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In this paper a hierarchical Bayesian model updating approach is proposed for calibration

of model parameters, estimation of modeling error, and response prediction of dynamic

structural systems. The approach is especially suitable for civil structural systems where

modeling errors are usually significant. The proposed framework is demonstrated through

a numerical case study, namely a 10-story building model. The “measured data” include

the numerically simulated modal parameters of a frame model which represents the

true structure. A simplified shear building model with significant modeling errors is

then considered for model updating with stiffness of different structural components

(substructures) chosen as updating parameters. In the proposed hierarchical Bayesian

framework, updating parameters are assumed to follow a known distribution model

(normal distribution is considered here) and are characterized by the distribution

parameters (mean vector and covariance matrix). The error function, which is defined as

the misfit between model-predicted and identified modal parameters, is also assumed

to follow a normal distribution with unknown parameters. The hierarchical Bayesian

approach is applied to estimate the stiffness parameter distributions with mean and

covariance matrix referred to as hyperparameters, as well as the modeling error which

is quantified by the mean and covariance of error function. Joint posterior probability

distribution of all updating parameters is derived from the likelihood function and the prior

distributions. A Metropolis-Hastings within Gibbs sampler is implemented to evaluate

the joint posterior distribution numerically. Two cases of model updating are studied

with first case assuming a zero mean for the error function, and the second case

considering a non-zero error mean. The response time history of the building to a

ground motion is predicted using the calibrated shear building model for both cases and

compared with the exact response (simulated). Good agreements between predictions

and measurements are observed for both cases with better accuracy in the second

case. This verifies the proposed hierarchical Bayesian approach for model calibration

and response prediction and underlines the importance of considering and propagating

the uncertainties of structural parameters and more importantly modeling errors.

Keywords: hierarchical Bayesian model updating, modeling error estimation, uncertainty quantification and

propagation, probabilistic response prediction, Metropolis-Hastings within Gibbs sampler
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INTRODUCTION

Finite element (FE) model updating is one of the most
common methods for response prediction and performance
assessment of structural systems (Mottershead and Friswell,
1993; Friswell and Mottershead, 2013). In the deterministic
formulation, model updating includes an optimization process
to obtain model parameter values (e.g., geometry, mass,
stiffness) that minimize the misfit between model-predicted and
experimentally measured data features. Data features of interest
include acceleration or strain response time history, or modal
parameters such as natural frequency and mode shapes. Several
applications of deterministic model updating have been reported
for response prediction and performance assessment of real-
world structures with relative success (Capecchi and Vestroni,
1993; Levin and Lieven, 1998; Friswell et al., 2001; Bakir et al.,
2008; Fang et al., 2008; Perera and Ruiz, 2008; Jafarkhani and
Masri, 2011). Brownjohn et al. applied model updating for
dynamic assessment of a cable-stayed bridge (Brownjohn and
Xia, 2000) and a highway bridge (Brownjohn et al., 2003).
Teughels et al. performed damaged detection of a highway bridge
through FEmodel updating (Teughels et al., 2002, 2003; Teughels
and De Roeck, 2004). More applications to real-world bridges
can be found in these studies (Zhang et al., 2001; Jaishi and Ren,
2006; Jaishi et al., 2007; Reynders et al., 2007). Moaveni et al.
employed model updating for progressive damage identification
of a 2/3-scale reinforced concrete (RC) frame (Moaveni et al.,
2012). Song et al. performed damage identification of a two-
story RC building and compared it with lidar measurement
(Song et al., 2017). However, deterministic approaches have their
shortcomings. For examples, they are unable to quantify the
uncertainty of updating results and are only valid when unique
optimal solutions exist, i.e., the inverse problem is identifiable.
The uncertainty quantification issue and identifiability problem
can be addressed in a probabilistic formulation of model
updating such as Bayesian model updating. Beck et al. derived
the framework for Bayesian model updating and presented some
numerical applications (Beck and Katafygiotis, 1998; Katafygiotis
and Beck, 1998; Beck et al., 2001; Beck and Au, 2002). Yuen et al.
applied Bayesianmodel updating for damage identification of the
numerical ASCE-IASC benchmark structure (Yuen et al., 2004).
Behmanesh and Moaveni performed probabilistic identification
of the simulated damage on a footbridge through Bayesian
inference (Behmanesh and Moaveni, 2015). More applications
of Bayesian model updating to numerical and experimental case
studies can be found in the literature (Sohn and Law, 1997; Ching
and Beck, 2004; Muto and Beck, 2008; Ntotsios et al., 2009).

In the application of model updating to real-world civil
structures, three major sources of uncertainty must be
considered: (1) measurement noise and identification error

(e.g., in extraction of modal parameters), (2) variability in
effective model parameters due to the changing in-service

ambient and environmental conditions (change in effective
mass, damping, stiffness due to temperature, humidity, wind
load, and occupancy, etc.), and (3) modeling errors (e.g., linearity
assumption, boundary conditions, and discretization). Although
the classical Bayesian model updating approaches often consider

the effects of measurement noise and identification error, the
second and third sources of uncertainty are not explicitly
accounted for. The second source of uncertainty is relatively
unique to large-scale civil structures, and referred to as inherent
variability. In past studies (Alampalli, 2000; Clinton et al., 2006;
Moser and Moaveni, 2011), identified natural frequencies of
different structural systems are reported to be significantly
affected by temperature, humidity, and weather conditions.
Furthermore, different levels of ambient loading such as wind
and traffic load cause changes in effective structural stiffness.
The proposed hierarchical Bayesian model updating framework
is capable of accounting for these sources of uncertainty by
estimating the probability distributions of updating parameters
characterized by hyperparameters (Behmanesh et al., 2015;
Behmanesh and Moaveni, 2016).

Simplifying assumptions cannot be avoided when modeling
complex civil structures and they often lead to significant
modeling errors. The classical Bayesian model updating
framework cannot explicitly quantify the modeling errors
since all three sources of uncertainty mentioned above are
lumped into one term. However, the classical formulation is
useful for model class selection among competing model forms
(Ching and Chen, 2007; Song et al., 2018). Error-domain model
falsification algorithm is shown to be capable of falsifying model
instances/classes in the view of compatibility with measurement
by avoiding assumptions on the exact distribution of modeling
errors and residual dependency (Goulet and Smith, 2013;
Goulet et al., 2013; Pasquier and Smith, 2015). Comparisons
between error-domain model falsification and Bayesian model
updating approaches regarding to prediction accuracy and
robustness are recently made in these studies (Reuland et al.,
2017; Pai et al., 2018). In the proposed hierarchical Bayesian
framework, the influence of modeling errors is quantified by
fitting and estimating the probability distribution of error
functions characterized by the distribution parameters, e.g.,
mean and covariance in a normal distribution. The estimated
error mean reflects the modeling bias which causes a shift in
model predictions, while the covariance matrix is accounting for
the effect of measurement noise and identification error, as well
as the uncertainty due to modeling errors.

In this paper, the proposed hierarchical Bayesian model
updating approach is implemented for probabilistic response
prediction of a numerical 10-story building model. A frame
model which represents the considered true structure is used
to simulate the measurements. A simplified shear building
model is created and used for model updating to represent
significant modeling errors. Stiffness of different stories in the
shear building model (substructures) are selected as the updating
parameters and are assumed to follow normal distributions
which are characterized by stiffness mean and covariance. The
error function is defined as the difference between identified
modal parameters and their model-predicted counterparts and
is also assumed to follow a normal distribution. The hierarchical
Bayesian approach is implemented to estimate the stiffness mean
and covariance—referred to as hyperparameters—as well as the
modeling errors. The mean of the error function is assumed to
be zero in the first case of model updating. However, significant
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bias is observed in the predicted natural frequencies, which
prompts a second case of model updating with non-zero error
mean. Finally, displacement and acceleration time histories are
predicted using the calibrated models and are compared with
measured data for both cases.

HIERARCHICAL BAYESIAN MODEL
UPDATING FRAMEWORK

Formulation of Hierarchical Bayesian
Approach
The probability distribution of updating structural parameters
θ (e.g., stiffness of different building components) is assumed
to be normal, which is characterized by the mean vector
and covariance matrix referred to as hyperparameters, θ ∼

N (µθ, 6θ). Error function, which is defined as the misfit
between measured data (or data features such as identified
modal parameters) and their model-predicted counterparts, is
also assumed to follow a normal distribution with mean µe

and covariance matrix 6e. The proposed framework allows
estimation of posterior probability distribution of updating
parameters and hyperparameters, namely µθ, 6θ, µe, and 6e.
Figure 1 shows the graphical representation of the proposed
hierarchical Bayesian framework. The influence of changing
ambient and environmental conditions on structural stiffness
is accounted for by hyperparameters µθ and 6θ. The effect of
modeling assumptions on the error function can vary across
different types of structures, structural components, andmaterial.
The modeling errors are assumed to follow a joint normal
distribution in this study. The mean of error function µe

represents a modeling bias, and covariance of error function 6e

includes the contribution of measurement noise, identification
error and modeling error, with modeling error generally having
the largest influence.

In model updating applications, modeling bias (mean of
modeling error) is commonly assumed to be zero. This
assumption can be verified once the updating is completed by
evaluating the error mean. If the error mean is negligible, then
the assumption has been accurate. Therefore, the error function
can be written as:

et =

[

eλt
e8t

]

∼ N(0,6e) (1)

in which et is the error function for dataset t and consists of
two parts: eigen-frequency error eλt and mode shape error e8t ,
defined as:

eλtm =
λ̃tm − λm(θt)

λm(θt)
(2)

e8tm =
8̃tm
∥

∥

∥
8̃tm

∥

∥

∥

− atm
Ŵ8m(θt)
∥

∥Ŵ8m(θt)
∥

∥

(3)

Subscript m denotes the mode number, λm(θt)and 8m(θt) are

model-predicted eigen-frequency (λm(θt) =
(

2π ftm (θt)
)2
, in

which ftm (θt) is the natural frequency in Hz) and mode shape
in dataset t, andλ̃tm and 8̃tm are their identified counterparts.
The natural frequencies and mode shapes extracted from the
vibration measurement are referred to as identified modal
parameters in this paper. Ŵis a Boolean matrix which maps
corresponding degrees of freedom (DOFs) between 8m(θt) and
8̃tm. atm is a scaling factor and defined as:

atm =

(

8̃tm

)T
Ŵ8m(θt)

∥

∥

∥
8̃tm

∥

∥

∥

∥

∥Ŵ8m(θt)
∥

∥

(4)

The assumption of µe = 0 considers negligible modeling
bias, and in the case of significant modeling bias a non-
zero µe should be considered. Due to the compensation effect
between µθ and µe, these two terms cannot be estimated
simultaneously. Therefore, µe is not updated through a Bayesian
inference but is evaluated from the obtained results, as
demonstrated in section Model updating with µe 6= 0. The
covariance matrix 6e is assumed to be a diagonal matrix
which neglects the correlation between different error function
components.

6e =









. . .

σ 2
ei

. . .









(5)

Note that a full matrix can also be estimated in this framework,
but this would increase the computational burden of the updating
process. Based on the authors’ past experience, use of diagonal
covariance matrix is reasonable in many applications. However,
this is not true for all applications and errors in frequency and
mode shape components of the same mode can be correlated. In
the case of error function dependency, the estimated diagonal
covariance matrix is an approximate solution of the full
matrix.

The posterior probability density function (PDF) is
proportional to the multiplication of the likelihood function and
prior PDFs which are assumed to be independent (Gelman et al.,
2013), as shown below:

p
(

θt ,µθ,6θ,6e

∣

∣

∣
λ̃t , 8̃t

)

∝ p
(

λ̃t , 8̃t |θt ,µθ,6θ,6e

)

p (θt ,µθ,6θ,6e) (6)

∝ p
(

λ̃t , 8̃t |θt ,6e

)

p (θt|µθ,6θ,6e) p (µθ,6θ,6e) (7)

∝ p
(

λ̃t , 8̃t |θt ,6e

)

p (θt|µθ,6θ) p (µθ) p (6θ) p (6e) (8)

Equation (7) is derived based on the fact that the identified
modal parameters only depend on the structural stiffness θt and
the error function, therefore, the condition on hyperparameters
µθ and 6θ can be discarded from Equation (6). In addition,
structural stiffness is only dependent on its hyperparameters,
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FIGURE 1 | Graphical representation of the proposed hierarchical Bayesian framework.

therefore, the condition on 6e can be dropped, and by
assuming µθ, 6θ, and 6e are independent in their joint prior
distribution, Equation (8) can be obtained. When multiple
datasets are available and considered, the joint posterior
PDF could be derived by assuming different datasets are
independent:

p
(

2,µθ,6θ,6e

∣

∣

∣
λ̃, 8̃

)

∝ p (µθ) p (6θ)

p (6e)

Nt
∏

t=1

p
(

λ̃t , 8̃t |θt ,6e

)

p (θt|µθ,6θ) (9)

where2 =
[

θ1 . . . θt . . . θNt

]

, λ̃ =
[

λ̃1 . . . λ̃t . . . λ̃Nt

]

, 8̃ =
[

8̃1 . . . 8̃t . . . 8̃Nt

]

, and Nt denotes the number of datasets.
In this study, uniform prior PDF is assumed for µθ

and “conjugate priors” (Gelman et al., 2013) are used
for 6θ and 6e(σ

2
ei
) to simplify the formulation as shown

below.

p(µθ) ∝ 1 (10)

6θ ∼ Inverse-Wishart(6θ0, v1) (11)

σ 2
ei
∼ Inverse-χ2(v2, σ

2
e0) (12)

In above equations, v1, v2, 6θ0, σ 2
e0 are the parameters of

prior PDFs. The selection of these parameters can influence
the final posterior distribution and should be made based on
prior knowledge and engineering expertise. For the considered
inverse-Wishart and Inverse-χ2 distributions, smaller values of
v1 and v2 would “flatten/widen” the prior PDFs indicating larger
prior uncertainties, and 6θ0 and σ 2

e0 would reflect the mode of
distributions.

The joint posterior PDF is derived by substituting the
likelihood function and conjugate prior PDFs into Equation (9)
as shown below.

p
(

2,µθ,6θ,6e

∣

∣

∣
λ̃, 8̃

)

∝ |6θ|
−
Nt + v1 + Np + 1

2
Ne
∏

i=1

(σ 2
ei
)
−
Nt + v2 + 2

2

exp

[

Nt
∑

t=1

(

Jet + Jθt
)

−
1

2
tr
(

6θ0 � 6
−1
θ

)

−

Ne
∑

i=1

v2σ
2
e0

2σ 2
ei

]

(13)

Jet = −
1

2
eTt 6−1

e et (14)

Jθt = −
1

2
(θt − µθ)

T6−1
θ (θt − µθ) (15)

Here Np is the dimension of stiffness parameters θ, Ne is the
dimension of error function et and is equal to (1 + Ns)Nm, and
Nm and Ns denote number of available modes and number of
components (sensors) of the identified mode shape, respectively.

Metropolis-Hastings Within Gibbs Sampler
The derived joint posterior PDF in Equation (13) is only known
up to a normalizing constant, and it is often difficult to evaluate it
analytically. Gibbs sampler, which belongs to the class of Markov
Chain Monte Carlo (MCMC) methods, has been shown to be
capable of sampling and evaluating Equation (13) efficiently.
Gibbs sampler requires the derivation of posterior conditional
PDFs which are listed below:

p
(

θt

∣

∣

∣
µθ,6θ,6e, λ̃t , 8̃t

)

∝ exp
(

Jet + Jθt
)

(16)

p
(

µθ

∣

∣

∣
2,6θ,6e, λ̃, 8̃

)

= N

(

1

Nt

Nt
∑

t=1

θt ,
1

Nt
6θ

)

(17)

p
(

6θ

∣

∣

∣
2,µθ,6e, λ̃, 8̃

)

=Inverse-Wishart(6θ0 + S, v1 + Nt)
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(18)

p
(

σ 2
ei

∣

∣

∣
2,µθ,6θ, λ̃, 8̃

)

=Inverse-χ2(v2 + Nt ,
v2σ

2
e0 + NtVi

v2 + Nt
)

(19)

S =

Nt
∑

t=1

(θt − µθ) (θt − µθ)
T (20)

Vi =
1

Nt

Nt
∑

t=1

e2ti (21)

It can be seen that the posterior conditional PDFs for µθ, 6θ,
and 6e are standard distributions due to the use of conjugate
priors, therefore, samples can be easily generated for these
parameters. However, the conditional PDF for θt is only known
up to a scaling constant and therefore must be evaluated
numerically. In this study, Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953; Hastings, 1970) is employed to sample
θt . The presented sampling algorithm is called MH within Gibbs
sampler. Gibbs sampler samples the parameters recursively based
on the conditional PDFs, and in each loop, one sample is
generated containing the values of all updating parameters.

Propagation of Uncertainties in
Model-Predicted Response
After the joint posterior PDF is evaluated using Gibbs
sampler, the calibrated model can be used and assessed for
prediction of structural dynamic behavior through propagating
the uncertainties of inherent variability and modeling errors
estimated in the hierarchical Bayesian framework. The parameter
estimation uncertainties are not considered in this study, as this
type of uncertainty becomes negligible when using larger amount
of data. For prediction of natural frequencies and mode shapes,
the definitions of error function in Equations (2, 3) are used:

λ
pre
tm = λm(θt)+ λm(θt)eλtm (22)

8
pre
tm

∥

∥8
pre
tm

∥

∥

= atm
Ŵ8m(θt)
∥

∥Ŵ8m(θt)
∥

∥

+ e8tm (23)

where θt refers to the stiffness parameters of the calibrated model
which follows the normal distributionN(µ̂θ, 6̂θ) in which µ̂θ and
6̂θ refer to the maximum a posteriori (MAP) values estimated
through Gibbs sampler. The error function et (which consists
of two parts eλtm and e8tm ) follows the normal distribution

N(µ̂θ, 6̂θ).
Accurate prediction of response time history is critical for

assessment of structural performance by using metrics such as
themaximum inter-story drift of buildings during an earthquake.
Modal superposition method is employed to predict response
time history. These predictions propagate uncertainties due
to stiffness variability and modeling errors using the model-
predicted modal parameters in Equations (22, 23). The equation
of motion in modal coordinates (Chopra and Chopra, 2007) is:

q̈m(t)+ 2ζmωmq̇m(t)+ ω2
mqm(t) =

Pm(t)

Mm
(24)

where qm(t) is modal displacement of modem, ωm is the circular

natural frequency in rad/s and ωm =

√

λ
pre
tm , ζm is the damping

ratio. Pm(t) is the generalized force function and Pm(t) = 8T
mP(t)

in which P (t) is the input force vector. Mm is the generalized
mass of mode m with Mm = 8T

mM8m. The response time
history in physical coordinates can be transformed from modal
displacement as shown below:

ypre(t) =

Nm
∑

m

8
pre
m qm(t) (25)

In Equation (25), Nm denotes the total number of modes
used in the model calibration process, which means that
only contributions of Nm modes are included in the response
predictions as the calibrated model is only sufficient for
providing reliable predictions of these modes by propagating
all uncertainties considered. Note that error function et is only
evaluated at locations with measurement/sensors, which are
usually sparse. To extend the error function to DOFs which are
not measured, maximum component of σ̂e(φi,j) is assumed for
unmeasured DOFs with µei = 0. This is a relatively conservative

FIGURE 2 | (A) 10-story frame model (exact); (B) 10-story shear building

model (with modeling errors).

TABLE 1 | Geometry and material property of the 10-story frame model.

Structural components Cross-section

(m × m)

Young’s modulus (GPa)

Mean Std

Columns Story (1–3) 0.3× 0.3 50 3

Story (4–6) 0.25× 0.25 40 2

Story (7–10) 0.2× 0.2 30 1

Slabs (all stories) 0.5× 0.5 25 1

Std, standard deviation.
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approach for the extension of error function. The velocity and
acceleration prediction can be derived from Equation (25) by
replacing qm with q̇m or q̈m. Note that the model-predicted
displacement, velocity and acceleration responses are all relative
to the ground.

Ten-Story Building Model and Simulated
Data
The proposed hierarchical Bayesian approach is applied to a
numerical model of a 10-story building for validation. The
identified modal parameters of the building are simulated using
a frame model as shown in Figure 2A. Foundation rocking

is modeled by two rotational springs with stiffness kr =

2× 105 kN-m/rad. The building is assumed to be 30m (10×3m)
tall and 10m wide with a total weight of 40 metric tons (each
floor mass of 4 tons). No variability of the mass is considered
in this study. The cross-section and Young’s modulus of the
columns and floor slabs are reported in Table 1. The larger
values of Young’s modulus for lower stories are representing
larger effective Young’s modulus of reinforced concrete at lower
stories. To account for the inherent variability of the structural
stiffness, Young’s modulus of all members are assumed to
follow normal distributions with means and standard deviations
shown in Table 1. The stiffness of different structural members
are independent except for the two columns on the same

FIGURE 3 | Histogram of simulated natural frequencies from the frame model.

FIGURE 4 | Simulated mode shapes of first three modes from the frame model.
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story which are assumed to have the same stiffness. The small
rectangles with arrows in Figure 2A refer to the considered
locations of accelerometers on the building and direction of
measurements.

Based on the assumed normal distribution of structural
stiffness in the frame (exact) model, 100 sets of modal parameters

(natural frequency and mode shape) are simulated, which
represent the “measured” data. The modal parameters are
polluted with white noise of 0.5% in coefficient of variation
to account for the measurement noise and identification
error. It is assumed that only the first three modes are
identified and their histograms are shown in Figure 3. The

FIGURE 5 | Sample mean and standard deviation of µθ.

FIGURE 6 | Sample mean and standard deviation of 6θ (ρ refers to correlation coefficient).
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mode shapes of the first three modes are shown in Figure 4,
with mean stiffness assigned for all structural members in
this graph. Note that 5 accelerometers are considered in
the building, therefore, only mode shape components at
these stories are available in the following model updating
process.

MODEL UPDATING RESULTS

Case 1: Model Updating With µe = 0
To consider the effects of modeling errors, a 10-story shear
building model (instead of a framemodel) as shown in Figure 2B
is used in the model updating process. In this model, the
foundation rocking is ignored by using a fixed boundary
condition, the floors motion is constrained as only horizontal
direction, and the slabs are assumed to be rigid. The structural
columns are grouped into three substructures (story 1–3, story
4–6, and story 7-10) as shown in Figure 2B, and the updating
parameters θ1, θ2, and θ3 are the Young’s modulus of columns
in these substructures (the same Young’s modulus is assumed
for all columns in each group). It is assumed that the material
distribution along the height of the building is known and can
be divided into three groups. The substructuring strategy is
utilized to limit the number of updating parameters. However,
this strategy introduces additional modeling error due to the
smearing effect of grouping strategy.

The proposed hierarchical Bayesian model updating approach
is applied to estimate stiffness of the three substructures θ =

[θ1, θ2, θ3]
T , their hyperparameters µθ and 6θ, and covariance

of error function 6e (mean of error function µe is assumed to be
zero) using the simulated noisy modal parameters. After a tuning
process, the parameters of prior PDFs in Equations (11, 12) are
selected as:

v1 = 3,6θ0 =





12

12

12



 , v2 = 1, σ 2
e0 = 1× 10−6 (26)

MH within Gibbs sampler is employed to generate samples
from the posterior conditional PDFs in Equations (16–19). In
total, 20,000 samples are generated and first 5,000 samples
are discarded as burn-in period to remove the transitional
samples. Sample mean and standard deviation of µθ and 6θ

are plotted in Figures 5, 6, which show that the samples
have converged and the number of samples is adequate for
estimating these statistics. The sample histograms for µθ, σθi ,
and σe(λ1−3) are shown in Figure 7. The black lines denote
the kernel PDFs which are normalized to have the same
height as the highest bins of the histograms and black dots
denote the MAPs. The MAPs are estimated as the peaks of
kernel PDFs which are preferred over selecting the sample
with highest posterior probability to reduce the estimation

FIGURE 7 | Histograms and kernel PDFs of µθ, σθi
, and σe(λ1−3) (after burn-in).
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uncertainty. Alternatively, the average values could be used
but the MAPs are preferred as they represent the most
probable values of parameters and are more appropriate for
asymmetric distributions. It can be seen that samples of µθ

seem to follow a normal distribution, samples of σθi roughly
follow an Inverse-Wishart distribution, and samples of σe(λ1−3)

approximately follow an Inverse-χ2 distribution with a tail on
the right side. These are expected due to the choice of conjugate
priors used in section Formulation of Hierarchical Bayesian
Approach.

The estimated MAPs of µθ, 6θ(σθi , ρij) and 6e(σei ) are
summarized in Table 2, together with their nominal values from

TABLE 2 | MAPs of µθ, 6θ(σθi
, ρij ) and 6e (σei ) for Case 1 (µe = 0) and Case 2 (µe 6= 0), and evaluated µe from Case 1 results.

Parameters Nominal MAPs

Case 1 Case 2

µ̂θ(GPa) µ̂θ1
50 21.9 21.9

µ̂θ2
40 23.2 23.3

µ̂θ3
30 24.7 24.7

6̂θ σ̂θ1
(GPa) 3 0.48 0.49

σ̂θ2
(GPa) 2 0.49 0.50

σ̂θ3
(GPa) 1 0.40 0.36

ρ̂12 0 0.01 −0.12

ρ̂13 0 0.10 0.03

ρ̂23 0 0.11 −0.10

µe (×10−2) σ̂e(×10−3) λ1 −37.2 5 0 25.1 −2.36 5.9

λ2 −35.8 5 0 0.8 0.01 7.7

λ3 −24.4 5 0 55.0 5.39 10.0

φ1,1 3.2 5 0 0.8 −0.02 0.5

φ2,1 6.3 5 0 5.4 0.47 2.8

φ3,1 7.5 5 0 2.0 0.08 2.7

φ4,1 −0.3 5 0 3.5 −0.22 2.7

φ5,1 −4.0 5 0 2.1 0.01 2.2

φ1,2 −6.0 5 0 6.3 0.45 4.2

φ2,2 −5.7 5 0 5.9 −0.21 5.6

φ3,2 5.6 5 0 5.4 0.37 4.1

φ4,2 13.1 5 0 8.1 −0.06 8.1

φ5,2 1.4 5 0 6.2 0.37 5.3

φ1,3 −11.3 5 0 21.9 1.63 12.7

φ2,3 −2.8 5 0 5.4 0.07 5.1

φ3,3 23.8 5 0 14.6 −0.92 7.2

φ4,3 −2.8 5 0 12.0 0.90 6.4

φ5,3 −4.5 5 0 9.8 −0.20 9.5

ρ̂, µe, and σ̂e are normalized and therefore unitless terms. µe values are in percentage (×10-2 ) while σ̂e terms are per thousand (×10-3 ) as indicated in left column.
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FIGURE 8 | Comparison of natural frequency predictions with their identified counterparts using the calibrated model of Case 1 (µe = 0).
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the frame model. In Table 2, λi refers to eigen-frequency of mode
i and φj,i refers to component j ofmode shape i. It can be observed
that µ̂θi and σ̂θi are underestimated compared to their nominal

values due to the significant modeling errors introduced in the
shear buildingmodel. Although themean and standard deviation
of stiffness are underestimated, the correlation coefficients ρ̂ij are

0.97 0.98 0.99 1 1.01 1.02 1.03
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µ ≠

FIGURE 9 | Comparison of natural frequency predictions with their identified counterparts using the calibrated model of Case 2 (µe 6= 0).

FIGURE 10 | Acceleration record of the 2009 L’Aquila Italy earthquake.

FIGURE 11 | Comparison of displacement time history predictions at story 10 with measurements (simulations) for Case 1 and Case 2. Light red shaded area: 95%

confidence interval of predictions, blue shaded area: 95% confidence interval of simulations, red line: median of predictions, blue line: median of simulations.
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accurately estimated to be close to zero. Note that the overall
stiffness variability in each of the three column groups is less
than the individual stiffness uncertainty shown in Table 1 due
to (1) the compensation effect of independent element stiffness,
and more importantly (2) modeling errors in the shear building
model, including the negligence of rocking behavior at the base
and the rigid assumption of floors. The implemented grouping
strategy introduces additional modeling errors. Grouping
or sub-structuring is a common strategy to reduce the
number of updating parameters and avoid unidentifiability/ill-
conditioning.

The updated structural parameters (Young’s moduli)
represent the effective stiffness of different substructures. In

presence of large modeling errors, the updated values will
compensate for non-updated model parameters and modeling
errors, therefore, they may not correspond to the physical
Young’s modulus of the used material. In linear time-invariant
applications, calibrated models can still provide good response
prediction even outside the calibration range of response
amplitude. However, the calibrated model should be cautiously
used for prediction of local response quantities with little
sensitivity to the used error metrics such as modal parameter
errors. The available measurements can provide information
about the accuracy or bias of the calibrated model on used
error metrics (natural frequencies and mode shapes here).
But they do not provide accurate estimation of the expected

FIGURE 12 | Comparison of acceleration time history predictions at story 10 with measurements for Case 1 and Case 2 (refer to Figure 11 for legends).

FIGURE 13 | Comparison of displacement time history predictions at story 7 (no sensor/measurement) with measurements for Case 1 and Case 2 (refer to Figure 11

for legends).
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bias for localized quantities such as strains and stresses at
locations with large modeling errors (e.g., base of the building
in this application). Significant variability is observed for the
covariance of error function, and σ̂e(λ1) and σ̂e(λ3) are estimated
much larger than their nominal values (added white noise
level of 0.5%) due to the modeling errors and the assumption
of µe = 0 in Case 1. The nominal value of µe in Table 2 is
computed based on the error function definition in Equations
(2, 3) with Young’s modulus the same as the mean values in
Table 1.

The calibrated model is then used to predict the modal
parameters using the formulation detailed in section Propagation
of Uncertainties in Model-Predicted Response. A total of
1,000 natural frequency predictions are generated from the
calibratedmodel and comparedwith their identified counterparts
(simulated from the frame model) as shown in Figure 8.
It can be observed that the range of identified values
is fully covered by predictions. However, predictions have
significantly larger variability than measured data. An evident
difference is observed between the centers of two clouds
(black dots vs. gray circles) which indicates error bias.
Therefore, it is concluded that the assumption of µe =

0 is not an optimal choice in this case, and a non-zero
µe is preferred. This observation prompts the second case
of model updating referred to as Case 2 in the following
section.

Case 2: Model Updating With µe 6= 0
In this case of model updating, a non-zero mean is considered
for the error function. Although µe cannot be updated
simultaneously with µθ due to compensation effects, it can be
evaluated from the observed bias in error function as shown
below:

µe =
1

Nt

Nt
∑

t=1

êt (27)

in which êtis the error function evaluated based on Equations
(2, 3) using θ̂t estimated in Case 1. A total of 100 different

values of θ̂t are estimated for 100 sets of modal parameters
from the joint posterior distribution in Equation (13), and
µe is computed as the mean of 100 evaluations of êt . The
evaluated µe is reported in Table 2. It can be seen that the
largest values in µe correspond to the natural frequencies
of mode 1 and 3 which exhibit the largest bias in the
predictions as shown in Figure 8. Note that the estimated
bias does not provide physical interpretation of modeling
errors, but it can potentially indicate the extent of such
error.

The hierarchical Bayesian model updating is repeated with the
evaluated value of µe from Equation (27). Note that in Case 2,
µe is not updated through a Bayesian inference but is obtained
using the updating results of Case 1. The model updating
follows the same process with minor modifications in Equations
(14, 21):

Jet = −
1

2
(et − µe)

T6−1
e (et − µe) (28)

Vi =
1

Nt

Nt
∑

t=1

(eti − µei )
2 (29)

The estimated MAPs of µθ, 6θ(σθi , ρij), and 6e(σei ) with µe 6= 0

are reported in Table 2. It can be observed that µ̂θ and 6̂θ remain
almost the same for the two cases which is expected because the
hyperparameters estimation is based on the measured data and
the underlying model. The inclusion of a constant µe only shifts

FIGURE 14 | Comparison of acceleration time history predictions at story 7 (no sensor/measurement) with measurements for Case 1 and Case 2 (refer to Figure 11

for legends).
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the center of error function distribution and therefore, would not
affect the hyperparameters. However, values of 6̂e components
are generally reduced, especially for σ̂e(λ1) and σ̂e(λ3), making 6̂e

components much closer to their nominal values which are 0.005
due to the added white noise level of 0.5%. Similar comparison of
natural frequency predictions with their identified counterparts
using the calibrated model of Case 2 is shown in Figure 9. It can
be seen that significantly improved predictions are achieved in
this case compared to Figure 8. No observable bias exists between
the two clouds (black dots vs. gray circles), and similar variability
is observed. This demonstrates the importance of accounting for
modeling bias in the proposed hierarchical Bayesian framework
to achieve more accurate predictions.

Response Time History Prediction
The calibrated models from Case 1 and Case 2 are used to
predict response time history to an earthquake ground motion
using the modal superposition method described in section
Propagation of Uncertainties in Model-Predicted Response. The
input is the recorded groundmotion at Antrodoco station during
the 2009 L’Aquila Italy earthquake as shown in Figure 10. The
response predictions only include the contribution of the first
three modes as the shear building model is only calibrated
using these modes. The building is assumed to have modal
damping ratios of 2% for all modes. To account for the estimation
uncertainty of damping ratios, the identified damping ratios of
the first three modes are assumed to be 2% with a coefficient of
variation of 30%. Therefore, response time history predictions
include the uncertainties of the estimated stiffness inherent
variability (µ̂θ, 6̂θ), uncertainty of error function (µ̂e, 6̂e) and
the uncertainty of damping ratios. To verify the accuracy of
response predictions, the model predictions are compared with
the response of the exact (frame) model. The damping of the
frame mode is assumed to be exact (2% damping ratios for all
modes) and the contributions of all modes are included in the
simulation. However, the exact model simulations consider the
variability of stiffness parameters using their exact probability
distributions. It is worth noting that under large amplitude
seismic excitations, buildings experience non-linear hysteretic
behavior (Astorga et al., 2018). Therefore, in the case of dealing
with large amplitude excitations, a non-linear model of the
structural system is recommended to be used. The proposed
hierarchical Bayesian method can then be applied for non-linear
model calibration where hysteretic material properties can be
considered as updating parameters. However, in this study the
considered ground motion is deliberately selected to have a small
peak ground acceleration of around 0.02 g so the assumption of
linear elastic regime with low damping is realistic. Furthermore,
certain building codes allow the use of linear FE models for
simplified and approximate analysis of buildings under seismic
loads such as the equivalent linear procedure and response
spectrum procedure. These two linearmethods are routinely used
in practice to predict structural responses during seismic events.

A total of 200 independent predictions (using calibrated
model) and simulations (using exact model) are performed
and a 95% confidence interval is generated by: (1) sorting the
200 values at each time instant in an increasing order; (2)

TABLE 3 | Statistics of maximum roof displacement, maximum roof acceleration,

and maximum inter-story drift of 10th story for measurement and predictions.

Simulations

(exact model)

Case 1

(µe = 0)

Case 2

(µe 6= 0)

Mean Std Mean Std Mean Std

Max. roof

displacement (m)

0.01 5.1e−4 0.01 1.3e−3 0.01 1.1e−3

Max. roof

acceleration (m/s2)

−1.04 0.02 −0.96 0.10 −1.05 0.06

Max. inter-story

drift of 10th story

(%)

0.044 0.002 0.038 0.016 0.041 0.009

Std, standard deviation.

selecting the 6th and 195th values as the lower and upper
bounds of the confidence interval. Note that only 5 sensors
(story 2, 4, 6, 8, and 10) are considered in the model updating
process, therefore, the estimated error function only includes
information for these stories. The error function is extended
for unmeasured DOFs using the strategy detailed in section
Propagation of Uncertainties in Model-Predicted Response to
predict response of the unmeasured DOFs. The comparisons of
displacement and acceleration time history predictions at the
roof with their simulated counterparts are shown in Figures 11,
12. A good agreement is observed between model predictions
and simulations for both cases, while the predictions in Case
2 are more accurate (smaller bias and uncertainty). Note that
in general, acceleration predictions have larger uncertainty
compared to displacements since a larger number of modes
contribute to acceleration response and higher modes often
have larger modeling errors. In this study, accelerations are
predicted using only the first three modes while the simulations
of true response include contributions of all modes. Figures 13,
14 show the model-predicted responses at the 7th floor which
does not have a sensor. Again, a good agreement can be seen
for displacement and acceleration time history predictions and
simulated response. Similarly, Case 2 predictions provide tighter
fit with simulated response. In general, the predictions in DOFs
without sensors are more conservative (larger variance) due to
the conservative assumption made in the extension of error
functions detailed in section Propagation of Uncertainties in
Model-Predicted Response. The statistics of maximum roof
displacement, maximum roof acceleration and maximum inter-
story drift of the 10th story for measurement and predictions of
Case 1 and Case 2 are summarized in Table 3. It can be seen
that, although Case 1 provides relative satisfactory results, Case
2 delivers significantly more accurate mean values and standard
deviations.

SUMMARY AND CONCLUSIONS

In this paper a hierarchical Bayesian model updating approach
is implemented for modeling error estimation and response
prediction of a 10-story building model using modal parameters.
The identified modal parameters are simulated from a frame
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model which represents the true structure. A shear building
model with significant modeling errors is created for model
updating and the stiffness of three defined substructures are
selected as updating parameters. The hierarchical Bayesian
approach is employed to estimate the stiffness mean and
covariance, as well as the modeling errors of the shear

building model. Metropolis-Hastings within Gibbs sampler
is implemented to evaluate numerically the joint posterior

distribution of updating parameters. The mean of error function
µe is first assumed to be zero in Case 1. Evident bias is

observed in natural frequency predictions which prompts a

second case of model updating (Case 2) with µe evaluated
from the observed bias. The natural frequency predictions for

Case 2 show no bias and similar variability to the identified
values. Displacement and acceleration time history predictions

are obtained for both cases and for all measured and unmeasured

DOFs. Good agreements are observed between predictions and
measurements for both cases and for all DOFs. The predictions

are improved significantly for Case 2 when considering non-

zero modeling bias. These observations validate the proposed

hierarchical Bayesian approach for model calibration, modeling
error estimation, and response prediction by considering and

propagating the uncertainties of structural stiffness andmodeling
errors, and demonstrate the effects of accounting for modeling

bias in response predictions. In the application of proposed

hierarchical Bayesian method, model updating is recommended
to initially be applied with the assumption of zero mean error

(similar to Case 1). If evident prediction error bias is observed
from the calibrated model, then a second case can be applied to
remove the bias and improve the predictions. The main novelties
of the proposed approach include the following.

(I) The “inherent variability” of updating structural
parameters (stiffness) due to changing ambient and
environmental conditions is quantified and estimated by

the hyperparameters µθ and 6θ. As expected, the parameter
estimation uncertainties would decrease with additional
data but the estimated inherent variabilities would converge
to a constant value similar to the estimation variability
obtained from a frequentist approach. This is not the case for
traditional Bayesian approaches.

(II) Modeling errors are characterized by a joint normal
distribution with mean µe and covariance 6e and are
propagated in model predictions. In the case of considering
zero modeling bias µe, the covariance term will be
overestimated to compensate for the bias, resulting in larger
confidence intervals on model predictions.

(III) In presence of significant modeling errors, the effective
structural parameters can be under/over-estimated, but
the calibrated model can still provide accurate confidence
intervals on response predictions due to the inclusion of
modeling errors.
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