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Numerous procedures have been developed for the detection and the localization of

damage in structures based on changes in the dynamic or static response of structures.

Among these, procedures based on wavelet analysis of mode shapes appear to offer a

superior performance especially for low levels of damage. In order to evaluate the relative

merit of these approaches, criteria based on statistical and probabilistic performance are

evaluated as a function of damage level for an experimental beam. These measures

include the probability of detection, the probability of false alarms, and the safety index.

The safety index used in this application is for the beam under pure bending, which

provides a uniform criteria for damage at any location along the beam. The experimental

data is obtained on a steel beam where the level of damage is controlled at two locations

along its length. A total of 16 equally spaced accelerometers are deployed along the

length of the beam. The dynamic properties used to illustrate the proposed procedure

are changes in the frequency of the first mode of vibration of the beam and changes in

the wavelet coefficients for the first mode of vibration. The data obtained for 5 increasing

level of damage at two locations is used to derive prediction equations for the dynamic

properties and to estimate the probability of detection and of false alarms as a function

of damage level. The results indicate that the procedure based on wavelets is more

efficient than the one based on natural frequencies in detecting and localizing low levels

of damage. The results also indicate that a monitoring strategy based on wavelets can

detect damage before structural safety is significantly compromised while maintaining

low probabilities of false alarms.

Keywords: damage, detection, wavelets, vibrations, reliability, hypothesis testing

INTRODUCTION

Structural health monitoring is used to evaluate the state and rate of deterioration of existing
structures as well as the state of structures that have been exposed to extreme loads (e.g.,
following exposure to earthquakes, hurricanes, tornadoes, etc.). Damage in structures can be
caused by changes in material properties, geometric properties and/or support conditions
that result in a reduction of structural performance (Worden et al., 2007). Measurements to
estimate these properties can be obtained either through static or dynamic tests. The objectives
of structural health monitoring are to: (i) identify the presence of damage, (ii) determine
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the damage location, (iii) estimate the extent and type of
damage, and (iv) assess its significance for structural performance
and safety. Methods using wavelet analysis on mode shapes
have shown promising results for the detection of damage and
localization of damage in beams atmultiple locations. A statistical
procedure is proposed for the analysis of data on an experimental
beam that is efficient in filtering noise and in extending detection
to lower levels of damage. Data compiled for different levels of
damage is combined to derive predictions equations for dynamic
properties as a function of damage level. The same model is also
used to determine the relation between the probability of damage
detection and the probability of false alarms as a function of
damage level. Finally, the safety index of the beam as a function
of damage level is used to identify optimal detection protocols
that minimize negative impacts on structural safety and number
of unnecessary interventions due to false alarms.

OVERVIEW OF SHM FOR
CIVIL STRUCTURES

Vibration measurements provide useful information on the
dynamic parameters of structures and their relation to the
presence of damage. Starting in the early 1980’s, various
techniques have been developed to monitor bridges based on
changes in the modal frequencies and modal shapes due to
changes in the geometry, mass or stiffness of the structure (Sun
and Chang, 2004; Alvandi and Cremona, 2006). However, the
stand-alone performance of these techniques is not adequate
when damage levels are low (Taha et al., 2006; Alvandi et al.,
2009). Farrar et al. (1994) failed to detect changes in frequencies
and mode shapes on surveys of 40 highway bridges unless
the damage level was significantly large, in this instance, a cut
through the mid-height of the web and the entire flange at
mid-span of the main girder of the bridge. Moreover, changes
in natural frequencies provide no information on the location
of damage (Doebling et al., 1998). In the analysis of vibration
data, the uncertainties associated with modeling, measurements,
and environmental conditions must be properly accounted
for (Kim and Stubbs, 2002, 2003). Also, depending on the
location of damage, several modes of vibration can be considered
simultaneously since the effect of damage on modes can vary
greatly as a function of location of damage. A greater change
in frequency is detected when the damage is at the location of
highest curvature for a given mode of vibration. Other measures
derived from modal properties have been used for damage
detection; for example, the Modal Assurance Criterion (MAC)
and Coordinate Modal Assurance Criterion (COMAC) factors
are used to compare modal shapes between undamaged and
damaged states (Ndambi et al., 2002).

Various methods have been investigated to localize damage
using changes in modes shapes; however, these methods are
not very effective to detect low levels of damage (Kim et al.,
2003). Neural network have been used to improve detection
using training samples of modal shapes for intact and damaged
structures. These techniques have been applied to numerical
models of beams and multidirder bridges (Lee et al., 2005).

An impediment to the applciation of these techniques to actual
structures is the requirement for large structure-specific training
samples from both the undamaged and damaged states, which
are rarely available in practice (Sohn et al., 2004). Mode
Shape Curvature (MSC) methods have also been suggested to
improve damage detection and localization and demonstrated
on numerical models for cantilever and simply supported beams
(Pandey et al., 1991). Using similar concepts, Catbas et al. (2007)
use changes in the flexibility matrix and its derivatives for beam-
like structures. However, curvature methods tend to amplify
noise in field application, which can mask low levels of damage
(Chance et al., 1994; Maeck et al., 2000; Cao and Qiao, 2008;
Perera and Huerta, 2008).

Detection of changes in modal parameters due to low levels
of damage can be improved with post-processing of vibration
data (Chen et al., 1995). In particular, the Wavelet Transform
(WT) has been used to extract more detailed information
from modal shapes (Gentile and Messina, 2003; Rucka and
Wilde, 2006; Solís et al., 2013). The WT provides a means to
characterize local features in signals at different scales of time
and space (Wang and Deng, 1999). The wavelet analysis can
be performed as the Discrete Wavelet Transform (DWT) or
the Continuous Wavelet Transform (CWT). The DWT is most
suitable for decomposition, compression, and feature extraction
of signals, while the CWT is adapted for the continuous
monitoring of signals over the entire record. The WT provides
a “wavelet coefficient” which is a measure of the extent of
agreement between the wavelet and the signal; hence, sharp
transitions in the signal will result in wavelet coefficients
with large magnitudes and this is precisely the principal basis
for damage identification using the wavelet theory (Liew and
Wang, 1998). The wavelet analysis has been applied to a
variety of vibration-based damage identification problems. For
example, Jaiswal and Pande (2015) use the DWT on mode
shapes from a numerical model of a beam to demonstrate the
detection of damage location. DWT has also been used on
mode shapes in combination with neural networks for detecting
and quantifying damage in a cantilever beam (Vafaei et al.,
2015) and in a simply supported beam using both a finite
element model and experimental data (Zhong and Oyadiji, 2007,
2011). Bakry et al. (2018) conduct a detailed parametric study
to show the applicability of the discrete wavelet analysis for
damage detection on the first mode shape of a numerically
simulated beam. He et al. (2019) apply the DWT to decompose
the displacement response change on an experimental beam
subjected to different moving-load velocities and demonstrate
that damage localization can be compromised due to a high
moving vehicle velocity.

Besides the DWT, the continuous wavelet transform (CWT)
has also been the subject of numerous investigations over the
last two decades. Most recently, Zhu et al. (2019) apply the
CWT to the mode shapes of numerically simulated cracked
beams and propose an intensity factor to estimate the crack
depth. Ramesh and Rao (2018) conduct an experimental modal
analysis on a cantilever beam subjected to a dynamic pulse
load and used spatial CWT to locate small perturbations
in mode shapes due to damage. Fan and Qiao (2009)
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demonstrate the application of a CWT-based damage detection
algorithm on mode shapes for plate-type structures. Patel et al.
(2016) demonstrate the feasibility of using CWT for damage
identification for a 6-story scaled reinforced concrete building
using wireless accelerometers. Janeliukstis et al. (2017a,b)
discuss the efficiency of the continuous wavelet method for
the identification of multiple damage zones on a numerically
simulated aluminum beam. Mardasi et al. (2018) study the
sensitivity of the wavelet analysis for crack detection by
applying the CWT to the deflection of an experimental beam
subjected to displacements. Janeliukstis et al. (2017a,b) use a
non-contact laser scanning vibrometer to extract the deflected
shapes of aluminum and composite beams with varying levels
of damage and successfully use the spatial wavelet transform
for damage localization. Both DWT and CWT have also
been used to detect damage from static deflected shapes
using numerical models of a beam and a simple frame
(Ovanesova and Suarez, 2004).

In general, the DWT is more practical for data compression
and signal reconstruction as it uses a fast algorithm of evaluating
wavelet coefficients in discrete resolutions; whereas the CWT
is computationally more demanding but provides better spatial
resolution of wavelet coefficients and is hence more suitable
for damage detection problems (Antoine et al., 2008). The
focus of this study is also on damage-sensitive features derived
from performing the CWT. However, in the context of civil
structural health monitoring, the apparent limitation of the
wavelet transform is that the rational evaluation of the wavelet
coefficient from structural vibration modes requires the mode
shape measurement with a relatively high spatial resolution
and reasonable accuracy. The mode shape spatial resolution
can be further enhanced by performing a large number of
modal tests, utilizing advanced vibration instrument such as non-
contact scanning laser Doppler vibrometer (Janeliukstis et al.,
2017a,b; Reu et al., 2017), and applying interpolation techniques
to smooth the sampling interval from one instrument to the
other (Rucka and Wilde, 2006; Shahsavari et al., 2017). In
this paper, the mode shapes are interpolated using a spline
function with 20 interpolation nodes between each measuring
point, resulting in a total number of 316 sampling nodes
(or pseudo sensors).

The main advantage gained by using wavelets is their
multi-resolution characteristics allowing to zoom-in on any
interval of time and space and the ability to perform a
local analysis of a signal. The objective of this paper is
to show that the procedures based on wavelet analysis of
mode shapes offer a superior performance over traditional
vibration-based damage assessment methods, especially for
low levels of damage. Different criteria based on statistical
and probabilistic performance, namely the probability of
detection, probability of false alarms and safety index, are
evaluated as a function of damage level for an experimental
beam and discussed in detail in the following sections.
The damage detection criterion in this paper is formulated
in the form of statistical test of hypothesis and based on
comparing dynamic properties of a beam for increasing levels
of damage.

CONTINUOUS WAVELET METHOD

The Continuous Wavelet Method is used to detect damage
through the characterization of anomalies in the vibration modes
of a structure or more specifically in this application, for a beam.
The dynamic response of the beam is analyzed by comparing with
a wavelet that is scaled and shifted along the length of the beam.
The CWT of a one-dimensional function f (x) (mode shape in this
application) is defined as (Shahsavari et al., 2017):

CWT (x) = 1√
|s|

∫ +∞

−∞
f (x)9

∗
(

x− u

s

)

dx (1)

where Ψ ∗(x) represents the complex conjugate of the wavelet
mother function Ψ (x), s and u denote the scale and the position
parameters of the mother wavelet, and CWT(x) is defined as the
wavelet coefficient in the vicinity of x.

Wavelets with higher coefficients indicate a high correlation
between the signal and the wavelet function. If a significant
change is detected in wavelet coefficients, it may be indicative
of damage (Cao and Qiao, 2008). However, CWT fails to clearly
detect and locate damage in noisy conditions and for low
levels of damage at multiple locations. In order to overcome
these limitations, Shahsavari et al. (2015, 2017) propose a
novel wavelet-based approach for filtering out noise present in
wavelet coefficients and localizing small increments of damage at
different locations along the length of an experimental beam. The
authors’ main contributions for noise removal from experimental
data set and damage localization are summarized as follows:
(a) Statistical pattern recognition techniques are first used to
improve the efficiency of CWT for data with low signal to
noise ratios, (b) Principal Component Analysis (PCA) is then
applied to wavelet coefficients obtained at a set of locations
along the beam for two successive sets of measurements. This
technique improves the identification of patterns of variation that
are most correlated with damage and filters out noise present
in measurements. The scores associated with the dominant
components of the PCA are found to be highly correlated with
incremental damage; whereas the scores associated with higher
components are assumed to be correlated with existing noise
in wavelet coefficients and, hence, are discarded from further
investigations, (c) statistical tests of hypothesis are used on the
selected PCA scores to detect statistically significant changes
in the distribution of scores to conclude to damage detection.
Tests are performed on location parameters of the PCA scores
derived from wavelet coefficients with the t-test for the equality
of score means values and the Mann-Whitney U-test for the
equality of medians scores, (d) when a statistically significant
incremental damage is detected, a Likelihood Ratio (LR) test is
then performed to determine the most likely location of damage.
The wavelet coefficients and PCA scores used for performing the
reliability study of this paper are based on the above-mentioned
procedure formulated in detail by Shahsavari et al. (2017).
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EXPERIMENTAL SETUP

The tests are conducted under controlled conditions with a steel
beam where boundary conditions and damage levels at two
locations can be varied (Shahsavari, 2017). The test specimen is
an I-beam (W150x37) with three sections connected by bolts and
plates. Figure 1 shows the setup in the initial assembled state. The
beam in this initial state has a 12% reduction in stiffness at the two
damage locations compared to an intact I beam. The full-damage
state consists of a 0.002m notch across half of the depth (top half
portion) of the beam. Levels of damage are simulated by adding
or removing sets of bolted connections at the two locations which
are at 0.5m (0.17L) and 1.95m (0.67L) from the left end of the
beam (Figure 2).

Sixteen equally spaced accelerometers installed on
the top flange of the beam are used for measurements.
The accelerometers (Kistler model 8305B2SP4M and
8310A25A1M1SP15M) have similar specifications. Random
impulses are applied with a hammer with a mass sufficiently
large to engage the first few modes of vibration. Series of
measurements are recorded for each damage state to account
for the variability of the mode shapes due to experimental errors
and noise. The test setups used in this experiment consists of
introducing incremental damage at only one of the two locations
at a time. The locations at 0.17L and 0.65L are used to compare
the effect of damage location on the detectability of damage. In
all cases, the beam is considered to be in an initially damaged
state (E0) at the locations of the connections but with only one
location where damage is increased incrementally. The moment
of inertia of the beam and the elastic (nominal) bending moment
capacity (Fy = 345 MPa) are computed and used to characterize
each damage level. For our purposes, the damage level (dl) is
defined as the percentage change in the moment of inertia (I–I0)
relative to the moment of inertia in the initial state (I0).

The experimental program consists of dynamicmeasurements
performed at five levels of incremental damage (E0, E1, E2,
E3, and E4) at two locations along a beam. The change in
dynamic properties is used to derive predictive equations for the
dynamic properties as a function of damage level. The prediction
equations are used to derive the probability of detection and the
probability of false alarms as a function of the damage level.

PROBABILITY OF DETECTION,
PROBABILITY OF FALSE ALARMS AND
SAFETY INDEX

Alvandi and Cremona (2006) compare four vibration-based
damage identification techniques to detect damage on a simply
supported beam. The probability of detection and of false alarm
are analyzed for different levels of damage and noise and with
different detection threshold levels. The authors showed that
a high threshold produces fewer false alarms but has a low
probability of detection, while a low threshold not only increases
the probability of detection but also the number of false alarms.
In addition, by considering data from elements adjacent to the
damage location, the probability of detection is increased while

reducing the probability of false alarms. In conclusion, a higher
damage level has a higher probability of detection since the
corresponding damage index is higher and more likely above the
threshold levels.

The damage detection criterion investigated in this paper
is derived by comparing the dynamic parameters of a system
for increasing levels of damage. Since there is uncertainty and
variability associated with measurements of dynamic parameters,
the criterion is formulated in the form of a statistical test
of hypothesis. Tests can be performed to compare the full
distributions of the dynamic parameters or some specific
statistics such as the median or mean value. The null hypothesis
in this application is that there is no incremental damage
and the mean values for the dynamic properties are equal
when comparing data from two sets of measurements (10

= 0 in Equation 2). Note that the same principle could be
applied to the full distribution or other statistics. The alternative
hypothesis is that the average values are not equal in a scenario
of incremental damage since all other conditions (notably
environmental conditions) were kept constant in the laboratory.
In this application, the t-test for the comparison of means is
used (the assumption of samples from normal distributions
is verified).

H0 :µ1 − µ2 = 10 (2)

H1 :µ1 − µ2 > 10

The significance level (α) of the test corresponds to the
probability of the type I error, which is to reject the null
hypothesis (no change in the mean value or no incremental
damage (µ1-µ2 = 10 = 0) when it is true, and corresponds
to the probability of false detection of incremental damage. For
given samples from two populations, the p-value is the lowest
level of significance that would provide the rejection limit of the
null hypothesis. The null hypothesis is rejected when the p-value
is smaller than the significance level of the test. In practice, a
significance level of 5% is often selected in statistics; however,
in the context of SHM, it results in a large number of false
alarms and thus lower significance levels of 1% or even 0.1%
may be more appropriate. The power of the statistical test is
defined as the probability of rejecting the null hypothesis (i.e.,
no incremental damage) given that the null hypothesis is in fact
false or (1-β), where β is the probability of a type II error for a
given significance level α (Montgomery and Runger, 2014). The
test used in this application is for the equality of means for two
random populations that follow the normal distribution when
the variance is unknown but equal. All these assumptions are
validated for the data set used in this application. Given that
variance is unknown but equal, a pooled estimate of the common
variance is obtained as,

S2p = (n1 − 1) S21 + (n2 − 1) S22
n1 + n2 − 2

(3)

where S1 and S2 are the sample standard deviations from data
from the two populations and n1 and n2 are the corresponding
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FIGURE 1 | Test beam configuration (Shahsavari et al., 2017).

FIGURE 2 | Incremental damage levels and sectional properties of the beam (Fy = 345 MPa) (Shahsavari, 2017).

sample sizes. The test statistic T0 has a t-distribution with (n1 +
n2 – 2) degrees of freedom,

T0 =
X1 − X2 − 10

Sp

√

1
n1

+ 1
n2

(4)

The rejection criterion is specified as t0 > tα,n1+n2−2 where X1

is the sample mean in the initial state while X2 is the sample
mean for the following inspection (10 = 0). The probability of
detection is defined as the power of the test (1–β) when the null
hypothesis is not true for incremental damage associated with a
change in the dynamic properties (Figure 3). By definition, the
power (of probability of detection) increases monotonically to 1.0
as a function of |11| or with an increase in damage. Using the
con-central t-distribution, β solves the following equation,

tβ ,n1+n2−2 = tα,n1+n2−2 −
11

Sp

√

1
n1

+ 1
n2

(5)

For a given significance level (α) and sample size, as the value of
11 (the difference between the mean values under the alternative
H1) increases, β decreases, which results in an increase in the
power of the test (i.e., the probability of detection).

For our purposes, the safety index of the beam is defined for
(positive) pure bending as a function of the level of damage,
and provides a homogenous criteria for defects located anywhere
along the length of the beam. For the purposes of the reliability
analysis, the elastic moment capacity (MR) of the beam is
used to characterize its resistance. It is assumed that the safety
index is equal to 3.5 in pure bending in the initial state E0,
which corresponds to the recommended target reliability level
for ductile failures mode for regular structures (CSA/ACNOR
S408-11, 2011).

β = µMR − µMD
√

σ 2
MR

+ σ 2
MD

(6)

The mean value of the moment capacity is obtained by assuming
a bias factor of 1.05 on the yield strength of steel. The coefficients
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FIGURE 3 | t-distribution and definition of significance level (α) and power (1–β) for the test of Hypothesis (H0 :µ1 − µ2 = 10, H1 :µ1 − µ2 = 11 > 10).

TABLE 1 | Safety Index (and percentage of damage) as a function of the probability of detection and the probability of false alarms—fundamental frequency.

Probability of false alarms

Damage at 0.17L Damage at 0.65L

Probability of detection 5% 1% 0.1% 5% 1% 0.1%

0.95 3.10

(8.9%)

3.2

(6%)

2.97

(12.8%)

3.18

(7.2%)

3.11

(8.7%)

3.03

(10.4%)

0.99 3.02

(9.8%)

2.94

(12.6%)

2.84

(14.7%)

3.11

(8.7%)

3.04

(10.2%)

2.97

(11.9%)

0.999 2.97

(12.%)

2.84

(14.7%)

2.75

(16.7%)

3.03

(10.4%)

2.97

(11.9%)

2.89

(13.6%)

TABLE 2 | Safety Index (and percentage of damage) as a function of the probability of detection and the probability of false alarms—wavelets.

Probability of false alarms

Damage at 0.17L Damage at 0.65L

Probability of detection 5% 1% 0.1% 5% 1% 0.1%

0.95 3.37

(2.8%)

3.35

(3.4%)

3.32

(4.0%)

3.36

(3.2%)

3.33

(3.9%)

3.29

(4.6%)

0.99 3.35

(3.4%)

3.33

(3.9%)

3.29

(4.6%)

3.33

(3.9%)

3.30

(4.5%)

3.27

(5.3%)

0.999 3.32

(4.0%)

3.30

(4.6%)

3.27

(5.3%)

3.3

(4.6%)

2.97

(5.3%)

3.23

(6.0%)

of variation of the moment capacity and of the moment demand
(MD) are assumed to be 0.1 and 0.2, respectively. The average
of the moment demand is specified to match the target safety
index of 3.5 in the initial state and is kept constant for all damage
levels (Tables 1, 2).

ANALYSIS AND DISCUSSION OF RESULTS

Damage Detection With the
Natural Frequency
The measurement of the natural frequency of a beam is
a simple and widely used method for damage detection

that requires a minimal amount of equipment. The change
in frequency depends on the location of damage and its
severity (e.g., crack depth). Various combinations of depth
and location of cracks can provide similar results and
the analysis of different modes of vibration can be used
to provide a pattern that converges to the likely location
of damage.

The experimental protocol consists in taking several
measurements at each damage level to account for the variability
in the measurement of dynamic properties. Extreme outliers
are identified by using box-and-whisker plots prior to the
statistical analysis (Figures 4A, 5A). The measured frequencies
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FIGURE 4 | Damage located at 0.17L. (A) Whisker plot of the frequency of the first mode of vibration at 5 damage levels, (B) Linear regression of frequency as a

function of damage level (Damage levels E0, E1, and E2).

FIGURE 5 | Damage located at 0.65L. (A) Whisker plot of the frequency of the first mode of vibration at 5 damage levels, (B) Linear regression of frequency as a

function of damage level (Damage levels E0, E1, and E2).

are assumed to follow a normal distribution with a decreasing
mean as a function of the level of damage. The results also
indicate a greater reduction in frequencies for damage located
at 0.65L compared to 0.17L due to higher stresses for the first
mode of vibration at that location. The change in frequency at
low levels of incremental damage is not as pronounced as for
higher levels and hints at potential ambiguities in detecting low
levels of incremental damage. The damage level is quantified
in this case as the percentage change in the moment of inertia
of the beam compared to the initial condition (state E0). The
frequencies as a function of damage for the first three levels
(E0, E1, and E2) show a linear trend with constant variance

when damage is located at 0.17L data (Figure 4A). The trend is
non-linear for damage located at 0.65L with a larger variance for
higher damage levels (Figure 5A). The frequency as a function
of the change in the moment of inertia is almost linear for low
damage levels and increases rapidly for higher damage levels.
The trend is more pronounced for the 0.65L data and highlights
that damage located in a region of high curvature produces a
larger reduction in frequency as mentioned by other authors
(Salawu, 1997).

Since the main objective of SHM is the early detection of
damage, a predictive model in the form of a linear regression
is derived for the fundamental frequency as a function of the
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FIGURE 6 | Probability of detection and safety index as a function of damage level and probability of false alarms for damage located at (A) 0.17L and (B) 0.65L

(using frequency).

FIGURE 7 | Wavelet coefficients as a function of damage levels E0 through E4 for damage at (A) 0.17L and (B) 0.65L (Shahsavari, 2017).

damage level using the data for states E0, E1, and E2 for damage
at 0.17 and 0.65L. The regression models provide estimates
of the fundamental frequency as a function of damage level
for intermediate levels of damage between state E0 and E1
(Figures 4B, 5B). Also shown are 95% confidence intervals on the
regression line and for a new prediction. The difference between
the two confidence intervals is indicative of the uncertainty
associated with experimental measurements of fundamental
frequency using impacts and the need for several repeated
measurements for each damage level. Also shown is the safety
index as a function of damage level. The initial safety level was
selected as 3.5 in state E0 and is reduced to 1.65 in state E2.
The two regressions indicate that the damage location has an
effect on the fundamental frequency of the damaged beam with
a larger decrease for damage located closer to the midspan of
the beam.

The performance of changes in the fundamental frequency
for detecting early stages of damage is evaluated by performing
tests of hypothesis on the mean value of the fundamental
frequency between the initial state and increasing states of
damage. The distribution of natural frequencies as a function
of damage level is found to satisfy the assumption of a normal
distribution. The mean and standard deviation in the initial
state are obtained experimentally while the mean and standard
deviation for intermediate levels of damage are obtained from the
regression model. The uncertainty on the mean in the damaged
state is computed for a set of 25 repeat impact measurements
to reproduce the experimental protocol. The t-test is performed
with the pooled estimate of the variance since the variance of
observations can be assumed constant at low levels of damage.
The latter is evaluated for a given intermediate damage state
(dl) by using the distribution for a prediction and averaging
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FIGURE 8 | First Components from PCA for incremental damage at (A) 0.17L and (B) 0.65L (Shahsavari et al., 2017).

FIGURE 9 | Damage located at 0.17L. (A) Whisker plot of the scores of first component of wavelet coefficients at 4 damage levels, (B) Linear regression of scores as

a function of damage level (Damage levels E0, E1, and E2 ).

for a given number of repeat measurements (e.g., n = 25). The
probability of detection is evaluated as a function of damage level
(dl) and significance level (α or the probability of false alarm),

11 = X1 − X2 = X1 − E
[

X
∣

∣dl
]

(7)

S2p = 1

25
σ̂ 2






1+ 1

nobs
+

(

dl− dl
)2

Sxx







where X1 is the average of the dynamic properties in the
initial state (E0), S2p is the pooled variance for a set of

25 observations in each state (X1 and X2 =
[

X | dl
]

), dl
is the average of the damage levels used to estimate the

regression parameters, σ̂ is the standard deviation of the
residuals, and

Sxx =
∑nobs

i=1

(

dli − dl
)2

The probability of detection, of false alarms and the safety
index as a function of the level of damage are jointly shown
in Figure 6 for damage located at 0.17 and 0.65L, respectively.
The three levels for false detection (5, 1, and 0.1%) are selected
to illustrate the effect of reducing the significance level of the
test on the probability of detection. In many applications, the
standard significance level is set at 5%, but in the context of
SHM, this has the potential for a large number of false alarms
that are costly since each alarm may trigger an inspection and
also can undermine the confidence in the monitoring system.
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FIGURE 10 | Damage located at 0.65L (A) Whisker plot of the scores of first component of wavelet coefficients at 4 damage levels, (B) Linear regression of scores as

a function of damage level (Damage levels E0, E1, and E2 ).

FIGURE 11 | Probability of detection and safety index as a function of damage level and probability of false alarms for damage located at (A) 0.17L and (B) 0.65L

(using wavelets).

Reducing the level of false alarms to 1% and 0.1% is desirable
but also decreases the probability of detection of low levels of
damage. The safety can be used as a structural performance
measure to define the most appropriate detection protocol but
also to compare the relative performance of competing SHM
procedures. For example, SHM procedures can be evaluated on
the basis of level of damage that can be detected with a high
degree of certainty. Tables 1, 2 indicates the level of damage and
safety index corresponding to given probabilities of detection
and false alarms. The results indicate that damage can be more
easily detected for damage located at 0.65L in comparison to
0.17L since in the latter case damage is located closer to one of
the supports. In this case, the maximum probability of detection
and minimal probability of false alarms can be achieved for
incremental damage of approximately 10% corresponding to a
safety index of 3.0 (Figure 6).

Damage Detection With the CWT
The procedure of Shahsavari et al. (2015, 2017) is used to
obtain wavelet coefficients along the length of the beam.
Figure 7 illustrates the wavelet coefficients along the beam
(nodes 1 through 316) for increasing levels of damage at
locations 0.17L and 0.65L and clearly indicates the location of
damage for high levels of damage (E3 and E4). The wavelet
coefficients at lower levels of incremental damage (E0, E1,
and E2) are not as pronounced and detection criteria based
on a threshold produces a large number of false detections
along the beam. Shahsavari et al. (2017) use PCA on wavelets
coefficients to filter noise and decrease the noise to signal
ratio (Figure 8). The first component is found to be well-
correlated to incremental damage through the associated scores,
which are also used to locate damage along the length of
the beam.
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FIGURE 12 | Safety Index as a function of damage level and monitoring based on changes in the natural frequency for damage located at (A) 0.17L and (B) at 0.65L.

FIGURE 13 | Safety Index as a function of damage level and monitoring based on changes in wavelet coefficients for damage located at (A) 0.17L and (B) at 0.65L.

The whisker-and-box plot shows significant differences
between the distribution of scores as a function of damage level
with a linear trend for scores as a function of damage levels
for the lower levels (Figures 9A, 10A). Figures 9B, 10B show
the linear regressions for the scores of wavelet coefficients as a
function of damage level between the three lower states (E0 to
E2). The regressions are used to develop the relation between
the probability of detection and of false alarms as a function
of damage level (Figure 11). The results for the two damage
locations are very similar and indicate that wavelet scores can
detect reliably damage at much lower levels that changes in
the natural frequency. In this case, the maximum probability of
detection andminimal probability of false alarms can be achieved
for incremental damage of approximately 4% corresponding to a
safety index of 3.3.

As previously stated, the initial states of damage are
the main focus of this study since these are the levels for
which the owner may have multiple options for maintenance

and repair. The analyses for levels E0-E2 are therefore the
most pertinent for this study. However, the procedure can
also be applied between higher levels or damage for the
detection of incremental damage given an initial damaged
state. Results indicate that small incremental damages
become more easily detectable as damage levels increase.
However, in some of these cases, safety levels may already be
undesirably low.

Various procedures have been proposed to evaluate benefits of
structural health monitoring (Straub, 2014; Thöns et al., 2015).
These are based on a life cycle cost analysis that accounts for the
consequences of the various monitoring outcomes and the costs
for the instrumentation. A simplified version of these procedures
is adapted to the results of the current analysis to illustrate the
benefits of structural monitoring in improving the reliability of
a structure. For this purpose, a simplified event tree is used for
comparing the effects of two monitoring strategies; one based
on changes in natural frequency and the other based on wavelet
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coefficients. The structure is either undamaged (state E0) or
damaged (damage level dl) and the two monitoring strategies
can detect or not the presence or absence of damage. It is
assumed that if damage is detected, the structure is repaired
and restored to its initial condition, while if it is undetected, the
structure remains in the damaged state. It is also assumed that the
structure is continuously monitored. The results are evaluated for
monitoring strategies that allow probabilities of false alarms of 5,
1, and 0.1% as well as for a no monitoring strategy. The safety
index (β) for a monitored structure is evaluated as a function of
the damage level dl as,

β=8−1
(

P
[

detection
∣

∣dl
]

· 8(−β0)
)

+
(

P
[

no detection
∣

∣dl
]

· P
[

failure
∣

∣dl
])

(8)

Figure 12 shows the results for the monitoring strategy based
on changes in the natural frequency and indicate that with
continuous monitoring the structure can be maintained at a level
of reliability above 3.2 for damage at either location 0.17 or 0.65L
as compared to a non-monitored structure. Smaller significance
levels of the test (i.e., reducing the probability of false alarms)
reduce the safety index of the structure for low damage levels
but have negligible effects for damage levels exceeding 10%.More
importantly, results indicate that the rate of false alarms can be
reduced significantly without compromising the structural safety.

Figure 13 shows similar results for a monitoring strategy
based on changes in wavelet coefficients and indicate that the
latter is superior to monitoring based in changes in the natural
frequency and can be used to maintain a higher degree of
reliability (>3.4) for the structure. In this case, the effect of
the significance level of the test on safety levels is much lower
than for the other monitoring procedure. Maximum damage
levels for the monitored structure can be maintained below 2%.
The wavelet procedure proposed by Shahsavari et al. (2017) can
also be used to locate damage along the beam; however, this
aspect is not addressed in the current paper, which focusses on
damage detection.

CONCLUSION

The safety index and the probabilities of detection and of false
alarm are proposed as criteria for evaluating the performance
of structural health monitoring procedures using vibration
data. The probabilities of detection and of false alarms are,
respectively, defined as the power and the significance level
of a test of hypothesis on the mean of dynamic properties
between two sets of measurements. Under the null hypothesis the
dynamic properties, given similar operational and environmental
conditions, are similar between two inspection cycles, while

the one-sided alternative hypothesis assumes that the dynamic
properties are significantly different (increase or decrease
depending on the dynamic characteristics).

The procedure is demonstrated with data obtained on an
instrumented beam under laboratory controlled conditions
for increasing levels of damage at two locations along the
beam. Damage detection procedures based on changes in the
fundamental frequency and wavelet coefficients are evaluated
and compared. Results demonstrate that changes in the wavelet
coefficients are more effective than changes in the fundamental
frequency in detecting low levels of incremental damage between
inspections and that low levels of damage can be simultaneously
detected with a high level of certainty and few false alarms
before the safety of the structure is significantly compromised.
The performance of the monitoring procedures can be compared
by considering the probability of detection as a function of
the damage level and the significance level of the test (i.e.,
the probability of false alarms) and by comparing the safety
index of a continuously monitored structure as a function of
the damage level. In this case, the safety index is defined for a
reference limit state based on pure bending of the beam, which
provides a uniform reference for any damage location along the
beam. The results indicate that changes in wavelet coefficients
are very effective in detecting low levels of damage even for
high thresholds that minimize probabilities of false alarms. For
a monitored structure, the monitoring strategy is effective in
maintaining the safety level above 3.4 given an initial safety level
of 3.5 for the intact structure.
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