K̃p[ex(t), t]

}

+tr
{

K̃T
u [ex(t), t]Ŵ

−1
u K̃u[ex(t), t]

}

(21)

where Ŵ−1
p and Ŵ−1

u are symmetric positive-definite constant
matrices with appropriate dimensions.

The derivative of the Lyapunov candidate function and the
details of the associated proof procedure are given in the
Appendix. Because V(t) is positive definite and V̇(t) is negative
definite, Lyapunov stability theory guarantees that ex(t) will
approach zero asymptotically and that the tracking error ey(t) will
also vanish asymptotically. The adaptive gains can be designed as

Kp[ex(t), t] = −

∫ t

0
ŴpB

T
s Pex(δ)x

T
s (δ)dδ + Kp(0)

Ku[ex(t), t] =

∫ t

0
ŴuB

T
s Pex(δ)u

T
m(δ)dδ + Ku(0) (22)

NUMERICAL SIMULATIONS

A small-scale electro-hydraulic shaking table was selected to
verify the effectiveness of the proposed controller, namely
MRAC combined with TVC. As shown in Figure 3, the
simplified unidirectional shaking table system consists of a
rigid table and a specimen with a single degree of freedom.
The mass of the shaking table was 6,000 kg. Four different
loading specimens, two with relatively small mass and two
with relatively large mass compared with the mass of the

Frontiers in Built Environment | www.frontiersin.org 7 October 2018 | Volume 4 | Article 54

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Yachun et al. A Two-Loop Control Method

shaking table, were used in the numerical simulations to
investigate the CSI effects. The performance of the two-
loop controller combining MRAC and TVC is assessed by
comparing the table motion and the input earthquake ground
motion.

The simulation evaluation analysis was performed in
MATLAB/Simulink. The parameters for the hydraulic actuator
model, the shaking table system and the TVC controller gains
used in the simulations are listed in Table 1. In this study, the
specimen was assumed to be linearly elastic. Its mass for the
MRAC reference model was taken to be 6 kg (i.e., 1/1000 the
table mass) to minimize any interaction due to the dynamics of
the specimen. The state matrices of the reference model were
obtained using Equation (11), and those of the controlled plant
were determined from Equation (10) once the payload was
chosen. The symmetric positive-definite matrix P was obtained
from Equation (20), and the adaptive gains Kp[ex(t), t] and
Ku[ex(t), t] were obtained from Equation (22).

The TVC is commonly used in shaking table test, and it
can improve the stability of the control system. In this study,
a conventional TVC control method was implemented for the
purpose of comparison. The parameters of for the MRAC
controller were optimized by using the genetic algorithm. For the
optimization, we adopted the bare-table case, in which the mass
of the specimen is zero, subjected to a synthesized groundmotion
NAcc1 (refer to Table 2), and the parameters were optimized
by minimizing the RMS of tracking error of acceleration in
time domain. The optimized parameters were used for all the
cases with different specimen masses. Note that the parameters
remaining unchanged for TVC, whereas they served only as
initial values and kept updating for MRAC.

The mass of the specimen is first considered as 7,500 kg,
and the ground motions recorded during the Northridge and
Taft earthquakes are taken as the reference signals. Figures 6, 7
show the simulation results for Northridge and Taft, respectively.
As shown in Figures 6A,B, both controllers are able to track
the reference acceleration in general. However, comparing the
curves shown in Figures 6C,D reveals that MRAC combined
with TVC achieves much better accuracy. Figure 7 shows the
comparison in the frequency domain. Both controllers perform
well at frequencies lower than 6Hz but the two-loop control
combining MRAC and TVC has better performance, particularly
at medium and high frequencies. We conclude that the proposed
control strategy offers better performance for acceleration control
in both the time and frequency domains.

Next, we consider five cases in which the mass of the
specimen is zero, 600, 2,500, 7,500, and 10,000 kg. Simulations
for the five cases were carried out using 10 instances of ground
motion. Detailed simulation results for the case with a specimen
mass of 10,000 kg are given in Table 2. There, the root mean
square (RMS) of the tracking error between the reference and
measured table motions is compared between the conventional
control method and the proposed one in both the time and
frequency domains. Note that the RMS of the tracking error is
normalized against the maximum absolute value of the reference
acceleration record. In the time domain, it can be observed
that the tracking errors for the proposed control method are

all smaller than those obtained from the conventional control
method.

Table 3 compares the median and standard deviation of
the errors between the conventional control method and
the proposed one for the five cases in both the time and
frequency domains. From Table 3, it can be found that the
tracking errors increase with the increase of the specimen
mass, demonstrating that the CSI effects cannot be neglected.
In all cases, the median value and standard deviation of
the acceleration tracking errors of the proposed control
method are smaller than those of the conventional control
method. In addition, comparing the RMS of the bare-table
case with that of the case with the maximum payload, it
increased by roughly 15% under the TVC, which adopts
fixed gains, whereas it increases by only roughly 7% under
MRAC. The results show that the proposed controller performs
much better than the conventional TVC controller, not only
improving the accuracy of the shaking table system but also
providing good robustness against CSI effects and specimen
uncertainties.

Equations (15) and (22) indicate that Kp[ex(t), t] and
Ku[ex(t), t] adjust their values according to the variation
of the entire state error. In this study, the output vectors
take the displacement and velocity of the shaking table into
account. Furthermore, the MRAC parameters are designated
as Kp[ey(t), t] and Ku[ey(t), t], which are two-dimensional and
one-dimensional vectors, respectively:

Kp[ey(t), t] = −

∫ t

0
ŴpB

T
s PC

T
s ey(δ)y

T
s (δ)dδ + Kp(0)

Ku[ey(t), t] =

∫ t

0
ŴuB

T
s PC

T
s ey(δ)u

T
m(δ)dδ + Ku(0) (23)

Figures 8, 9 show the adjustment of Kp[ey(t), t] and Ku[ey(t), t]
for the proposed control method. The specimen mass is 7,500 kg
and the ground motions recorded during the Northridge and
Taft earthquakes are taken as the reference signals. From both
figures, it can be observed that the values of Kp[ey(t), t] and
Ku[ey(t), t] vary with time during the simulation process, and
gradually become stable when the output difference between the
controlled plant and the reference model becomes smaller.

The adaptive algorithm achieves high-accuracy performance
after the adaptive parameters have converged to the optimal
solution, but it may exhibit poor performance in the beginning
if it adopts inappropriate initial parameters. In this study,
the TVC controller is used as an inner-loop controller, not
only to improve the stability of the shaking table system but
also to deal with the initial transients. Figure 10 shows a
comparison of tracking error convergence during the simulation
process between the proposed control method and the MRAC-
only controller. The tracking error was investigated using
the same specimen and ground motion, namely 7,500 kg
and the Northridge earthquake, respectively. As shown in
Figure 10, either with or without the TVC controller, satisfactory
performance is achieved with high control accuracy after
the adaptive algorithm converges. However, the tracking
error with the proposed strategy is even smaller than that
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FIGURE 8 | Adjustment of MRAC controller parameters for the Northridge

earthquake. (A) Adjustment of Ku[ey (t), t]. (B,C) Adjustment of Kp[ey (t), t].

with the MRAC controller and takes only half the time to
converge. Thus, it can be concluded that using the inner-
loop TVC controller improves the initial poor transient
response of MRAC and converges to the optimal solution more
quickly.

CONCLUSIONS

An innovative two-loop control method consisting of an inner-
loop TVC controller and an outer-loop MRAC controller was
proposed to improve the acceleration tracking performance
of a shaking table. An adaptive MRAC rule was developed
based on Lyapunov stability theory. The proposed control
method was applied to a small-scale shaking table for different
payloads in numerical simulations. The conventional TVC
controller was used for comparison to verify the effectiveness.
A MRAC controller was also used for comparison to show
that the inner-loop TVC controller could deal with the

FIGURE 9 | Adjustment of MRAC controller parameters for the Taft

earthquake. (A) Adjustment of Ku[ey (t), t]. (B,C) Adjustment of Kp[ey (t), t].

problem of the initial transients of the adaptive algorithm.
The major conclusions obtained from this study are as
follows.

(1) Compared with the conventional fixed-gain controller (e.g.,
TVC controller), the two-loop control method can adjust the
parameters adaptively during the control process, and has
better performance for acceleration control in both the time
and frequency domains.

(2) For different payloads, the RMS of the tracking errors under
two-loop control is consistently smaller than that obtained
from the conventional control method. This shows that
the proposed method has good robustness against specimen
uncertainties and CSI effects.

(3) Compared with the MRAC method, the adaptive
algorithm in the two-loop control method takes half the
time to converge to the optimal solution. Hence, the
controlled plant achieves high-accuracy performance more
quickly.
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FIGURE 10 | Comparison of tracking error convergence of adaptive algorithm for the Northridge earthquake. (A,C) Using combined strategy. (B,D) Using only MRAC.

(4) Accurate information about the controlled plant is not
required for the two-loop control method. Furthermore, the
shaking table system will follow the desired reference signal
without causing premature damage to the specimen.
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APPENDIX

Taking the derivative of the positive-definite quadratic Lyapunov candidate function of Equation (21) gives

V̇(t) = eTx (t)Pėx(t)+ ėTx (t)Pex(t)

+tr
{

K̃T
p [ex(t), t]Ŵ

−1
p

˙̃Kp[ex(t), t]+
˙̃KT
p [ex(t), t]Ŵ

−1
p K̃p[ex(t), t]

}

+tr
{

K̃T
u [ex(t), t]Ŵ

−1
u

˙̃Ku[ex(t), t]+
˙̃KT
u [ex(t), t]Ŵ

−1
u K̃u[ex(t), t]

}

(A1)

Substituting Equations (18, 20) into Equation (A1), V̇(t) can be expressed as

V̇(t) = eTx (t)Qex(t)

− 2eTx (t)PBsK̃p[ex(t), t]xs(t)+ 2eTx (t)PBsK̃u[ex(t), t]um(t)

+ 2tr
{

˜̇KT
p [ex(t), t]Ŵ

−1
p K̃p[ex(t), t]

}

+ 2tr
{

˜̇KT
u [ex(t), t]Ŵ

−1
u K̃u[ex(t), t]

}

(A2)

Because every term in Equation (A2) is a real number, and using

eTx (t)PBsK̃p[ex(t), t]xs(t) = tr
{

xs(t)e
T
x (t)PBsK̃p[ex(t), t]

}

eTx (t)PBsK̃u[ex(t), t]um(t) = tr
{

um(t)e
T
x (t)PBsK̃u[ex(t), t]

}

(A3)

we can obtain

V̇(t) = −eTx (t)Qex(t)

−2tr
{

xs(t)e
T
x (t)PBsK̃p[ex(t), t]

}

+ 2tr
{

um(t)e
T
x (t)PBsK̃u[ex(t), t]

}

+2tr
{

˜̇KT
p [ex(t), t]Ŵ

−1
p K̃p[ex(t), t]

}

+ 2tr
{

˜̇KT
u [ex(t), t]Ŵ

−1
u K̃u[ex(t), t]

}

= −eTx (t)Qex(t)

+2tr
{

˜̇KT
p [ex(t), t]Ŵ

−1
p K̃p[ex(t), t]− xs(t)e

T
x (t)PBsK̃p[ex(t), t]

}

+2tr
{

˜̇KT
u [ex(t), t]Ŵ

−1
u K̃u[ex(t), t]+ um(t)e

T
x (t)PBsK̃u[ex(t), t]

}

(A4)

If ˜̇Kp[ex(t), t] and
˜̇Ku[ex(t), t] are defined as

˜̇Kp[ex(t), t] = ŴpB
T
s Pex(t)x

T
s (t) (A5)

˜̇Ku[ex(t), t] = −ŴuB
T
s Pex(t)u

T
m(t)

then

V̇(t) = − eTx (t)Qex(t) ≤ 0. (A6)

Because V(t) is positive definite and V̇(t) is negative definite, Lyapunov stability theory guarantees that the entire state error ex(t) will
approach 0 asymptotically, and that the tracking error ey(t) will vanish asymptotically. By Equations (19) and (A5), the adaptive gains
can be designed as

Kp[ex(t), t] = −

∫ t

0
ŴpB

T
s Pex(δ)x

T
s (δ)dδ + Kp(0) (A7)

Ku[ex(t), t] =

∫ t

0
ŴuB

T
s Pex(δ)u

T
m(δ)dδ + Ku(0)
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