
ORIGINAL RESEARCH
published: 07 January 2019

doi: 10.3389/fbuil.2018.00080

Frontiers in Built Environment | www.frontiersin.org 1 January 2019 | Volume 4 | Article 80

Edited by:

Vagelis Plevris,

OsloMet – Oslo Metropolitan

University, Norway

Reviewed by:

Aristotelis E. Charalampakis,

National Technical University of

Athens, Greece

Eleni N. Chatzi,

ETH Zürich, Switzerland

*Correspondence:

Mohammad Noori

mnoori@outlook.com

Specialty section:

This article was submitted to

Computational Methods in Structural

Engineering,

a section of the journal

Frontiers in Built Environment

Received: 16 October 2018

Accepted: 11 December 2018

Published: 07 January 2019

Citation:

Zhao Y, Noori M, Altabey WA and

Awad T (2019) A Comparison of Three

Different Methods for the Identification

of Hysterically Degrading Structures

Using BWBN Model.

Front. Built Environ. 4:80.

doi: 10.3389/fbuil.2018.00080

A Comparison of Three Different
Methods for the Identification of
Hysterically Degrading Structures
Using BWBN Model

Ying Zhao 1, Mohammad Noori 1,2*, Wael A. Altabey 1,3,4 and Taher Awad 4

1 International Institute for Urban Systems Engineering, Southeast University, Nanjing, China, 2Department of Mechanical

Engineering, California Polytechnic State University, San Luis Obispo, CA, United States, 3Nanjing Zhixing Information

Technology Company, Nanjing, China, 4Department of Mechanical Engineering, Faculty of Engineering, Alexandria University,

Alexandria, Egypt

Structural control and health monitoring scheme play key roles not only in enhancing

the safety and reliability of infrastructure systems when they are subjected to natural

disasters, such as earthquakes, high winds, and sea waves, but it also optimally minimize

the life cycle cost and maximize the whole performance through the full life cycle design.

In this scheme, system identification is regarded as a major technique to identify system

states and related parameter variables, thus preventing degradation of structural or

mechanical systems when unexpected disturbances occur. In this paper, three different

strategies are proposed to identify general hysteretic behavior of a typical shear structure

subjected to external excitations. Different case studies are presented to analyze the

dynamic responses of a time varying shear structural system with the early version

of Bouc-Wen-Baber-Noori (BWBN) hysteresis model. By incorporating a “Gray Box”

strategy utilizing an Intelligent Parameter Varying (IPV) and Artificial Neural Network

(ANN) approach, a Genetic algorithm (GA), and a Transitional Markov Chain Monte

Carlo (TMCMC) based Bayesian Updating framework system identification schemes

are developed to identify the hysteretic behavior of the structural system. Hysteresis

characteristics, computational accuracy, and algorithm efficiency are further discussed

by evaluating the system identification results. Results show that IPV performs superior

computational efficiency and system identification accuracy over GA and TMCMC

approaches.

Keywords: hysteretic behavior, BWBN model, Intelligent Parameter Varying (IPV), Genetic algorithm (GA),

Transitional Markov Chain Monte Carlo simulation (TMCMC), Bayesian updating

INTRODUCTION

In recent years, an increasing attention is witnessed to face the challenging issues of safety,
serviceability, reliability, risk and life-cycle management, and performance improvement of
structures and infrastructure due to changing and more frequently occurring natural and
man-made hazards, infrastructure crisis, and sustainability issues. These disturbances are dealt with
innovative technologies to enhance structural functionality and safety in various stages of research
and development (Spencer, 2003; Altabey, 2017a). Several types of structures that employ control
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strategies for different application scopes can be found in
Constantinou et al. (1998), Soong and Spencer (2002), and
Altabey (2014, 2017b,c); Altabey (2018). Proper modeling of
inherent non-linearity in vast majority of structural systems
plays an important role in understanding structural response
under hazardous loadings. System identification is an important
approach in control strategy regarded as the interface between
the mathematical world of control theory and the real world
of application and model abstractions (Zadeh, 1956; Ljung,
2010; Altabey, 2016, 2017d,e; Altabey and Noori, 2017a, 2018;
Zhao et al., 2018), and it handles a wide range of system
dynamics problem without the prior knowledge of actual system
physics. The schematic diagram of system identification process
is depicted in Figure 1.

Hysteresis can be described as the hereditary and memory
nature of a non-linear or inelastic system behavior where the
restoring force is dependent on both instantaneous as well as
past history of deformations. In general, under cyclic loading,
mechanical and structural systems are capable of dissipating
considerable energy and they exhibit appreciable hysteretic
behavior with hysteresis loops. Each loop enclosing the area in
the restoring force vs. displacement curve depicts the energy
dissipated over a complete cycle resulting from internal friction
within the structural system.

Various empirical hysteresis models have been proposed in the
past few decades. A class of smoothly varying hysteresis models
used in engineering fields are Bouc-Wen class of hysteresis
models. Bouc suggested a smooth and versatile hysteresis model
for non-linear systems and hysteretic systems (Bouc, 1967;
Wen, 1975, 1976, 1980, 1986, 1989; Park et al., 1986; Wen
and Yeh, 1989; Ikhouane and Rodellar, 2007; Ikhouane et al.,
2007; Ikhouane and Gomis-Bellmunt, 2008). Baber and Wen
extended the Bouc model to take the degradation in strength
or stiffness of structural systems into account (Baber and

FIGURE 1 | A diagram of system identification.

Wen, 1980). Baber-Noori, and later Noori, further extended
the capabilities of Bouc-Wen model by including pinching
behavior and studied the response of these systems under random
excitation (Noori, 1984; Baber and Noori, 1986). Baber-Noori
and subsequently Noori-Baber’s work on integrating the pinching
phenomenon in hysteretic behavior and extending Bouc-Wen-
Baber (BWB) model was the first work in developing a smooth
hysteresis model capable of taking into account strength and
stiffness degradation as well as shear pinching phenomenon
(Baber and Noori, 1985). BWBN was incorporated in structural
design software, OpenSees developed at the University of
California Berkeley (Hossain, 1995). A toolbox for computing
the parameters of BWBN hysteresis model using multi-objective
optimization evolutionary algorithms was also developed by
SourceForge, an Open Source community (Bouc Wen Baber
Noori Model of Hysteresis, Source Forge). Foliente showed Bouc-
Wen-Baber-Noori (BWBN) model could produce previously
observed inelastic behavior of wood joints and structural systems
using BWBN smooth hysteresis model (Foliente, 1995; Zhao
et al., 2017a,b; Noori et al., 2018). Deb et al. developed a toolbox
that identifies structural parameters of Bouc–Wen–Baber–Noori
hysteresis model through a noval multi-objective optimization
evolutionary algorithms (MOBEAs) (Deb et al., 2002; Deb,
2013). Ortiz et al. analyzed and identified BWBN model via
a multi-objective optimization algorithm (Ortiz et al., 2013).
Peng et al. utilized BWBN model for identifying the parameters
of a magneto-rheological damper and depicts its force-lag
phenomenon (Peng et al., 2014). Muller et al. investigated the
application of BWBN in their work and conducted performance-
based seismic design through a Search-Based Cost Optimization
(Muller et al., 2012). Chan et al. made a prediction of the
hysteretic behavior of passive control systems by applying BWBN
in a nonlinear-autoregressive-exogenous model (Chan et al.,
2015).
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Traditional artificial neural networks technique shows its
superiority in the identification, monitoring, and control of
complicated and non-linear dynamic systems (Narendra and
Parthasarathy, 1990; Masri et al., 1992; Lu and Basar, 1998;
Abouelwafa et al., 2014; Altabey and Noori, 2017b). However,
a priori knowledge of the characteristics of restoring force
is necessary and important for traditional parametric system
identification approaches, while the non-parametric methods
do not need information beforehand, lacking direct association
between system dynamics and system model. In order to
overcome the limitations of conventional parametric and non-
parametric approaches, an noval Intelligent Parameter Varying
(IPV) method was proposed, which makes full use of the
embedded radial basis function networks to make an estimation
of the hysteretic and inelastic characteristics of restoring forces
constitutively for a multi degree of freedom system. A scaled
three story base excited structure was designed to experimentally
verify the non-linearity and its associated hysteresis of a structure
using a displacement controlled shaking table (Saadat et al., 2003,
2004a,b, 2007). Further, a data-driven identification strategy for
non-linear and hysteretic behaviors of steel wire strands was
compared and verified using polynomial basis functions and
neural networks. The results showed that neural networks were
found more promising for the prediction of slightly pinched,
hardening hysteresis, strongly pinched, hardening hysteresis, and
classical quasi-linear softening hysteresis (Brewick et al., 2016).
Genetic algorithms have been used for system identification of
non-linear and hysteretic systems. The application of Real Coded
Genetic Algorithms (RCGA) was demonstrated and applied to
fit curves of synthetic and experimentally obtained Bouc-Wen
hysteresis loops for a sandwich composite material (Hornig and
Flowers, 2005). Different real coded genetic algorithms and their
related criteria for efficiently identifying non-linear systems are
regards as non-classical and optimized identification techniques
(Monti et al., 2009). A Bayesian probabilistic framework was
proposed to detect damage of continuous monitored structures
by incorporating load-dependent Ritz vectors as an alternative to
modal vectors (Sohn, 1998). A large body of work was conducted
to track, estimate and identify structural parameters, system
status and hysteretic and degrading behavior of structures using
Kalman filters, extended Kalman filters and unscented Kalman
filters (Jeen-Shang and Yigong, 1994; Yang et al., 2006; Wu and
Smyth, 2007, 2008; Chatzi and Smyth, 2009; Chatzi et al., 2010;
Lei and Jiang, 2011; Mu et al., 2013; Kontoroupi and Smyth,
2017; Erazo and Nagarajaiah, 2018). Traditional Markov Chain
Monte Carlo approach in conjunction with Bayesian updating
method were applied for structural response predictions and
performance reliability evaluation (Yuen and Katafygiotis, 2001;
Zhang and Cho, 2001; Beck and Au, 2002). Later, a transitional
Markov Chain Monte Carlo (TMCMC) approach was developed
by designing optimized sampling strategy from a series of
intermediate probability density functions (PDFs) that converge
to the target PDF, thus avoiding sampling difficulties. The
TMCMC theory and algorithm were verified and demonstrated
through the performance of the developed sampling approach,
different PDFs as well as higher dimensional problems (Ching
and Chen, 2007; Muto, 2007; Muto and Beck, 2008; Worden and

Hensman, 2012; Zheng and Yu, 2013; Behmanesh and Moaveni,
2014; Green, 2015; Green et al., 2015; Ortiz et al., 2015).

It is a major barrier to successfully design hysteretic structures
against degradation under severe cyclic loading. Most structural
systems degrade with significant hysteresis, for example wood
structures, dams, highways, reinforced concrete towers, steel
bridges are critical and key elements of our built environment. In
spite of their obvious importance, and their huge rehabilitation
and replacement costs, design, construction, and analysis of
the majority of these structures requires overly simplistic or in
some cases flawed assumptions regarding hysteretic evolution.
Development of a practical structural degrading identification
approaches is much deserving. A comparative study of online
and offline identification strategies for UAVs were discussed, and
it is found that online approach is more adaptive to changes
but with lower prediction accuracy (Puttige and Anavatti, 2007).
Therefore, offline learning is employed in this paper. Based
on what was discussed in the introduction above, the main
contributions of the research are to present a three story
hysteretically degrading shear structure by incorporating BWBN
slip lock hysteresis to represent the hysteretic restoring forces
in this system. This BWBN model will be capable of producing
all significant and prominent features of structural strength and
stiffness degradations as well as slip lock behavior, and conduct a
comparative study using three system identification approaches
including an Intelligent Parameter Varying Artificial Neural
Network developed in an earlier research work by a group that
involved one of the authors (a “gray box” model that considers
linear as well as non-linear parts of the dynamic system), genetic
algorithm optimization method, and a novel TMCMC statistical
approach.

The comparative study of the aforementioned approaches
for system identification and their application in a structural
system using BWBN MODEL is an original work. To the best
of the authors’ knowledge such comparative study has not been
reported in the literature.

STRUCTURAL SYSTEM MODELING AND
SYSTEM IDENTIFICATION

BWBN Hysteresis Model
The model employed herein is an earlier version of BWBN
hysteresis degradation model, which incorporates the previous
smooth system degrading element by Bouc as modified by
Baber and Wen in series with a slip-lock element (a non-
linear hardening spring) developed by Baber and Noori. Under
cyclic excitation, degradation manifests itself in the evolution
of progressively varying hysteresis loops. A non-linear system
governed by Equation (1) is given with the incorporation of
BWBNmodel.

mẍ+ cẋ+ R = F (t) (1)

R = αkx+ (1− α) kz (2)

ż =
Aẋ1 − ν

[

β |ẋ1| |z|n−1 z + γ ẋ1 |z|n
]

η
(3)
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ẋ2 =
√

2

π

s

σ
exp

[

− z2

2σ 2

]

ż (4)

ε̇ = (1− α) kẋz (5)

s = δsε (6)

(x = x1 + x2) (7)

where, parameters m, c, k are, respectively, the mass, damping,
and stiffness coefficients, and parameters ẍ, ẋ, x are quantities
that describe the system acceleration, velocity and displacement,
and R is the restoring force and F (t) is the ambient excitation.
Parameter α is the weighting value denoting the ratio of post-
elastic to initial stiffness. Parameters A, β , and γ are basic
hysteresis shape control parameters. Parameter z is the hysteretic
displacement, and n is the degree of the sharpness of yield.
Strength and stiffness degradation coefficients are, respectively
denoted by ν(δν) and η(δη). Parameters x1 and x2 are Bouc-Wen
hysteretic system displacement and the additional displacement
that considers slip-lock behavior. Parameter ε is the measure
of the combined effect of duration and severity of the energy
dissipated through hysteresis, σ is a measure of the sharpness of
the peak of the hysteresis, and δs measures the slip magnitude. All
10 parameters are essential to produce the common features of
hysteretic behavior. It would be very helpful if a small number of
unspecified parameters for system identification can be reduced
in that large numbers of parameters increase the uncertainty
of convergence for updating parameters in search space. It was
proved that the redundancy of specific hysteresis parameters
can be eliminated through mathematical transformations in the
parameter space devised to freeze them without affecting the
system response (Ma et al., 2004; Charalampakis and Koumousis,
2008a,b; Charalampakis and Dimou, 2010).

Structural System Modeling
Restoring force curves of reinforced or steel structures show
complex hysteresis characteristics, revealing material non-
linearity, crack opening and closing, bond and slip between steel
bars and concrete and low cycle fatigue that result in structural
strength and stiffness degradation. The hysteresis model used
herein considers the specific case appropriate for both strength

and stiffness degradations, and slip-lock behavior of restoring
hysteretic forces of the structure. All the restoring forces of the
structure are assumed to follow the BWBN hysteresis model. The
structural system considered in this study is a shear type model
subjected to ambient sinusoidal wave and ElCentro seismic
excitation as input signals ẍg . The ground excitation motion
ẍg makes an integral transformation to be incorporated into
the structural equations. The structural system mainly includes
three lumped mass coupled subsystems, as shown in Figure 2.
These masses are lumped at floor (floor mi), levels and these
floors are assumed and constrained to only move laterally. The
restoring force Ri , in conjunction with the stiffness between the
adjacent floors, are represented by dampers and springs, with
the corresponding coefficients ci and ki, respectively. The time
varying system yields energy dissipation due to the hysteretic
behavior of the inner structure.

For this three story shear structure, the equations of motion
are represented by Equations (8–10):

m3ẍ3 + c3 (ẋ3 − ẋ2) + R3 = 0 (8)

m2ẍ2 + c2 (ẋ2 − ẋ1) + R2 − c3 (ẋ3 − ẋ2) − R3 = 0 (9)

m1ẍ1 + c1
(

ẋ1 − ẋg
)

+ R1 − c2 (ẋ2 − ẋ1) − R2 = 0 (10)

System Identification Theory
A typical system identification framework mainly has two
components including system itself and system identification
model. By defining an equivalence criterion, the parameters of the
system identification model are updated via a comparison with
the original system, until the system identification model will be
eventually equivalent to the original system. System identification
approaches used in this paper include intelligent parameter
varying based approach, GA based approach and transitional
markov chain monte carlo (TMCMC) based approach. IPV
approach employs ANNs and establishes a “Gray Box” system,
where the original system parameters are replaced by the
parameters of ANNs, and the system structure is replaced by
ANNs. For GA and TMCMCmethods, they are used to optimize
and identify the parameters of system model, which is regarded
as an approximate model of the original real system. The

FIGURE 2 | Structural lumped mass model.
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theoretical background for the three approaches are presented in
the following subsections.

Intelligent Parameter Varying Based System

Identification
Artificial neural network (ANN) is a non-linear and adaptive
information processing system composed of large numbers of
neuron units. A radial basis function (RBF) neural network is
employed to build the intelligent parameter varying model. In
ANN architecture, the Euclidean distance between the clustering
center and input vector is calculated and the result is activated
to pass through the output layer. The activation function is
Gaussian output function and is formulated as:

gj = exp

(

−
∑n

i=1

(

xi − cj
)2

σ 2
j

)

(11)

where gj is the output of the jth unit in the hidden layer, xi is

the input data fed to the network, cj is the center of the j
th unit

in the input space, and σj is the width of the jth function. j =
1, 2, · · · , m. Parameterm is the number of the centers of neurons,
and n represents the dimension of the input space. Linearly
weighted summation of hidden layer node outputs produces the
output nodes. Therefore, the output of the network is calculated
by:

y =
n
∑

j=1

wjgj (12)

where wj is the weight of the j
th node.

The objective is to find a series of weights that minimize the
square of error between the actual and desired network outputs,
i.e.,:

E
(

k
)

= 1

2

N
∑

j=1

(

d
(

k
)

− y
(

k
))2

(13)

where d(k) is the desired output and y(k) the actual output of
RBF and j = 1, 2, · · · , N, and N is the number of data sets.
There are commonly two approaches for utilizing ANNs, i.e.,
supervised and unsupervised learning. In supervised approach
the input and the referred output are usually known. The network
then processes the input values and makes a comparison between
its resulting output and the desired output. The network system
makes the errors propagate back through different layers, causing
the system to adjust tuned weights which control the network.
This process repeats over and over until all the weights are
continually tweaked in an appropriate way. During the training
process of a network the connection weights are continually
refined to a specific generalization level and a good network
performance level. In unsupervised training, the system itself
must then decide what features and how many features need to
be extracted to group the input data, which is often referred to as
self-organization or adaption. Herein, we use the non-supervised
learning algorithm to acquire the centers and variance of radial

basis function, and meanwhile the least mean squared error is
acquired by using supervised learning algorithm. The response
of the hysteretic system is used as the desired signal, and the
error between the desired signal and the simulated signal is back
propagated to modify the weights and threshold values of neural
network model.

Parametric system identification approaches have been widely
used but in most published literature in this area a priori
knowledge of the characteristics depicting the behavior of
restoring force is required. Non-parametric approaches generally
do not need information beforehand but they typically lack direct
associations between system dynamics and associated model.
When ANNs are implemented using the “Black Box” approach,
little of the system information might be obtained from the
traditional techniques due to the fact that the “Black Box”
only considers system input and output. Intelligent Parameter
Varying (IPV) method preserves the benefits of both traditional
parametric and non-parametric approaches, and utilizes the
embedded radial basis function as the activation of neurons to
estimate the constitutive characteristics of inelastic and hysteretic
restoring forces for a multi degree of freedom structural system.

IPV technique, i.e., a gray box approach (Figure 3) that
incorporates the advantages of both “White Box” and “Black Box”
approaches, was developed in such a way that themodel structure
can be determined using the first principle (Equations 18–20),
while non-linear and adaptive learning capabilities of ANNs can
be used to identify the non-linear, time varying system’s dynamics
(Equations 24–26) that would be difficult to model and identify
using the traditional “White Box” and “Black Box” (Saadat et al.,
2003, 2004a,b, 2007).

A non-linear system with full state measurement represented
by the Linear Parameter Varying (LPV) model structure is given
by:

ẋ = f1 (x, u) · x+ f2 (x, u) · u (14)

y = x (15)

The IPV approach introduced herein would preserve the model
structure inherent in Equation (14) without requiring a priori
representations of non-linearities f1 (x, u) and f2 (x, u). Instead,
these terms would be represented by separate artificial neural
networks g1 (x, u,w1) and g2 (x, u,w2) as depicted in Equations
(16, 17):

ẋ = g1 (x, u,w1) · x+ g2 (x, u,w2) · u (16)

y = x (17)

By modeling the non-linearities f1 (x, u) and f2 (x, u) via separate
artificial neural networks g1 (x, u,w1) and g2 (x, u,w2), the
model structure (Equations 16, 17) is preserved. Therefore,
the relationship between the model structure and artificial
neural network parameters is preserved. The structural model
is preserved by incorporating ANN, preserving a portion of
information of the structural model. The IPV approach preserves
the direct association between the construction of ANN and
the system dynamics, used for structural health monitoring for
system identification.
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FIGURE 3 | System identification using gray box.

Based on first principle, system dynamics can be transformed
to the following form:

− c3 (ẋ3 − ẋ2) − R3 −m3ẍg = m3ü3 (18)

− c2 (ẋ2 − ẋ1) − R2 + c3 (ẋ3 − ẋ2) + R3 −m2ẍg = m2ü2 (19)

− c1
(

ẋ1 − ẋg
)

− R1 + c2 (ẋ2 − ẋ1) + R2 −m1ẍg = m1ü1 (20)

where u1, u2, u3, respectively represent the relative displacements
of each floor, i.e., u1 = x1 − xg , u2 = x2 − xg , u3 = x3 − xg .

− R3 −m3ẍg = m3ü3 (21)

− R2 + R3 −m2ẍg = m2ü2 (22)

− R1 + R2 −m1ẍg = m1ü1 (23)

The stiffness and damping terms are lumped into restoring forces,
since in the hysteresis models the restoring force R associates
with the lateral relative displacement xr and the restoring
displacement z, where z is expressed by the function of lateral
relative velocity ẋr .

The modeling for the restoring forces using radial basis
function based neural network is as follows:

R̂3 = g3
(

ü3, ẍg
)

(24)

R̂2 = g2

(

ü2, ẍg , R̂3

)

(25)

R̂1 = g1

(

ü1, ẍg , R̂2

)

(26)

where, R̂1, R̂2, R̂3 represent, respectively, the identified restoring
forces through the training of ANN as shown in Figure 4.

Genetic Algorithm Based System Identification
Genetic algorithm (GA) is an approach that searches the global
optimal solution by simulating a natural evolution process.

The objective function can be formulated as the normalized
mean square error (MSE) of the predicted time history ỹ

(

t|p
)

as compared to the reference time history y (t). Herein, the
acceleration response signal is employed as the time history
series. The purpose of the following optimization approach is to
minimize the difference (or the error) between predicted time
history and the referred time history. The hysteretic structural
system objective function is introduced below:

OF
(

p
)

=
∑n

i=1

(

y (ti) − ỹ
(

ti|p
))2

Nσ 2
y

(27)

where p is a parameter vector, σ 2
y the variance of the

reference history, and N the number of points used. Sum of
three acceleration response signal differences of the hysteretic
structural system is used as the objective function. The
optimization problem can be stated as the minimization of the
objective function OF

(

p
)

when the parameter vector has the
following side constraints as:

xLB ≤ p ≤ xUB (28)

where xLB and xUB are vectors defining the lower and the upper
values of the model parameters, respectively. The basic strategy
for the parameter identification using GA is shown in Figure 5.
GA operates starting from a population of the potential solutions
to a representive problem, and one population is composed
of numbers of individuals coded by genes. Each individual is
chromosomes with the characteristics of entity. GA initializes
on a population of individuals (coded candidate solutions to
the problem) that are manipulated by some operators such
as selection, crossover, and mutation. In short, the selection
process drives the search direction toward the region of best
individuals, and the cross operator combines individuals to
generate offsprings.
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If it is indispensable to make selection and crossover operators
converge toward the optimum, mutation alters one or more
gene values (individuals) in a chromosome from its initial state,
thus, maintaining genetic diversity from one generation of a
population to the next. In this way, a complete exploration
of global search space is forced by algorithm within the
search space. Each individual in the population is represented
as chromosome, indicating the collection of parameters are
supposed to identify. GA adopts an elitist strategy, which consists
of the preservation of the most fit individuals obtained in the
current generation. Population representation and initialization
generate population and individuals, and the initialized value
will be assigned to the parameter space for solving the hysteretic
system model. The fitness function is established by using
the prediction error between the simulated signal response
and predicted signal response. After a series of successive
mathematical operators for optimization, the next generational
loop begins.

FIGURE 4 | IPV for structural system modeling.

Transitional Markov Chain Monte Carlo Based

System Identification
Markov Chain Monte Carlo (MCMC) is an analytic approach
which replaces numerical integration through summation over
numbers of samples generated from iteration. A Markov chain is
a stochastic process where one state is transformed to another
state after a sufficiently long sequence of transition procedure.
The next state is conditionally based on the last state. A key
property of Markov chain is that the starting state has no
influence on the state of the chain via a series of sequential
transitions. The chain reaches its steady state at a specific point

FIGURE 5 | A flow chart of system identification using GA.

FIGURE 6 | TMCMC based system identification strategy.
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where it reflects sampling distribution from stationary status. The
principle of Monte Carlo simulation is applied for the integration
to approximate the expected complex distribution status of
numbers of samples. By increasing the number of samples, the
approximation accuracy can be measured and achieve a desired
value, whichmainly depends on the independence of the samples.

Markov chain involves a stochastic sequential process where a
series of states can be sampled from some stationary distributions
while Monte Carlo sampling can make an estimation of various
characteristics of a specific distribution. The goal of MCMC is to
design aMarkov chain to meet the target distribution of the chain
which is what we are interested in sampling from.

TransitionalMarkov ChainMonte Carlo Theory (TMCMC) is
introduced to avoid the difficulty of sampling from complicated
target probability distributions (e.g., multimodal PDFs, PDFs
with flat manifold, and very peaked PDFs) but sampling from a
series of intermediate PDFs that converge to the target PDF and
are easier to sample.

Bayesian Inference describes a process of solving posterior
density functions given the likelihood and prior probability. The
target probabilistic model can be depicted by M, D is the data
acquired from the system, and the uncertain parameters of the
model are described as θ . Sampling from the posterior PDF of
θ conditioned on D is the aim of the Baysian model updating,
which is given as:

f (θ |M,D) = f (D|M, θ) · f (θ |M)

f (D|M)

= f (D|M, θ) · f (θ |M)
∫

f (D|M, θ) · f (θ |M) · dθ (29)

where f (θ |M) is the prior PDF of θ , f (D|M, θ) is the likelihood
of D given θ , and f (D|M) is the evidence of the modelM.

Bayesian model updating generally employs simulation based
methods in that it is effective to obtain samples from f (θ |M, θ),
which can be estimated at a specific quantity of interest
E
(

g|M, D
)

based on the Law of Large Number.

E
(

g|M, D
)

≈ 1

N

N
∑

k=1

g (θk) (30)

where
{

θk : k = 1, 2, · · · , N
}

represents a set of N samples from
f (θ |M,D). Consider the equation as follow:

f (θ |M,D) ∝ f (θ |M) · f (D|M, θ) (31)

It is usually difficult to sample from f (θ |M, D) using Importance
Sampling (IS) and Metropolis–Hastings (MH) in that it is not so
easy to understand the geometry of the likelihood f (D|M, θ).
To converge to the target PDF f (θ |M, D) from the prior PDF
f (θ |M), a series of intermediate PDFs are constructed as the
following:

fj (θ) ∝ f (θ |M) · f (D|M, θ)
pj , j = 0, 1, · · · , m

0 = p0 < p1 < · · · < pm = 1 (32)

Note that f 0 (θ) = f (θ |M) , fm (θ) = f (θ |M, D). T
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where the index j denotes the stage number. Although the
geometry changing from f (θ |M) to f (θ |M, D) is large, the
status of two changing adjacent intermediate PDFs is small. It is
efficient to sample from fj+1 (θ) according to the previous sample
from f j (θ) through this small change.

The function fj (θ) is used to extract samples and make an
estimation of the PDF itself as a kernel density function (KDF),
a combination of weighted Gaussian functions centered at the
samples. The kernel density function can be regarded as the
proposal PDF of the MH method to sample from f j+1 (θ). This

will subsequently and ultimately result in f (θ |M, D) samples.
This approach is called adaptive Metropolis–Hastings (AMH)
algorithm. Given that the proposal PDF (KDF) function is fixed,
rendering the MHmethod is as similar as IS, not efficient in high
dimension situation.

It is a totally different strategy for TMCMC to acquire
fj+1 (θ) samples based on fj (θ) samples, KDF method is replaced
by a resampling algorithm. It covers a battery of resampling
stages, with each stage completing the following, given Nj

samples from fj (θ), depicted by
{

θj, k : k = 1, · · · , Nj

}

, acquire

samples from f j+1 (θ), depicted by
{

θj+1, k : k = 1, · · · , Nj+1

}

. It

can be calculated by the following in a more easier way, with
the samples

{

θj, k : k = 1, · · · , Nj

}

from fj (θ). The “plausibility

weights (w
(

θj, k
)

)” of these samples regarding fj+1 (θ) can be
computed by:

w
(

θj, k
)

=
f
(

θj, k|M
)

f
(

D|M, θj, k
)pj+1

f
(

θj, k|M
)

f
(

D|M, θj, k
)pj

= f
(

D|M, θj, k
)pj+1−pj ,

k = 1, · · · , Nj (33)
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FIGURE 7 | System identification results (Sin) (A–C) IPV, (D–F) GA, (G–I) TMCMC.
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Based on the normalized weights, the uncertain parameters can

be resampled, i.e. let: θj+1, k = θj, l and w.p.
w
(

θj, l
)

∑Nj

l=1
w
(

θj, l
)

k = 1, · · · , Nj+1

where “with probability” is represented by w.p. and pacifier
index is denoted as l. It is shown that if Nj and Nj+1 achieve
a relatively large quantity,

{

θj+1, k : k = 1, · · · , Nj+1

}

will be

distributed as f j+1 (θ). Moreover, w
(

θj, k
)

is expected as the

following value:

E
[

w
(

θj, k
)]

=
∫

w (θ) · fj (θ) · dθ

=
∫

f (D|M, θ)
pj+1−pj · fj (θ) · dθ

=
∫

f (D|M, θ)
pj+1−pj · f (θ |M) f (D|M, θ)

pj

f (θ |M) f (D|M, θ)
pjdθ

· dθ

=
∫

f (θ |M) f (D|M, θ)
pj+1dθ

∫

f (θ |M) f (D|M, θ)
pjdθ

(34)

Therefore,
∑Nj

k=1
w
(

θj, k
)

/Nj is the automatically unbiased

estimation made for
∫

f (θ |M)f (D|M, θ)
pj+1dθ

∫

f (θ |M)f (D|M, θ)
pjdθ

. According to the

results above, the following method is used to sample from
f (θ |M,D) and make an estimation of f (D|M).

More precisely, with probability w
(

θj, k
)

/
∑Nj

l=1
w
(

θj, l
)

, by
using a covariance matrix equal to the scaled version of the
estimated covariance matrix of f j+1 (θ), a Markov chain sample
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FIGURE 8 | System identification results (ElCentro) (A–C) IPV, (D–F) GA, (G–I) TMCMC.

Frontiers in Built Environment | www.frontiersin.org 10 January 2019 | Volume 4 | Article 80

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Zhao et al. Identification of Hysterically Degrading Structures

in the kth chain can be generated from a Gaussian proposal PDF
centered at the current sample of the kth chain:

∑

j

= β2

Nj
∑

k=1

w
(

θj, k
)







θj, k −





∑Nj

j=1 w
(

θj, l
)

θj, l
∑Nj

j=1 w
(

θj, l
)











×







θj, k −





∑Nj

j=1 w
(

θj, l
)

θj, l
∑Nj

j=1 w
(

θj, l
)











T

(35)

where β is the prescribed scaling factor,
∑

j= product of β2 and

the estimated covariance of f j+1 (θ). The rejection rate is chosen

as the value β , and MCMC may probably achieve a larger value
accordingly. The value 0.2 is found to be more reasonable for the
scaling parameter β .

It is essential to choose
{

pj : j = 1, · · · , m− 1
}

. The larger
value of p is desirable to make the transition between
the intermediate adjacent PDFs smoother. The number of
intermediate stages achieves a huge value if the increase of
p-values has slow change rates.

The degree of uniformity of the plausibility weights
{

w
(

θj, k
)

: k = 1, · · · , Nj

}

can appropriately indicate how
close fj+1 (θ) approaches fj (θ), so pj+1 should be chosen so that
the coefficient of variation (COV) of the plausibility weights can
be equivalent to a prescribed threshold. The Bayesian inference
framework for system identification is established (Figure 6) for
structural model updating, which is regarded as a determinant
reason for choosing the most suitable model parameters related
to the hysteretic behavior of the structures by minimizing the
difference between the predicted structural response and the
simulated structural response. For the hysteretic structural
model, the uncertain model parameters are selected as the ones
that need to be updated through Bayesian inference (Equation
31) by drawing samples of parameters from the posterior PDF of
parameters.

The TMCMC based Bayesian Updating algorithm is coded
and implemented to establish the computational environment
via exchange of data between the model and the algorithm. The
evolution of parameter updating process is that, the samples
from the prior PDFs are approximately uniformly distributed
in the model parameter space at the first stage

(

p0 = 0
)

.
Through applying Bayesian inference with TMCMCprobabilistic
simulations, the samples eventually populate well in the high
probability region of the posterior PDFs close to the true model
parameters at the last stage

(

pm = 1
)

.
TMCMC approach is employed to make an identification

of the parameters of Bouc-Wen class models, henceforth
represented by the vector θ ≤ 2 ⊆ Rd. The appropriate
choice of θ reflects the corresponding non-linear and hysteretic
behavior of structure. By applying Bayesian model updating, the
major advantage is that the result gives a probability distribution
expressing the likelihood probability distribution of different
parameters rather than yielding a single value for θ . It is clear
that the evolution of the model parameter variation represents
the Bayesian inference process. T
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To make a restriction of the parameter space 2, two side
constraint vectors θmin and θmax are defined such that:

θmin (i) ≤ θ (i) ≤ θmax (i) 1 ≤ i ≤ d (36)

The vector θ has specific constraints such that the generated
initial samples can determine the feasible values that the
parameters can take. By defining prior PDF of θ a uniform
distribution between the likelihood PDF and side constraints
are regarded as the prediction error assumed as Gaussian
function distributed with unknown variance and zero mean. The
prediction error is described as the error between the predicted
system response and the simulated system response given by:

f (D|θ) =
l
∏

i=1

1

σacc
√
2π

exp

[

− 1

2σ 2
acc

(

x (ti) − x̂ (ti|θ)

Sacc (ti)

)2
]

(37)

where σ 2
acc is the variance of the prediction errors and Sacc is the

weighting function used to normalize the acceleration response
of the hysteretic system. To achieve computational convenience,
the log-likelihood function lnf (D|θ) is employed in the actual
implementation of the TMCMC algorithm as:

lnf (D|θ) = − 1

2
Nt ln (2π) − Nt ln (σacc)

− 1

2σ 2
acc

(

x (ti) − x̂ (ti|θ)

Sacc (ti)

)2

(38)

The jth stage of parameter evolution process by correspondingly
choosing the values of pj can be shown as the contours of
PDF f j (θ).

NUMERICAL ANALYSIS OF SYSTEM
IDENTIFICATION

Parameter Settings
Table 1 lists the parameter assignments of the structural system
associated with BWBN hysteresis model for different cases. The
mass coefficient of each floor is 1 kg, stiffness coefficient 10 N/m
(sin) and 20 N/m (ElCentro), damping coefficient 0.05 N/(m/s)
for each floor, respectively.

For hysteresis model, A = 1, α = 0.01, β = 2, γ = 2, n =
1 (IPV), n = 1.5 (GA and TMCMC), δν = 0, δν1 = 1.5 (sin)
and 3 (ElCentro), δη = 0, δη1 = 1.5 (sin) and 3 (ElCentro),
σ = 0.01, δs = 0.05. Damage occurrences are assumed at 30 s,
60 s, 100 s (sin) and 10 s, 20 s, 40 s (ElCentro) when both the
strength degradation factor δυ and stiffness degradation factor
δη change to δυ1and δη1, respectively. For GA and TMCMC
approaches, parameter initial values are assigned between the
corresponding lower and upper bounds before the optimization
processes. Parameters are updated between the two bounds of
parametric searching space, and eventurally achieve the exact
values.

Numerical Analysis Results
Figures 7, 8 show the restoring force identification results
when the structure is subjected to sinusoidal signal and

TABLE 3 | Correlation coefficient analysis for different cases.

Approach SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

IPV – Sin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 85.11

ElCentro 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 93.33

30 Sin 0.9978 0.9991 0.9996 0.9978 0.9991 0.9996 89.93

ElCentro 0.9969 0.9985 0.9991 0.9969 0.9985 0.9991 96.05

10 Sin 0.8708 0.9273 0.9566 0.8708 0.9273 0.9566 95.67

ElCentro 0.8243 0.8936 0.9314 0.8243 0.8936 0.9314 108.98

GA – Sin 0.9958 0.9964 0.9987 0.9958 0.9964 0.9997 901.31

ElCentro 0.9667 0.9770 0.9869 0.9667 0.9770 0.9869 911.52

30 Sin 0.9944 0.9952 0.9967 0.9944 0.9952 0.9967 908.25

ElCentro 0.9662 0.9810 0.9859 0.9662 0.9810 0.9859 916.26

10 Sin 0.8435 0.8924 0.9312 0.8435 0.8924 0.9312 927.76

ElCentro 0.8012 0.8370 0.8994 0.8012 0.8370 0.8994 929.19

TMCMC – Sin 0.9983 0.9986 0.9988 0.9983 0.9986 0.9988 64812.36

ElCentro 0.9925 0.9932 0.9957 0.9925 0.9932 0.9957 64901.47

30 Sin 0.9108 0.9138 0.9259 0.9108 0.9138 0.9259 65012.69

ElCentro 0.9018 0.9092 0.9129 0.9018 0.9092 0.9129 65109.53

10 Sin 0.8360 0.8401 0.8498 0.8360 0.8401 0.8498 66409.77

ElCentro 0.8209 0.8275 0.8302 0.8209 0.8275 0.8302 68014.28

The running time of system identification programs is computed using Samsung computer [Win 7 Ultimate, Processor: Intel (R), Xeon (R), CPU E3-1231 v3 @3.4G Hz, RAM: 8G, System

type: 64 operating system].
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ElCentro signal, respectively. Black curve represents the restoring
force of the original structural system while the red curve
represents the identified restoring force using IPV, GA, and
TMCMC approaches. For the case of sinusoidal excitation, the
identification results show that the degradation phenomenon
of restoring forces of 2nd−3rd floor and 1st−2nd floor are
more evident compared with ground-1st floor by using all of
the three approaches. For the case of ElCentro excitation, the
identification results show that the degradation phenomenon of
restoring forces existing in all adjacent floors by using IPV and
GA methods is more evident compared with that using TMCMC
method. The hysteresis curves rotate accordingly when damage
occurs. More results in details are discussed in the next section.

DISCUSSIONS

Choice of Signal Excitation Type and
Objective Function
Both sinusoidal excitation signal and ElCentro excitation signal
are used as input signals to the system identification of hyestetic
system. The frequency of sin signal is single and history curve is
smooth and periodic variation. The ElCentro wave is stochastic,
non-periodic, and non-steady state, and this represents the other
type of excitation which is totally counter to harmonic wave such
as sin signal. These two types of signals are employed to the
response analysis and verification of the generalization capability
of three different algorithms for identifying restoring forces of
hysteretic structure. In addition, the establishment of objective
functions employed in the GA and TMCMC are formulated
through the combination of desired and simulated acceleration
signal differences of all three degrees of freedom.

Parameter Choice for System Identification
Table 2 shows the parameter identification error using GA
and TMCMC for the case of noise free, SNR = 30 and
SNR = 10 (SNR = signal noise ratio). These error represents
the relative error between the “true value” and “identified
value.” All errors are no more than 10%. Generally for
the cases with higher SNR they perform better parameter
identification results since the disturbance of noise to signal
is low. From Figures 7, 8, and Table 2, for the noise free
case, it is shown that during the degradation process (damage
evolution), strength degradation factor δυ changes from 0 to
1.4695 (sin,GA) /3.0130 (ElCentro,GA) /1.5913 (sin,TMCMC)
/2.9890 (ElCentro,TMCMC), and stiffness degradation factor δη

changes from 0 to 1.5370 (sin,GA)/2.9142 (ElCentro,GA)/1.5400
(sin,TMCMC)/2.7357 (ElCentro,TMCMC).

The hysteresis loop rotates clockwise with a certain degree,
indicating large non-linearity and considerable degradation.
However, from the identification results, it is also found that
in the sin excitation case, the hysteresis loop exhibits better
slip-lock phenomenon, and can absorb more energy than the
case of ElCentro excitation. Noise corrupted cases have similar
parameter identification results.

Table 3 shows the analysis of correlation coefficients for
different cases. For the cases with small SNR, the identification
effectiveness is not relatively good compared with noise free and T
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higher SNR (R-t is the restoring force-time relationship, and R-x
is the restoring force-relative displacement relationship).

In this paper, IPV is a radius basis neural network which is
a completely data-driven approach, while GA and TMCMC are
not fully data-driven in that they assign the identification model
within specific initial parameter intervals and then update and
search to optimize structural model.

IPV method performs better identification results due to its
adaptive learning capability and anti noise property in the noise
environment. From computational time, it can be concluded
that the IPV approach is a more efficient identification method
compared with GA and TMCMC methods. Concretely, for the
case of noise free, the computational time for GA and TMCMC
are 9.59 and 760.51% longer than IPV (sin), and 8.77 and
694.40% longer than IPV (ElCentro). Similar results are also
shown in noise corrupted cases. This demonstrates IPV method
has higher computational efficiency than GA and TMCMC
approaches.

Strength and stiffness degradation parameters are both
very important in the hysteresis model, which determine the

hysteretic behavior of structural systems. Table 4 lists five groups
of parameter assignments regarding the variance of strength
and stiffness degradation coefficients. The objective of setting
these cases is studying the influence of change of degradation
parameters on system identification accuracy.

To simulate damage occurrence, for IPV approach, strength
degradation factor δυ and stiffness degradation factor δη change
from 1.5 to 1.8, 2.1, 2.4, and 2.7, respectively (sin), while change
from 3 to 3.3, 3.6, 3.9, and 4.2, respectively (ElCentro). For GA
(sin) method, for the first three groups, the true value of strength
degradation factor δυ and stiffness degradation factor δη keep
fixed value 1.5 but the lower and upper bound change from 0.1–3
to 0.5–2.5 and 1–2, respectively. For the last two groups, the true
value of strength degradation factor δυ and stiffness degradation
factor δη are 1.8 and 2.1, respectively but the lower and upper
bound correspondingly change from 0.1 to 3.6 and 0.1 to 4.2,
respectively.

For GA (ElCentro) method, for the first three groups, the true
value of strength degradation factor δυ and stiffness degradation
factor δη keep fixed value 3 but the lower and upper bound

TABLE 5 | Correlation coefficient analysis (IPV).

Approach Group SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

IPV 1 – Sin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 85.11

ElCentro 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 93.33

30 Sin 0.9978 0.9991 0.9996 0.9978 0.9991 0.9996 89.93

ElCentro 0.9969 0.9985 0.9991 0.9969 0.9985 0.9991 96.05

10 Sin 0.8708 0.9273 0.9566 0.8708 0.9273 0.9566 95.67

ElCentro 0.8243 0.8936 0.9314 0.8243 0.8936 0.9314 108.98

2 – Sin 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 89.01

ElCentro 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 92.17

30 Sin 0.9975 0.9984 0.9993 0.9975 0.9984 0.9993 95.11

ElCentro 0.9957 0.9960 0.9971 0.9957 0.9960 0.9971 98.02

10 Sin 0.8567 0.8580 0.8700 0.8567 0.8580 0.8700 104.78

ElCentro 0.8108 0.8179 0.8244 0.8108 0.8179 0.8244 115.90

3 – Sin 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 88.97

ElCentro 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 90.00

30 Sin 0.9967 0.9976 0.9987 0.9967 0.9976 0.9987 96.02

ElCentro 0.9955 0.9965 0.9973 0.9955 0.9965 0.9973 99.14

10 Sin 0.8607 0.8678 0.8711 0.8607 0.8678 0.8711 107.37

ElCentro 0.8236 0.8299 0.8317 0.8236 0.8299 0.8317 120.03

4 – Sin 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 83.12

ElCentro 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 87.21

30 Sin 0.9970 0.9976 0.9984 0.9970 0.9976 0.9984 95.09

ElCentro 0.9961 0.9973 0.9979 0.9961 0.9973 0.9979 97.33

10 Sin 0.8700 0.8736 0.8744 0.8700 0.8736 0.8744 100.20

ElCentro 0.8301 0.8315 0.8333 0.8301 0.8315 0.8333 107.69

5 – Sin 1.0000 0.9999 0.9999 1.0000 0.9999 0.9999 86.09

ElCentro 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 89.11

30 Sin 0.9968 0.9977 0.9990 0.9968 0.9977 0.9990 93.84

ElCentro 0.9957 0.9969 0.9980 0.9957 0.9969 0.9980 98.94

10 Sin 0.8657 0.8672 0.8680 0.8657 0.8672 0.8680 104.55

ElCentro 0.8489 0.8498 0.8524 0.8489 0.8498 0.8524 111.11
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change from 0.1–6 to 1–5 and 2–4, respectively. For the last
two groups, the true value of strength degradation factor δυ and
stiffness degradation factor δη are 3.3 and 3.6, respectively but the
lower and upper bound correspondingly change from 0.1 to 6.6
and 0.1 to 7.2, respectively. TMCMC parameter assignment has
similar cases.

Table 5 shows the influence of change of strength and
stiffness degradation parameter on system identification accuracy
indicated by correlation coefficients using IPV method. For sin
excitation, as the strength and stiffness degradation parameter
increase from 1.5 to 2.7, the correlation coefficients do not
increase or decrease for the same case, and the computational
time also keep almost unchanged: (sin) Group1: 85.11–95.67 s,
Group 2: 89.01–104.78 s, Group 3: 88.97–107.37 s, Group 4:
83.12–100.20 s, Group 5: 86.09–104.55 s. (ElCentro) Group
1: 93.33–108.98 s, Group 2: 92.17–115.90 s, Group 3: 90.00–
120.03 s, Group 4: 87.21–107.69 s, Group 5: 89.11–111.11 s.

Table 6 shows the influence of change of strength and
stiffness degradation parameter on system identification accuracy
indicated by correlation coefficients using GA method. For sin

excitation, when the strength and stiffness degradation parameter
value is fixed at 1.5, as bounds (interval) change from 0–3
to 1–2, the correlation coefficients approach 1, indicating the
system identification accuracy improves with the bound interval
decreasing. The closer the bounds approach to the true value, the
more accurate and deterministic the system identifiion results
are. Accordingly, the computational time decreases with the
bound interval decreasing. For details: Group 1: 901.31–927.76 s,
Group 2: 895.66–922.22 s, Group 3: 889.73–914.73 s. When
the true value of strength and stiffness degradation increases
from 1.5 to 2.1 with given bounds, the identification accuracy
decreases, and the computational time increases accordingly.
Similar cases can also be found for ElCentro excitation
signal.

Table 7 shows the influence of change of strength and
stiffness degradation parameter on system identification accuracy
indicated by correlation coefficients using TMCMC method.
For sin excitation, when the strength and stiffness degradation
parameter value is fixed at 1.5, as bounds (interval) change from
0–3 to 1–2, the correlation coefficients approach 1, indicating the

TABLE 6 | Correlation coefficient analysis (GA).

Approach Group SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

GA 1 – Sin 0.9958 0.9964 0.9987 0.9958 0.9964 0.9997 901.31

ElCentro 0.9667 0.9770 0.9869 0.9667 0.9770 0.9869 911.52

30 Sin 0.9944 0.9952 0.9967 0.9944 0.9952 0.9967 908.25

ElCentro 0.9662 0.9810 0.9859 0.9662 0.9810 0.9859 916.26

10 Sin 0.8435 0.8924 0.9312 0.8435 0.8924 0.9312 927.76

ElCentro 0.8012 0.8370 0.8994 0.8012 0.8370 0.8994 929.19

2 – Sin 0.9963 0.9968 0.9993 0.9963 0.9968 0.9993 895.66

ElCentro 0.9700 0.9797 0.9888 0.9700 0.9797 0.9888 903.65

30 Sin 0.9947 0.9958 0.9971 0.9947 0.9958 0.9971 906.59

ElCentro 0.9668 0.9831 0.9877 0.9668 0.9831 0.9877 912.28

10 Sin 0.8553 0.9012 0.9337 0.8553 0.9012 0.9337 922.22

ElCentro 0.8108 0.8433 0.9042 0.8108 0.8433 0.9042 925.59

3 – Sin 0.9970 0.9976 0.9995 0.9970 0.9976 0.9995 889.73

ElCentro 0.9712 0.9800 0.9923 0.9712 0.9800 0.9923 894.49

30 Sin 0.9952 0.9967 0.9979 0.9952 0.9967 0.9979 900.01

ElCentro 0.9711 0.9828 0.9880 0.9711 0.9828 0.9880 905.38

10 Sin 0.8573 0.9103 0.9355 0.8573 0.9103 0.9355 914.73

ElCentro 0.8098 0.8449 0.9098 0.8098 0.8449 0.9098 918.90

4 – Sin 0.9813 0.9877 0.9921 0.9813 0.9877 0.9921 917.74

ElCentro 0.9512 0.9657 0.9703 0.9512 0.9657 0.9703 926.54

30 Sin 0.9754 0.9779 0.9837 0.9754 0.9779 0.9837 930.07

ElCentro 0.9534 0.9600 0.9718 0.9534 0.9600 0.9718 942.83

10 Sin 0.8301 0.8544 0.9009 0.8301 0.8544 0.9009 951.11

ElCentro 0.7885 0.8177 0.8836 0.7885 0.8177 0.8836 958.98

5 – Sin 0.9689 0.9788 0.9864 0.9689 0.9788 0.9864 926.34

ElCentro 0.9321 0.9555 0.9688 0.9321 0.9555 0.9688 929.88

30 Sin 0.9500 0.9633 0.9773 0.9500 0.9633 0.9773 937.48

ElCentro 0.9412 0.9678 0.9006 0.9412 0.9678 0.9006 940.05

10 Sin 0.9378 0.9538 0.9699 0.9378 0.9538 0.9699 956.01

ElCentro 0.7650 0.7948 0.8305 0.7650 0.7948 0.8305 968.44
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TABLE 7 | Correlation coefficient analysis (TMCMC).

Approach Group SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

TMCMC 1 – Sin 0.9983 0.9986 0.9988 0.9983 0.9986 0.9988 64812.36

ElCentro 0.9925 0.9932 0.9957 0.9925 0.9932 0.9957 64901.47

30 Sin 0.9108 0.9138 0.9259 0.9108 0.9138 0.9259 65012.69

ElCentro 0.9018 0.9092 0.9129 0.9018 0.9092 0.9129 65109.53

10 Sin 0.8360 0.8401 0.8498 0.8360 0.8401 0.8498 66409.77

ElCentro 0.8209 0.8275 0.8302 0.8209 0.8275 0.8302 68014.28

2 – Sin 0.9985 0.9989 0.9990 0.9985 0.9989 0.9990 63508.90

ElCentro 0.9930 0.9941 0.9964 0.9930 0.9941 0.9964 63132.56

30 Sin 0.9112 0.9143 0.9265 0.9112 0.9143 0.9265 64657.77

ElCentro 0.9034 0.9106 0.9244 0.9034 0.9106 0.9244 64789.88

10 Sin 0.8373 0.8456 0.8543 0.8373 0.8456 0.8543 65546.11

ElCentro 0.8215 0.8288 0.8376 0.8215 0.8288 0.8376 66444.90

3 – Sin 0.9988 0.9990 0.9993 0.9988 0.9990 0.9993 62109.67

ElCentro 0.9935 0.9957 0.9970 0.9935 0.9957 0.9970 62476.67

30 Sin 0.9118 0.9156 0.9279 0.9118 0.9156 0.9279 63157.58

ElCentro 0.9056 0.9117 0.9279 0.9056 0.9117 0.9279 63654.59

10 Sin 0.8384 0.8491 0.8579 0.8384 0.8491 0.8579 64111.67

ElCentro 0.8244 0.8296 0.8383 0.8244 0.8296 0.8383 65000.78

4 – Sin 0.9867 0.9889 0.9902 0.9867 0.9889 0.9902 65457.89

ElCentro 0.9756 0.9780 0.9806 0.9756 0.9780 0.9806 65989.07

30 Sin 0.9000 0.9067 0.9138 0.9000 0.9067 0.9138 66675.88

ElCentro 0.8923 0.8979 0.9036 0.8923 0.8979 0.9036 66899.04

10 Sin 0.8222 0.8318 0.8440 0.8222 0.8318 0.8440 67476.68

ElCentro 0.8016 0.8066 0.8148 0.8016 0.8066 0.8148 68698.36

5 – Sin 0.9659 0.9770 0.9799 0.9659 0.9770 0.9799 66780.77

ElCentro 0.9502 0.9589 0.9664 0.9502 0.9589 0.9664 66999.75

30 Sin 0.8879 0.8909 0.9008 0.8879 0.8909 0.9008 67376.11

ElCentro 0.8748 0.8765 0.8800 0.8748 0.8765 0.8800 67980.04

10 Sin 0.8117 0.8277 0.8335 0.8117 0.8277 0.8335 68780.99

ElCentro 0.7980 0.8034 0.8110 0.7980 0.8034 0.8110 69333.56

system identification accuracy improves with the bound interval
decreasing.

The closer the bounds approach to the true value, the more
accurate and deterministic the system identifiion results are.
Accordingly, the computational time decreases with the bound
interval value decreasing, as shown in detailed cases: Group
1: 64812.36–66409.77 s, Group 2: 63508.90–65546.11 s, Group
3: 62109.67–64111.67 s. When the true value of strength and
stiffness degradation increases from 1.5 to 2.1 with given bounds,
the identification accuracy decreases, and the computational
time increases accordingly. Similar cases can also be found for
ElCentro excitation signal.

Comparison of Three Different Algorithm
Principles
Intelligent Parameter Varying approach uses radial basis function
to map the complex input signal to high dimensional signal,
and it is a data driven mechanism. By using appropriate error
back propagation mechanism, this method can design a good
neural network architecture to process considerable amount
of data or high parameter dimension, especially for system

identification application. Genetic algorithm and Transitional
Markov Chain Monte Carlo approaches are non-data-driven
intelligent optimization algorithms. Genetic algorithm optimizes
the parameters by using selection, crossover, and mutation
operators through elitist strategy. Transitional Markov Chain
Monte Carlo method employs model updating to optimize
parameters through applying Bayesian inference with TMCMC
probabilistic simulations, and the samples eventually populate
well in the high probability region of the posterior PDFs
close to the true model parameters through a series of
intermediate updating processes. The latter two methods are
related to optimization theory, and may not perform well
(tapped in local optimum) especially when the parameter
dimension is relatively large. Therefore, it is very significant
to conduct a comparative study on system identification
of hysteretic structures using Intelligent Parameter Varying,
Genetic Algorithm and Transitional Markov Chain Monte Carlo
methods.

The above discussions regarding the choice of signal excitation
type, parameter choice for system identification and comparison
between three different principles for system identification has
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demonstrated the necessity, feasibility and importance of this
research. It also illustrates the generalization of this research
and proves the superiority using IPV over GA and TMCMC for
system identification of hysteretic structures.

CONCLUSIONS

To better understand the hysterically degrading, structural
systems using an earlier version of smoothly varying Bouc-
Wen-Baber-Noori hysteresis model in this research, a detailed
description of BWBN hysteresis model is presented, and the
restoring force and the associated system variables are analyzed
using non-linear differential equations containing different
parameters. By choosing the parameters in a suitable way, it
is possible to generate a large variety of different shapes of
the hysteresis loops. A three floor shear structure is modeled
which composes of three adjacent subsystems by associating
system kinetic equations, restoring force expression and BWBN
hysteresis model. By using BWB-Noori model, a new scheme
is proposed to effectively and efficiently track and estimate the
hysteretic restoring forces using intelligent parameter varying
approach, genetic optimization algorithm and the transitional
Markov Chain Monte Carlo simulation. Most importantly,
comparative study by using these approaches for different cases is
demonstrated through parameter error analysis and correlation
coefficient analysis of system identification of time varying
degrading structures. Major findings are summarized in the
following statements.

(1) BWBN hysteresis model is a smoothly varying differential
mathematical model, and it can reflect highly non-linear
and gradual hysteretic degradation with slip lock behavior
observed in numerous structural and mechanical systems,
and this model can be widely used to predict the response
of degradation phenomena of general structures.

(2) When employing system identification and
parameter/model updating approach, the initial parameter
spaces of the hysteretic system should be well assigned to
satisfy the requirement of reliable system identification
process. Tracking of the restoring forces for the hysteretic
system using system identification approaches can accurately
estimate the changing of restoring force status in time,
i.e., the rotation of hysteresis loops indicates structural
degradation due to abrupt damages. This proves that system

identification techniques can be used as powerful tools
for detecting the damage/degradation for structural health
monitoring applications. Stiffness and damping terms are
lumped into restoring forces represented by structural
non-linearity, and this constructs effective IPV modeling.

(3) IPV, GA, and TMCMC methods are employed for the
system identification of BWBN model, and a comparative
study is conducted for the verification of the effectiveness
of these approaches. The results show higher SNR cases
have better correlation and smaller parameter errors. From
the correlation analysis, we also know that IPV has better
anti-noise capability than GA and TMCMC.

(4) Qualitative comparison regarding the computational time
of these three different algorithms are ranked for different
cases, i.e., IPV Based system identification approach <

GA based system identification method << TMCMC
based system identification approach. This demonstrates
that compared with traditional parameter optimization and
statistical methods, IPV approach is a promising, efficient
and effective way for system identification and Structural
Health Monitoring applications.

(5) IPV technique using the RBF based ANNs has its superior
advantages over the GA based identification and the
TMCMC based identification techniques for its fully data-
driven adaptive learning ability for high dimensional data.
Proper design of parameter initial bounds can improve the
computational efficiency for GA and TMCMC approaches.
The GA based identification may have relatively uncertain
values for the randomness of genetic operations (selection,
crossover, and mutation), while the TMCMC algorithm is
based on the sampling technique that is not as effective and
is uncertain, especially for the case that the system has a
relatively large number of parameters.
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