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Commonly usedmethods to estimate peak wind pressures on buildings are summarized.

The Harris (2009) penultimate XIMIS method is described and calibrated against Gumbel

epochal extreme-value analysis (EVA), as well as with the Hermite-Davenport peak factor

method by Yang et al. (2013) (YGP) using a very long record of wind tunnel data from

many pressure taps. The “industry standard” EVA, comprising sixteen 10-min epochs,

gives the best accuracy, but is inefficient in its use of data. YGP is the least accurate,

with the largest anomalies underestimating in reattachment zones. XIMIS is comparable

to EVA for the same record lengths and remains better than YGP for records up to six

times shorter.

Keywords: peak estimation, cladding and components, wind tunnel simulation, non-Gaussian characteristics,

wind pressure coefficients

INTRODUCTION

The design of buildings and their components to resist extreme winds requires the assessment of
peak surface pressures. The use of scale models in wind tunnels for this purpose has been an active
research topic since the early 1980s. Most published studies introduce and demonstrate methods
and there have been only a few studies which compare and calibrate alternative methods [e.g.,
(Cook, 1982b), (Cook, 2016b)]. Cook (2016b) proposed to adapt the Harris (2009) penultimate
XIMIS method, originally proposed for extreme wind speeds, for peak pressures, calibrating it
against conventional Gumbel epochal extreme value analysis (EVA) and the recent Gaussian
process model using moment-based Hermite polynomials, here denoted as the “moment-based
Hermite polynomial translationmodel” (HPM) by Yang et al. (2013) (YGP) using very long records
of wind tunnel data. Since Cook (2016b) was a discussion paper for Huang et al. (2016) which
promotes the use of HPM for non-Gaussian process data, only a brief explanation of XIMIS as well
as the comparison results using only 2 pressure taps on a roof of low-rise building were presented.
As mentioned in the conclusions of Cook (2016b), a calibration using only two taps is not sufficient
to present the accuracy and benefit of XIMIS. Hence, this study provides the extensive explanation
of the XIMIS method and a comprehensive calibration of XIMIS against EVA and HPM using data
from 496 roof taps to quantify the value-dependence and separation/attachment zonal dependence.

The data supporting this demonstration are from a series of tests at the University of Western
Ontario (UWO), Canada, to provide comparison data for the Florida Coastal Monitoring Program
(Balderrama et al., 2011). Figure 1 shows the model, the location of 496 pressure taps distributed
over the roof and the wind direction tested. Four taps are marked for later reference: Tap A
corresponds to the highest recorded peak suction (−12.9 for Cp referenced to mean roof height)
and lies in a permanently separated-flow region behind the ridge in the gable corner; Tap B
corresponds to a generally attached flow region with transient separations; Tap C corresponds to the
highest recorded kurtosis (21.04); and Tap D corresponds to the maximum positive mean pressure
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FIGURE 1 | Model, tap layout and wind direction (wind direction of 0 deg is from the north direction).

coefficient (2.62). The pressure coefficient data had been sampled
at 40Hz for 30 h, equivalent full scale (FS), assuming a time scale
of 1/100, giving 4,320,000 values for each tap. Figure 2 shows the
first 10min (FS) of Cp at tap A as an example of the highly-
skewed non-Gaussian character of the Cp in a separated flow
zone. The detail of the wind tunnel tests can be found in Kopp
and Gavanski (2010). In all the following analyses, only the peak
suction Cp values have been used.

PREVIOUS PEAK ESTIMATION METHODS

Various methods of peak estimation have been suggested to

characterize local peak pressure coefficients based on observed

peaks: from a single extreme value recorded during a sampling
period (e.g., Stathopoulos, 1979), the mean of several observed
peaks (e.g., Holmes et al., 1989), to the value at a chosen fractile
of a probability distribution fitted to the observed peaks. In terms

of the last method, the most common method fits the Fisher-
Tippett Type I (FT1) distribution to the peak value in a number
of epochs (e.g., Cook and Mayne, 1979, 1980). This is known as a
Gumbel epochal extreme value analysis (EVA). When curvature

is observed in the upper tail, from incomplete convergence (Cook
et al., 2003; Cook and Harris, 2004), the Fisher-Tippett Type
III (FT3 or Reverse Weibull) distribution, which can mimic this

curvature by its additional parameter, has also been adopted
(Holmes and Cochran, 2003; Kasperski, 2003). It is noted that
there are number of studies which doubt the validity of the FT3
distribution for this purpose (e.g., Harris, 2006).

As all the epochal methods use only the largest maxima in each
epoch and ignore the 2nd, 3rd, etc. largest maxima, it is likely that
better estimation is possible with more efficient use of the data.
With this reasoning, the Peaks-Over-Threshold (POT) method
was suggested (Simiu and Heckert, 1996; Holmes and Moriarty,
1999) and uses all the data above a certain high threshold.
One example of its use is to ensure statistical independence
of wind speed data from mixed climates by limiting the data
to the upper tails (Cook et al., 2003). A common form of
the POT method fits to the Generalized Pareto distribution
(GPD), the appropriate distribution for the exceedances of a

high threshold when convergence has been achieved to one of
the extreme value distributions. It is noted that the use of GPD
with POT data requires a high threshold and a large population,
typically more than 100,000 peaks for a good convergence at
the upper bound (Galambos and Macri, 1999), which seems to
be unrealistic amount of data to obtain. This is because GPD
is an asymptotic distribution of the generalized extreme value
distribution (GEV) (Holmes and Moriarty, 1999), which is also
asymptotic to extreme-value distributions for a parent variable,
so it is doubly difficult to achieve convergence.

Since both FT1 fitting and POT methods assume asymptotic
distributions, and this is difficult to verify using the typical data
lengths, the average conditional exceedance rate method (ACER
method) was proposed (Karpa and Naess, 2013). This method
has benefits over the other existing methods such as it does not
require convergence, statistical independence or stationarity. The
ACER method constructs a cascade of conditional probability
distributions having the target distribution function of the
extreme value as the limit. This is calculated by the estimation
of the average conditional exceedance rates. It is like the POT
method except that it counts downwards from the extreme
instead of upwards from the threshold.

Finally, there is the classical Davenport Peak Factor Method
(DPFM). This estimates the expected peak,Xpeak, whose duration
is T, in terms of the peak factor, g, defined as:

g =
{

E
[

Xpeak_T

]

−mX

}

/σX (1)

where mX and σX are the mean and standard deviation of X,
respectively. With the assumption that X follows the Gaussian
distribution, the distribution of Xpeak converges onto the FT1
distribution. Davenport (1964) suggested the expression of peak
factor defined in Equation (2)

g =
√

2 ln(νT)+ γ /
√

2 ln(νT) (2)

where ν is the mean up-crossing rate across zero and γ is Euler’s
constant of 0.5772.

It is well-known that, Equation (2) works well for a
Gaussian process but not for non-Gaussian processes, such
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FIGURE 2 | Example Cp time series for Tap A.

as the wind pressures in flow separation regions. Since peak
factors of “softening” non-Gaussian processes (kurtosis > 3)
are larger than that of a Gaussian process, Equation (2) is
not appropriate. To obtain the peak factor for softening non-
Gaussian processes, Kareem and Zhao (1994) first suggested
correcting the moment-based Hermite polynomial translation
model (HPM). A slightly different formulation was presented
in Chen and Huang (2009). Kwon and Kareem (2011) revised
HPM to overcome conservatism when the process is strongly
non-Gaussian, but the HPM parameters become less accurate
as wind pressure coefficient deviates strongly from Gaussian.
To deal with this limitation, Yang et al. (2013) suggested an
alternative closed form approximate relationship between the
skewness and kurtosis of the HPM shape parameters. Peng
et al. (2014) further suggested a mixed distribution model to
capture both the tail and bulk probability regions of the marginal
distribution, where an empirical distribution from the measured
data and GPD are applied in the bulk and tail probability regions,
respectively. Instead of using the approximate solution for the
HPM parameters, Huang et al. (2016) suggested to solve the non-
linear equation via Newton-Raphson iteration. Liu et al. (2017)
pointed out the fact that the traditional definition of skewness
and kurtosis are affected by both distribution tails. This results
in less accuracy of the translation model based on these two
moments, for specifying only one of the distribution tails, and
suggested a new moment-based HMP approach.

For “hardening” non-Gaussian processes (kurtosis <3),
Ding and Chen (2014) extended the moment-based Hermite
polynomial translation model with empirical formulations for
determining the translation model coefficients. Reflecting the
necessity of the determination of the extreme values of the
combination of multiple variables in structural designs, Folgueras
et al. (2016) suggested extended Davenport peak factor, which
can estimate the extreme values of the resultant of the linear
combination of multiple Gaussian and non-Gaussian random
variables that come from a common agent. Ma and Xu (2017)
suggested new peak factor calculation method by employing
Johnson transformation to fit the marginal distribution of the
non-Gaussian process and estimating extrema on long-tail and
short-tail sides separately.

Other methods for estimating non-Gaussian processes have
also been suggested. Sadek and Simiu (2002) identified the
appropriate marginal probability distribution for the non-
Gaussian time series using the probability plot correlation
coefficient (PPCC) method. The three-parameter gamma
distribution and normal distribution were selected as the best
model for the longer and the shorter tails of the marginal
distribution, respectively. Then, the distribution of the peaks
of the non-Gaussian variate is estimated by using the standard
translation process approach. Tieleman et al. (2007) employed
Sadek and Simiu’s method but with more wind tunnel data. It
shows that instead of PPCC method to calculate the parameters
of gamma distribution, the method of moments can be used
with acceptable precision but with much less computational
time. Huang et al. (2013) modified the translation procedure
proposed by Sadek and Simiu (2002) such that cumulative
distribution function (CDF) of the non-Gaussian process
was estimated using the kernel-smoothing method instead
of assuming a gamma distribution. In addition, the peaks
of the Gaussian process are first generated from a Rayleigh
distribution instead of the Rice’s formula [Equation (2) in
Sadek and Simiu (2002)], and the mapped peak data of the
standardized non-Gaussian process are fitted to the Weibull
distribution, instead of Gumbel distribution. This was named
the translated-peak-process method (TPP method). Huang et al.
(2013) also suggested a closed-form expression of Weibull peak
factor based on extreme value theory, which can be calculated
using the Weibull parameters obtained from the TPP method.
Ding and Chen (2014) emphasized an accurate modeling of the
upper tail behavior of the translation function and suggested the
CDF-based translation method with the use of GPD to model
the distribution tail over a given threshold.

As reviewed above, the use of non-Gaussian peak factor
obtained by translation method has recently been an active
research topic as a method of peak wind pressure coefficient
estimation. In the meanwhile, XIMIS, a method which has
worked very well for analyzing extreme wind speeds using
independent storm or m-day maxima was adapted to extreme
pressure coefficients (Cook, 2016b). The benefit of XIMIS over
all the existing peak estimation methods are:

1. Since it is penultimate, not asymptotic, the assumption of
rT → ∞, where r is rate of occurrence and T is epoch for
extreme, which is difficult to satisfy in practice, is not required;

2. This method can be applied to any independent peak
data, including epoch maxima, but also including heavily
left-censored, POT data;

3. The total population of independent peaks is not required as
prerequisite, provided it is large (more than 30).

XIMIS

Development of XIMIS From EVA
EVA has been a standard method to estimate peak wind
speed and wind pressure coefficients since 1970s, and was
the starting point of pursuing better methods, culminating
in XIMIS.
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Peterka and Cermak (1975) were the first to show that
the form of the probability density function (PDF) of surface
pressures varies from nearly Gaussian in attached flow regions to
exponential in the tails in separated regions. Recently a Gaussian-
Exponential mixture model was proposed to address the range
of PDFs found in practice (Cook, 2016a). All these PDFs are
members of the exponential class of distributions:

F (x) = 1− exp
{

−h(x)
}

(3)

where h(x) → ∞ as x → ∞. From extreme value theory, the
appropriate asymptotic form when the parent distribution is of
the exponential class is the Fisher-Tippett (FT1) distribution.

Φ (x) = exp
[

− exp
(

−y
)]

= exp[− exp {−a (x− U)}] (4)

where x is extreme variate, y is the standard reduced variate and
a and U are the dispersion and location parameters, respectively.

The conventional Gumbel extreme value analysis of annual
maximum wind speed takes the following steps:

1. The largest wind speed is extracted from each year of the
record and the values ranked in ascending order of magnitude,
giving m = 1 to the smallest value through m = N to
the largest.

2. Each wind speed is associated with a probability ordinate, Pm,
derived from its rank with one of the following equations:

Pm =
m

(N + 1)
Weibull′s estimator

(Gumbel, 1958) (5a)

Pm =
(m− 0.44)

(N + 0.12)
Gringorten′s estimator

(Gringorten, 1963) (5b)

where m = 1, 2, . . . N. The distinction between these two
estimators is one of mean bias created by the non-linear
form of Equation (4). Equation (5a) is an estimator for the
mean probability, 〈P〉, and is the unbiased estimator for the
probability of the m-th observed value. Equation (5b) is an
estimator for the probability of the mean reduced variate,
〈y〉, and is the unbiased estimator for a value with a given
probability. The two are not concomitant, as discussed more
fully in Cook (2012), however the distinction only significantly
affects the top few ranks when N is large.

3. With Pm obtained as above, the reduced variate, y, can be
estimated by the following equation:

y = − ln[− ln (Pm)] (6)

4. Plotting the wind speed,V, against the corresponding estimate
for y linearizes, Equation (4), so the FT1 distribution
parameters, a and U can be obtained from its slope and
intercept. The alternative is to use least square regression or
the generalized least square method (such as Hong et al., 2013)
or more sophisticated methods such as maximum likelihood.

An alternative, commonly used, method which gives unbiased
estimates of a and U directly from the N ranked extremes is
the “Best linear unbiased estimator” (BLUE) method of Lieblein
(1974), but the necessary coefficients are only available for N
≤ 24, as values for larger N becomes increasingly unreliable
(Hong et al., 2013).

The appropriateness of the FT1 asymptotic distribution
depends on the convergence of the exact distribution, expressed
as F(x)N where x is a statistically independent parent.
Convergence depends on the number of extremes, N, as well as
the form of the upper tail of parent distribution.

For wind speeds, several methods have been proposed for
augmenting the annual extremes to increase the sample size,
N. Where continuous meteorological data are available, Cook
(1982a) proposed identifying individual storms and extracting
the maximum wind speed from each. This is the original Method
of Independent Storms (MIS) which was eventually developed
into XIMIS. Where only daily maxima or values above a certain
threshold are available, Simiu and Heckert (1996) ensured
independence, by selecting m-day maxima, where m longer than
the typical storm duration. This gives a substantial increase
of sample size over conventional EVA and a corresponding
improvement in analysis accuracy. The same principles apply to
peak surface pressures.

The general procedure of MIS uses r independent storm
maxima per year instead of just one. The probability distribution
of the largest annual maxima out of r independent maxima per
year, becomes (Pm)

r and changes Equation (6) into

y = − ln[− ln (Pm)
r] = − ln[−r(Pm)] (7)

When only epoch maxima, or similar data are available, the
conventional Gumbel extreme value analysis has been the
usual method of choice. The standard graphical fitting method
(Gumbel, 1958) assumes that the statistical variance of all points
is uniform and gives each point the same weight. This is not
true especially for the largest values; hence, the Lieblein BLUE
method, which gives the more weight to the middle-ranked
extremes, was employed for the determination of parameters
in Cook (1982a) instead. However, the BLUE method uses of
look-up table for N ≤ 24 and an approximate method for
the higher N obtained using MIS. Harris (1996) suggested an
improved set of plotting positions as well as the application of
weighted least squares technique to fit a straight line for the
estimation of a and U in Equation (4). This new method does
not require the look-up of tabulated coefficients like the Lieblein
BLUE and offers an improvement in accuracy over the BLUE and
Gringorten methods.

Later, Harris (1999) adapted this method to apply to
independent storm maxima, giving new plotting positions
and fitting weights to reduce the systematic error caused by
fitting (Pm)

r to the FT1 asymptote in MIS, calling this the
“ImprovedMethod of Independent Storm (IMIS).” Because these
new plotting positions become less accurate in the lower tail,
Harris suggested censoring the distribution below a threshold
at the plotting position for the smallest annual maximum and
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demonstrated that the results are not sensitive to the exact
threshold value.

Harris (2001) examined the accuracy of IMIS by comparing
the estimated 50-yr return period wind speed with other
methods. The selected methods were:

1. The conventional Gumbel extreme-value method (Method 1)
fitted by classical least square;

2. Method 1 but using the Lieblein BLUEmethod to remove bias;
3. The method suggested by Harris (1996) with weighted least

square, and;
4. IMIS as proposed by Harris, 1999.

Harris (2001) showed that IMIS has very small bias and the lowest
variability among all methods considered and hence should be
preferred when sufficiently continuous data are available.

In order to avoid the issue of asymptotic convergence (i.e.,
rT → ∞ where T is the reference epoch, e.g., T = 1 year
for annual maxima), which is the necessary assumption to use
the asymptotic FT1 model, Cook and Harris (2004) developed
a general penultimate FT1 model, applicable as the penultimate
distribution of extremes when the parent distribution has the
Weibull form or right-tail equivalent to the Weibull form. This
general penultimate FT1 distribution is expressed as:

9 (x) = exp[− exp

{

1

ckT
(xkT − Uk

T)

}

] (8)

where xT is the largest wind speed andUT is characteristic largest
value of wind speed in epoch T. cT is the scale parameter and k is
the shape parameter of the parent Weibull distribution.

Comparisons between this new method as well as the use
of the ultimate asymptotic FT1 and general extreme value
distributions (GEV) were performed using annual maxima and
storm maxima wind speed data. The latter was derived by
Cook (1982a), using the bootstrapping procedure derived by
Cook (2004). It was proven that the use of general penultimate
FT1 distribution can provide at least as good an empirical fit
as the asymptotic GEV distribution. The penultimate FT1 has
the additional benefit of being able to produce identical results
regardless of whether it is wind speed or dynamic pressure. The
GEV produces different results for wind speed and dynamic
pressure which is indefensible as the basis of a design standard.

The XIMIS Method of Harris, 2009
In the final iteration of improvements, Harris (2009) introduced
XIMIS, an extension of the existing IMIS method (Harris, 1999).
It uses the general penultimate distribution of extremes. The
benefit of this method is that this can be applied to different
sets of mutually independent data drawn from the original
parent to give the same exact distribution of maxima: including
independent storm maxima, m-day maxima, and event (e.g.,
thunderstorm or cyclone) maxima. The other benefit is that this
method does not require the total population of the data, N, to
be known in advance, providedN is sufficiently large. This allows
the method to be applied to heavily left-censored data. Compared
with these advantages, the requirement of XIMIS is merely that
the occurrence of the independent events is a Poisson process

or that rT is large enough to validate the Cauchy formula for
the exponential when an underlying Poisson process cannot be
assumed. Harris (2009) validated the XIMIS method using wind
speed data at three different locations.

The XIMIS unbiasedmean reduced variate for the largest peak
in an epoch, is:

y1 = ln (R) + γ = ln (R) + 0.5772 (9)

where R is the number of datum epochs in the observation period
and has a relationship of N = RrT; and, assuming the Poisson
process model for independent events applies for the other ranks,
m, by the generating function:

ym+1 = ym −
1

m
(10)

where m is the rank in decreasing value from the largest. The
principal advantage of these plotting positions is that the number
of independent values, N in Equation (5), is not required. Hence,
XIMIS is applicable heavily left-censored or peak-over-threshold
data – a feature which is exploited in this study.

Equation (9) is the exact analytical expression for the largest
rank of the FT1 distribution, and also for the exponential
distribution to which the FT1 converges in the upper tail.
The exponential class pressure coefficients converge extremely
rapidly. The ln(R) term represents the Poisson shift in the other
extreme value analysis methods. Equation (10) is the Gumbel
(1958) generating function for the exponential distribution
(Expression (8) on P116) but working down from the highest
ranked value instead of up from the lowest. The accuracy of
Equation (10) decreases in the lower tail as FT1 diverges from
exponential and significant error must be eliminated by left-
censoring. Harris (2009) gives εy= exp (–y)/(2N) as a first-order
approximation to the error in the lower tail. This is shown in
Figure 3, where the dashed line for the minimum observed N,
which is 4,485 obtained from the currently employed dataset,
indicates the difference remains less than ε = 0.01 down to
y = −4.5. This is further into the lower tail than previous
methods and increases the amount of data contributing to
the analysis.

Figure 4 shows the XIMIS analysis for the 100 highest suction
peaks in the Cp time series at Tap A, for T = 160min FS, plotted
on Gumbel axes. These suction peaks in Cp time series will be
denoted as “local peaks,” in order to avoid confusion with the
estimated peak “minima” by XIMIS or other estimating methods.
The number of the estimated peak minima will be denoted as
Npeak. The open circle symbols show the ranked estimated peak
values from a single trial and the solid circles show the average for
all 11 (∼30 × 60/160 = Npeak) trials. The + markers above and
below each value show ±1 standard deviation for the 11 trials—
all the values shown here lie inside this range, however, obviously,
this is not always the case for the other 10 trials. The left-hand
tail, truncated at the 100th largest local peak, remains within the
εy = 0.01 error boundary, indicating more local peaks could have
been used. The effect of the number of local peaks employed for
the estimation of peak will be discussed in section Applicability of
XIMIS to Wind Pressure Coefficients. The FT1 fit for the single

Frontiers in Built Environment | www.frontiersin.org 5 April 2019 | Volume 5 | Article 48

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Gavanski and Cook Evaluation of XIMIS

FIGURE 3 | XIMIS model error in y for lower tail.

FIGURE 4 | Gumbel plot from XIMIS method, T = 160min, for Tap A.

trial is shown by the solid line and the average of all 11 trials
by the dashed line. These, and the fits for the other pressure
taps, were made by unweighted least-mean-squares, using the
standard slope and intercept functions in Matlab. Harris (2009)
recommends weighting each value by the reciprocal of the rank
variance, 1/σ 2(y), when fitting: where σ 2(y1) =π2/6 = 1.645
. . . and σ 2(yn+1) = σ 2(yn)−1/n2; but this extra complication
is necessary only with short data sets and makes virtually no
difference with 100 values. The intercept corresponds to the FT1
mode, U, and the slope to the inverse of dispersion, 1/a, from
which the 78% hourly-peak value is: Cp= U + 1.4/a.

METHODOLOGY

Each of the analysis methods described below was implemented
twice, using the data for Taps A and B: once by NJC
using Excel spreadsheets; and again, by EG using a MATLAB
script. Discrepancies between the two implementations were
investigated and any errors were corrected before the data from
all the taps were processed by EG using MATLAB.

FIGURE 5 | The variation of COV of estimated Cp peak with the number of

top minima in XIMIS.

Applicability of XIMIS to Wind
Pressure Coefficients
The XIMISmethod requires that the peak values are independent
and follow the Poisson recurrence model. In the preliminary
calibration of Taps A and B (Cook, 2016b), the 100 highest local
suction peaks were used assuming independence, as in Peterka
(1983), and their independence was checked subsequently. Here
a de-clustering algorithm was applied, equivalent to the “storm
search” in Cook (1982a) but based on the up/down-crossings
of the mean, i.e., the same as the assumption inherent in the
Davenport peak factor method. The largest local peak suction
was extracted between each down-crossing of the mean and the
following up-crossing. Hence, the number of independent local
peaks, N = rT, where r is the mean crossing rate (MCR) in the
YGP method, will be obtained in the process of XIMIS method,
but, as previously noted, the method does not use this value—it
merely needs to be large.

The top 100 independent suction peaks used here correspond
to just 0.5 to 2% of all independent local peaks in 30 h FS.
This prompts the question: as this is a small proportion, is
the additional overhead of de-clustering necessary? The number
100 was selected in the current analysis simply because it is a
nice large round number. This choice was tested by examining
how the COV (=standard deviation/average) of the estimated
peak varies with this number of minima used, n1, in Figure 5.
As expected, the COV decreases as n1 increases, n1 = 100
corresponds to a COV of 0.1. However, the COV continues to
decrease for larger n1, indicating accuracy could be improved
provided the εy criterion in Figure 3 is not exceeded.

If the Cp peaks follow the Poisson recurrence model, as
required by the XIMIS method, the inter-arrival times, τ , will be
exponentially distributed (Brabson and Palutikof, 2000). This is
tested by plotting the inter arrival time of selected local suction
peaks on exponential axes in terms of the unbiased estimator for
an exponential distribution, y = –ln(1–P) and checking whether
the regression coefficient, R2, becomes close to 1.

The calculated R2 values for all 496 taps were plotted as
contours over the roof in Figure 6 where white color indicates
R2∼1. These contours indicate the high linearity of τ and y for
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most of the taps and considered T. Based on these results, it is
concluded that a Poisson processmodel can be applicable forCps;
hence, XIMIS is valid for wind pressure coefficients.

Consistent Basis for Comparison
As the basis adopted for comparison in order to present
the performance of XIMIS, the 78% fractile of the fitted
Fisher-Tippett Type 1(FT1) distribution of hourly-peak suction
values was selected. This is the standard method employed for
peak estimation in UK and is frequently employed by wind
researchers/engineers, worldwide, for its simplicity (Gavanski
et al., 2016). This fractile corresponds to the reduced variate
y = 1.4 for T = 1 h FS epochs and stems from the simplified
Cook-Mayne method (Cook and Mayne, 1980) which accounts
for the joint statistics of wind speed and pressure coefficient, and
has become a de-facto international standard. Many of the other
cited works also use this datum.

Because the methods described below use a range of actual
or implied epochs, T, it is necessary to adjust the results to
a datum period, T = 1 h, for a consistent comparison. For
EVA, a characteristic of the FT1 distribution is that results from
one epoch, T1, may be translated to another epoch, T2, by
applying the “Poisson shift,” 1y = ln(T1/T2) so, for example,
that 10min peaks are translated to 1 h peaks using 1y = –
ln(60/10), as demonstrated in the previous calibration exercise
of Cook (1982b). For the YGP method, the mean crossing rate,
r, is expressed as crossings per hour. For XIMIS, this is by
adjusting R in Equation (9). For example, for the one hundred
and eighty 10-min records, R = 10/60 = 1/6 because the record
is shorter than the datum epoch, but for the whole 30 h record,
R = (30∗60)/60 = 30 because the record is larger than the
datum epoch.

Datum Extreme-Value Analysis
The extremely long data record allows the standard EVA to
estimate the 78% fractile to an unprecedented degree of accuracy,
as a datum to assess the other methods. For the datum EVA, the
Cp record was divided into 180 epochs of T = 10min FS and
the peak local suction Cp extracted from each. Figure 7A shows
the Gumbel plots for the four marked taps using the Gringorten
(1963) unbiased plotting positions of Equation (5b), together
with the fitted FT1 models (straight lines) and the 5%/95%
bootstrapped confidence limits (dashed curves). The data are
an excellent fit to the model in the body of the distribution
and the tails remain within the confidence limits. As there is
no discernible curvature in these plots, there is no justification
for fitting a GEV model, since its shape parameter will not be
distinguishable from zero. Figure 7B shows the distribution of
the datum 78% values over the roof after applying the Poisson
shift to T = 1 h FS.

“Industry Standard”
Extreme-Value Analysis
For comparison with historical industry practice, the data were
subdivided into sets ofN = 16 epochs of T = 10min FS, giving 11
independent trials of 160min records (Npeak= 11), each of which
were assessed in exactly the same manner as the datum EVA.

The Hermite-Davenport Method of Yang
et al. (2013)
From the extensive review of Cp peak estimation methods
in section Previous Peak Estimation Methods, it is clear the
non-Gaussian peak factor obtained by moment-based Hermite
polynomial translation model has received the attention of many
researchers. Among several studies dealing with this model, the
method suggested by Yang et al. (2013), which will be denoted
as “YGP method” hereafter, will be selected for our calibration of
XIMIS method because of its relatively simple use and accuracy
examined by several researchers (Peng et al., 2014; Liu et al., 2017;
Ma and Xu, 2017; Song et al., 2019).

The YGP method was implemented for 30 trials of T = 1 h
FS, and the first four moments were computed for each.
The Davenport’s peak factor was evaluated from the datum
fractile P = 0.78 and the MCR by directly counting down-
crossings of the mean, giving hourly rates in the range
4,400 < r < 20,000. The Hermite shape parameters, c3
and c4 in YGP were evaluated from the YGP polynomial
expressions, enabling the Hermite transformation and the
78% fractile Cp to be computed. The YGP polynomial
expressions evade the need to apply the Choi & Sweetman
test (Yang et al., 2013) to see whether the transformation is
valid, but only 17 of the 496 taps fail this test, including
Tap A.

The evaluation steps for the following three methods are listed
in Table 1 to show XIMIS is not difficult to implement compared
with the other methods.

RESULTS

Method Bias Ratio
The bias ratio (method value/datum value) averaged over
all taps is commonly used as a simple basis of comparison
between methods. With multiple trials, the overall performance
of a method may be expressed as the average bias for all
trials and the statistical variability by the standard deviation
between trials. Figure 8 displays the overall performance of the
methods as ranges with the average in the center of each range,
and plus/minus one standard error either side. The average
is calculated as the average of estimated peaks for each tap
calculated by the method divided by the average of the datum
peaks. The standard error is calculated as square root of the
average squared standard deviation for each tap, divided by
the average of datum peak. It is immediately apparent, from
the way the ranges for each method overlap, that the natural
statistical variation dominates over the differences between
methods. All XIMIS methods except T = 30 h FS underestimate
compared with the datum although the amount, as well as
the variation, becomes less for larger T. For XIMIS method of
T = 160min FS, which requires the same length of Cp time
series as the industry standard EVA method (EVA N = 16 and
T = 10min), statistical variability is apparently less than the
industry standard EVA, which indicates the superiority of XIMIS
(Note: For XIMIS at T = 30 h, the standard error of the single
trial was estimated by extrapolating the trend from the other
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FIGURE 6 | Contour of the regression coefficients, R2, of the inter arrival time of selected local suction peaks, τ , for different epochs: (A) 60 trials of T = 30min, (B)

11 trials of T =160min, (C) 3 trials of T = 10 h, (D) 1 trial of T = 30 h.

FIGURE 7 | Datum extreme-value analysis: (A) Gumbel plot for Taps A to D, T = 10min FS, (B) Distribution of 78% Cp, T = 1 h FS.

cases). However, the YGP method significantly underestimates.
The YGP results for other values of T, not reported here, are
virtually identical.

Figure 9 presents the average bias ratio for each tap calculated
by different methods where white color indicate bias ratio
∼1 and warm and cold colors indicate deviation from 1
(below 1 and above 1, respectively). Again, the superior

performance of XIMIS is clear for all epochs considered
over YGP.

The issue with the average bias ratio is that it gives every tap
the same influence, or weight, irrespective of its value. As the
highest suctions are confined to the taps close to the windward
edges of each roof slope, the average is biased toward the
many more taps where the suctions are much lower. Figure 10A
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TABLE 1 | Evaluation steps for the three methods.

Step Industry standard EVA YGP method (Yang et al., 2013) XIMIS (Harris, 2009)

1 Evaluate Gringorten (1963) reduced variates, y

= –ln {–ln(P)}, for N = 16

Compute the first four moments of Cp, mean

(µ), rms (σ ), skewness (s), and kurtosis (κ )

Evaluate the top 100 reduced variates, y,

from Equations (9) and (10)

2 Divide Cp data into 16 epochs of T = 10min Locate and count up-crossings of the mean to

give hourly MCR, r

Compute mean Cp

3 Extract the largest suction value from each

epoch and rank in ascending order of value

Evaluate the peak factor for P = 0.78 for a

Gaussian process, u, from Davenport’s formula:

g (u) = −
√

2ln(rT/ ln(1/P)) where T = 1 h

Find the local suction peak Cp between

each down-crossing and up-crossing of

the mean

4 Evaluate the mode, U, and dispersion, a, from

the intercept and slope of y vs. Cp

Evaluate parameters c3 and c4 from s and κ

using YGP polynomial expression [Equations

(11) and (12) in Yang et al. (2013), respectively]

Sort the 100 largest local suction peaks in

descending order of value

5 Evaluate the 78% fractile for T = 1 h from

Cp = U + {1.4 + ln (6)}/a

Evaluate the Hermite transformation of g(u),

using YGP expression [Equation (1) in Yang

et al. (2013)], to give g(Cp)

Evaluate the mode, U, and dispersion, a,

from the intercept and slope of y vs. Cp

6 Evaluate the 78% fractile for T = 1 h from

Cp = µ + g(Cp) × σ

Evaluate the 78% fractile for period R (in

this case, in hours) from Cp = U + 1.4/a

The negative sign in Davenport’s peak factor formula in step 3 of the YGP method is required for peak suctions.

FIGURE 8 | Average of performance of methods.

displays the bias ratio for each individual tap, averaged over the
30 trials for T = 1 h, for the XIMIS methods plotted against
the datum values. Although the scatter is greater at the lower
suctions, XIMIS shows close to unity at higher suctions.

Method Anomaly
The anomaly (method value—datum value) may be a better
measure of performance, especially for assessing cladding,
because it is a direct measure of how wrong a value can be—
as these are suctions, negative anomaly indicates conservatism
and positive anomaly indicates non-conservatism. Figure 10B
presents the average anomaly for each tap for the same cases as
in Figure 10A and shows that the regression line for the XIMIS
anomaly remains close to zero.

A key question is whether these anomalies are random or
caused by the physics of the flow over the roof. Figure 11 shows
the average anomaly for all trials of the methods plotted as
contours over the roof where white color indicates anomaly
∼ 0 and warm and cold colors indicate deviation from 0 in
the negative and in the positive, respectively, using consistent
contour intervals and shading for direct comparison:

(a) The EVA, using 16 epochs of T = 10min, shows the least
anomalies, within ±0.05 across most of the roof, and is a
vindication of the “industry standard.”

(b) The YGP method for T = 1 h shows the most anomalies,
ranging from overestimation by −0.5 in the zones of high
suction to underestimation by more than +1 over much of
the rest of the roof. The distinct patterns of anomalies over
the roof indicate they are caused by the physics of the flow.
Other values of T showed virtually the same anomalies, so
are not shown.

(c) to (f) The XMIS method for values of T from T = 160min
down to T = 10min shows the same patterns of anomalies
emerging but with the increase of overestimation for suction
peaks as the value of T decreases. At T = 160min, (c)
is directly comparable with (a) but, surprisingly, shows
slightly higher anomalies. Previous experience suggests
XIMIS should perform better because it exploits more data
(Perhaps it does, and it is because it exploits more data that it
is better able to reveal the physical patterns). The key finding
is that using the shortest feasible record length, T = 10min,
the XIMIS method still performs significantly better than the
YGP method.

Quantile-Quantile Plots
The quantile-quantile (Q-Q) plot is another common approach
for assessing performance. Figures 12A,B show the N = 16
and T = 10min EVA and T = 160min XIMIS averaged values
for each tap plotted against the datum 78% Cp, respectively.
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FIGURE 9 | Spatial distribution of the average performance for each method: (A) EVA N = 16 and T = 10min (Npeak= 11), (B) YGP T = 60min (Npeak= 30), (C)

XIMIS T = 160min (Npeak= 11), (D) XIMIS T = 60min (Npeak= 30), (E) XIMIS T = 30min (Npeak= 60), (F) XIMIS T = 10min (Npeak= 180).

FIGURE 10 | XIMIS bias and average anomaly vs. datum design value for T = 1 h records (Npeak= 30): (A) bias (method/datum), (B) anomaly (method—datum).

The positions of the four taps A to D are shown. Two
regression lines were fitted: one a conventional fit, giving
slope and intercept; and the other a fit forced through the
origin, giving only a slope. The fit forced through zero has
a slope marginally to the underestimate side of unity, while
the conventional fit has a slope marginally to the overestimate
side of unity and an intercept to underestimate side of
zero—echoing the results in sections Method Bias Ratio and
Method Anomaly, respectively. In all cases, the regression
coefficient R2 > 0.998 would generally be taken to indicate an
excellent fit and the differences between these two methods to
be insignificant.

Figures 12C,D show similar Q-Q plots of the YGP method
and XIMIS for T = 1 h, respectively. There is significantly
more scatter in the YGP method than in XIMIS and this is
reflected in the lower regression coefficients. The two slopes for
the YGP method diverge from unity by −3% (underestimate)
for the fit through the origin to +7% (overestimate), with an
intercept of +0.35 (underestimate), while the corresponding
values for XIMIS aremuch lower. This is reflected in the positions
of the four highlighted taps which move off the regression
lines for YGP. It is noted that Taps A and B are outside of
the effective region of YGP method and this may lead such
large deviations.
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FIGURE 11 | Spatial distribution of the average anomaly for each method: (A) EVA N = 16 and T = 10min (Npeak= 11), (B) YGP T = 60min (Npeak= 30), (C) XIMIS

T = 160min (Npeak= 11), (D) XIMIS T = 60min (Npeak= 30), (E) XIMIS T = 30min (Npeak = 60), (F) XIMIS T = 10min (Npeak = 180).

FIGURE 12 | Q-Q plot for each method: (A) EVA N = 16 and T = 10min (Npeak = 11), (B) XIMIS T = 160min (Npeak = 11), (C) YGP T = 60min (Npeak = 30), (D)

XIMIS T = 60min (Npeak = 30).

Summary
The average performance of the methods is summarized in
Table 2. The bias ratio is as defined in section Method Bias
Ratio above: the simple ratio of the method and datum values

for the mean and the standard error of all trials. Table 2

also gives the corresponding parameters for linear regression
between the methods and the datum. In the “regression through
zero” column, the fit is forced through the origin, so the only
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difference between these and the simple “bias ratio” values is
that they are differently weighted: i.e., by minimizing the square
error rather than a simple ratio. In Table 2, the bias ratios
and regression-through-zero slopes are consistently less than
unity, suggesting underestimation. However, the corresponding
conventional linear regression slopes are all greater than unity,
with small positive offsets, indicating underestimation of low
suctions and overestimation of high suctions which, in the
context of design is conservative. Note that XIMIS for T = 10min
outperforms YGP for T = 1 h and XIMIS for longer T gets
progressively better.

The method variability is quantified by the overall standard
errors in the furthest right column of Table 2. These were
computed by taking the square root of the average squared COV
for each tap. Here it is seen that the YGP method is the least
variable because the moments of the data used by the method are
inherentlymore stable than the extremes. XIMIS outperforms the
industrial standard EVA method for T = 30min, or longer.

DISCUSSION OF RESULTS

Non-Gaussian Characteristics
The essential difference between the Davenport peak factor
method and extreme-value method is that the former
estimates the distribution of extremes indirectly from the
parent distribution, i.e., upwards from below, whereas the
EVA method estimates directly from the extremes, i.e.,
downwards from above. The peak factor method assumes
a Gaussian process, where the corresponding skewness is 0
and the kurtosis is 3. HPM corrects the peak factor for the
non-Gaussian values of skewness and kurtosis on a tap-for-
tap basis. The question to be answered is “how well does
it succeed?”

The EVA methods make no assumption of Gaussian
characteristics but require only that the epochal extremes
are statistically independent. XIMIS additionally requires
that the sub-epochal extremes follow a Poisson process,
and this is ensured by the de-clustering procedure.
The standard EVA and the XIMIS methods should be
independent of skewness and kurtosis. Figure 13 shows
the average method anomaly at each tap plotted against

kurtosis for the EVA, XIMIS and YGP methods—there
is no significant trend with kurtosis, but the degree of
scatter is seen to be the least for EVA and the greatest
for YGP.

Equivalent Peak Factor
From the results presented in section Results, it became clear
that the HPM methodology does perform poorly in comparison
with direct EVA or XIMIS. The previous calibration of the
Davenport peak-factor method (Cook, 1982b) attributed its
insufficient accuracy to intermittency of the flow regime in
the re-attachment zones behind the high-suction zones along
the roof edges elevating the required peak factor value. The
Hermite polynomial translation method should account for
this by predicting the peak factor from the skewness and
kurtosis. Figure 14 shows the Q-Q plot of the peak factor
predicted by YGP and the datum value, back-calculated from
the 78% datum (cross symbols). YGP values are 9% too
low, on average, and the random scatter is very large. The
solid circles denote the peak factors for datum suctions larger
than Cp = −5, for which the YGP peak factors are 1% too
large. Given that the YGP peak factor is conservative for
the largest suctions, the deficiency for the smaller suctions
may not seem important, but this deficiency applies to most
of the roof area, so panel loads and overall uplift will
be underestimated.

Luo et al. (2016) conclude that “compared with HPM, XIMIS
may indeed provide better estimations but it is more complicated
and inconvenient to deal with many pressure taps.” While the
derivation of both methods is very complex, the implementation
of XIMIS is simple and requires similar number of steps to the
one for YGP as shown in Table 1. The benefit to wind tunnel
testing is that the record length for XIMIS can be reduced by
a factor of six, and still the results remain better than HPM,
on average.

The Role of Process Models
XIMIS is only an extreme value analysis method, not a process
model. This study shows XIMIS to be superior to HPM (YGP)
in this specific role. However, there are applications in which a
process model is a requirement. One example is the non-linear
response of tall buildings to wind loads for which a non-Gaussian

TABLE 2 | Summary of method performance and variability.

T (min) Bias ratio of method average Regression through zero Linear regression Overall standard error

Slope R2 Slope Offset R2

EVA 16×10 0.997 0.998 0.9997 1.002 0.014 0.9997 0.0938

YGP 60 0.946 0.970 0.9513 1.071 0.351 0.9618 0.0644

30 0.943 0.968 0.9507 1.071 0.359 0.9617 0.0763

10 0.910 0.936 0.9489 1.042 0.372 0.9614 0.1972

XIMIS 160 0.987 0.991 0.9983 1.007 0.056 0.9986 0.0680

60 0.979 0.986 0.9943 1.018 0.110 0.9955 0.0778

30 0.977 0.988 0.9892 1.031 0.152 0.9914 0.0851

10 0.982 0.998 0.9749 1.064 0.230 0.9796 0.0981
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FIGURE 13 | Kurtosis vs. Anomaly: (A) EVA N = 16 and T = 10min (Npeak = 11), (B) XIMIS T = 160min (Npeak = 11), (C) XIMIS T = 60min (Npeak = 30), (D) YGP

T = 60min (Npeak = 30).

FIGURE 14 | Q-Q plot of YGP peak factor vs. the equivalent datum peak factor.

process model for wind loading is needed to drive the non-linear
equations of motion. As yet there is no better alternative for
this than HPM. The calibration in this study helps establish the
confidence that can be placed on it.

CONCLUSIONS

The XIMIS method, which uses the general penultimate
distribution of extremes and was suggested for the peak wind
speed estimation, was introduced as an alternative the peak
wind pressure coefficient estimation. Its historical deviation
through preceded studies, benefit and accuracy were summarized
by presenting comparisons with commonly used and recent
prevalent peak estimation methods, Gumbel extreme-value

analysis and theHermite-Davenportmethod of Yang et al. (2013),

respectively. The main conclusions from the study are:

• The natural statistical variation between trials dominates over

the differences between the methods.
• Conventional EVA using epoch maxima gives the most

accurate estimates of peak suctions, but is inefficient in its use
of the data, requiring significantly longer data records than

YGP or XIMIS.
• The implementation of XIMIS is as simple as the one of YGP

and remains more accurate than YGP even with data records
six times shorter.

• The choice of record length for XIMIS is a compromise

between accuracy and economy.
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