
ORIGINAL RESEARCH
published: 02 October 2019

doi: 10.3389/fbuil.2019.00113

Frontiers in Built Environment | www.frontiersin.org 1 October 2019 | Volume 5 | Article 113

Edited by:

Georgios Eleftherios Stavroulakis,

Technical University of Crete, Greece

Reviewed by:

Makoto Ohsaki,

Kyoto University, Japan

Francesco Tornabene,

University of Salento, Italy

*Correspondence:

George C. Tsiatas

gtsiatas@upatras.gr

Specialty section:

This article was submitted to

Computational Methods in Structural

Engineering,

a section of the journal

Frontiers in Built Environment

Received: 02 August 2019

Accepted: 17 September 2019

Published: 02 October 2019

Citation:

Charalampakis AE and Tsiatas GC

(2019) Critical Evaluation of

Metaheuristic Algorithms for Weight

Minimization of Truss Structures.

Front. Built Environ. 5:113.

doi: 10.3389/fbuil.2019.00113

Critical Evaluation of Metaheuristic
Algorithms for Weight Minimization
of Truss Structures
Aristotelis E. Charalampakis 1 and George C. Tsiatas 2*

1 School of Civil Engineering, National Technical University of Athens, Athens, Greece, 2Department of Mathematics,

University of Patras, Rio, Greece

This study critically compares variants of Genetic Algorithms (GAs), Particle Swarm

Optimization (PSO), Artificial Bee Colony (ABC), Differential Evolution (DE), and Simulated

Annealing (SA) used in truss sizing optimization problems including displacement and

stress constraints. The comparison is based on several benchmark problems of varying

complexity measured by the number of design variables and the degree of static

indeterminacy. Most of these problems have been studied by numerous researchers

using a large variety of methods; this allows for absolute rather than relative comparison.

Rigorous statistical analysis based on large sample size, as well as monitoring of the

success rate throughout the optimization process, reveal and explain the convergence

behavior observed for each method. The results indicate that, for the problem at

hand, Differential Evolution is the best algorithm in terms of robustness, performance,

and scalability.

Keywords: truss weight minimization, genetic algorithm, particle swarm optimization, differential evolution,

simulated annealing, artificial bee colony

INTRODUCTION

Structural optimization has always been a topic of interest for both the research community and the
practicing engineers. It is commonly acknowledged that many real-life problems, featuring a large
number of design variables, as well as non-linear objective function(s) and constraints, are quite
demanding due to characteristics such as high dimensionality, multimodality, and non-convex
feasible regions. In order to address this, researchers were led to Mathematical Programming (MP)
andOptimality Criteria (OC)methods (Feury andGeradin, 1978). InMP, the optimization problem
is decomposed into simpler subproblems producing designs of good quality which, however, are not
necessarily optimal. In OC methods, simple recursion formulas are derived based on assumptions
on the optimum design. These formulas may be simple and practical, but often do not converge for
highly redundant structures (Feury and Geradin, 1978). Moreover, they do not address the problem
properly, in mathematical terms. Interestingly, analytical global sizing optimization of trusses is
actually feasible, based on the Cylindrical Algebraic Decomposition algorithm, as shown recently
in Charalampakis and Chatzigiannelis (2018).

In contemporary optimization research, metaheuristics, i.e., stochastic algorithms inspired
by principles of evolution, swarm intelligence, or other physical phenomena, enriched with
simple probabilistic and/or statistical methods, have been established as a prominent tool for
solving complex problems. These algorithms possess certain important advantages, such as
easy implementation and good performance without being dependent on the gradient or other

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2019.00113
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2019.00113&domain=pdf&date_stamp=2019-10-02
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gtsiatas@upatras.gr
https://doi.org/10.3389/fbuil.2019.00113
https://www.frontiersin.org/articles/10.3389/fbuil.2019.00113/full
http://loop.frontiersin.org/people/295757/overview
http://loop.frontiersin.org/people/438310/overview

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

problem-specific information (Eiben and Smith, 2003). As
a result, many applications of metaheuristics in the size
optimization of trusses, in particular, have been presented in
the literature.

Arguably, the most widely used member of the metaheuristic
family is Genetic Algorithms (GAs), which originate from the
work of Holland (1975). In GAs, a population of individuals
is evolved using appropriate mutation, crossover, and selection
operators. Based on Darwin’s principles of natural selection
and survival of the fittest, promising genetic information
is propagated into future generations providing solutions to
the optimization problem. Application of GAs to truss size
optimization can be found in Koumousis and Georgiou (1994),
Rajan (1995), and Coello and Christiansen (2000).

Another popular method of optimization is Simulated
Annealing (SA). It is inspired by the annealing process of physical
systems which, being at a high-energy state, are gradually cooled
down to their minimum energy level. This process was first
formulated into an optimization algorithm by Kirkpatrick et al.
(1983). An application of SA for size optimization of trusses can
be found in Lamberti (2008).

More recently, Geem et al. (2001) proposed Harmony Search
(HS) for solving combinatorial optimization problems. HS was
inspired by the harmony sought by music players as they
improvise the pitches of their instruments. This algorithm has
also been used for size optimization of trusses (Lee and Geem,
2004; Lamberti and Pappalettere, 2009; Degertekin, 2012).

In the category of Swarm Intelligence algorithms, Karaboga
and Basturk (2008) proposed the Artificial Bee Colony (ABC)
algorithm, a stochastic algorithm inspired by the foraging
behavior of honey bees. An application of ABC for the size
optimization of trusses can be found in Sonmez (2011).

In the same category, Particle Swarm Optimization (PSO)
is based on the social sharing of information among members,
which produces behavioral patterns that offer an evolutionary
advantage (i.e., avoid predators, seek food, and mates). The
method, introduced by Kennedy and Eberhart (1995), searches
the design space by adjusting the velocities of moving “particles.”
As they move, the particles are stochastically attracted toward
both their personal best position and the best position found
by the whole “swarm” (Clerc and Kennedy, 2002). Many
applications of PSO for the size optimization of trusses can
be found in the literature (Ray and Saini, 2001; Fourie and
Groenwold, 2002; Schutte and Groenwold, 2003; Li et al.,
2007; Perez and Behdinan, 2007; Dimou and Koumousis, 2009;
Talatahari et al., 2013).

Recently, Rao et al. (2011) proposed a method called
“teaching-learning-based optimization” (TLBO), inspired by the
learning process of students who are influenced by their teachers
as well as their fellow students. Several applications of TLBO for
the size optimization of trusses can be found in the literature
(Degertekin and Hayalioglu, 2013; Camp and Farshchin, 2014;
Dede and Ayvaz, 2015).

Further, the literature is abundant with algorithms inspired
by physical phenomena. In Big Bang—Big Crunch (BB-BC),
proposed by Erol and Eksin (2006), a random and disordered
population, produced at the Big Bang phase, is qualitatively

averaged to a single position during the Big Crunch phase.
Repeating cycles of these phases guide the algorithm toward
optimality. Applications of this method for the size optimization
of trusses can be found in Camp (2007) and Kaveh and Talatahari
(2009b). Other studies on size optimization of trusses utilize
Colliding Bodies Optimization algorithm (CBO) (Kaveh and
Ghazaan, 2015; Kaveh and Mahdavi, 2015a,b), which is based
on an analogy with one or two-dimensional collisions between
bodies, Enhanced Bat Algorithm (EBA) (Kaveh and Zakian,
2014), Ray optimization (RO) (Kaveh and Khayatazad, 2013),
Charged System Search (CSS) (Kaveh and Talatahari, 2010), etc.

Notably, Differential Evolution (DE), introduced by Storn
and Price (1997), is a stochastic optimization method that is
not based on any natural paradigm. An initial version of the
algorithm, termed “Genetic Annealing,” was first published in
a programmer’s magazine in 1994 (Price et al., 2005). Several
applications of DE for the size optimization of trusses can be
found in the literature (Wu and Tseng, 2010; Bureerat and
Pholdee, 2016). Other studies on the same topic that are not
nature-inspired are the Adaptive Dimensional Search (Hasançebi
and Azad, 2015) and the Guided Stochastic Search (Kazemzadeh
Azad and Hasançebi, 2015). In the latter, problem-specific
information is utilized as the stochastic optimization process is
actually guided by the principle of virtual work.

Finally, researchers have attempted to combine the better
features of different algorithms by means of hybridization in
order to achieve lighter truss designs, as in Hybrid Particle
Swarm—Swallow Swarm (HPSSO) (Kaveh et al., 2014a),
Hybrid Particle Swarm—Ant Colony Strategy—Harmony
Search (HPSACO) (Kaveh and Talatahari, 2009a), and Swarm
Intelligence—Chaos Theory in Chaotic Swarming of Particles
(CSP) (Kaveh et al., 2014b).

Metaheuristic algorithms are commonly compared based on
mathematical functions with clearly defined characteristics, e.g.,
unimodal/multimodal, basic/expanded/hybrid, separable/non-
separable, convex/non-convex. These characteristics cannot be
clearly measured when considering truss size optimization. On
the other hand, studies on truss size optimization do not focus
on the comparison between algorithms. Usually, only the best
final design is compared which may have been found using
an excessive computational budget or, in certain cases, with
constraint violations. Thus, a need for an overall and unbiased
comparison is evident. There are certain publications in the
literature regarding this topic (e.g., Keane, 1996; Hasançebi et al.,
2009). However, the list of examined algorithms is limited, while
there is also a need for more detailed statistical analysis. As
measure of the complexity, the number of design variables D, as
well as the degree of static indeterminacy SI is indicated for each
problem. Some preliminary results on the problem have been
presented by Charalampakis (2016), which are greatly revised
and extended herein.

Motivated by the above, in this work, an unbiased framework
for meaningful comparison between different metaheuristic
optimization methods is defined. A strict computational budget
is predetermined, according to the dimensionality of the
problem. Performance is always measured with respect to
function evaluations, i.e., truss analyses, instead of generations

Frontiers in Built Environment | www.frontiersin.org 2 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

or optimization steps. All function evaluations are carefully
accounted for. A large sample is collected and analyzed for
each algorithm and each problem, to ensure valid statistics.
To quantify the robustness of an algorithm, in this study the
probability that an arbitrary run will provide a solution of a
certain quality (i.e., the probability of a “successful” design)
is measured. This is very useful in real-life engineering as it
provides a meaningful measure of confidence regarding the
optimized design of a structure that has not been studied before
or cannot be studied thoroughly due to resource limitations.
The lightest solutions which do not violate constraints, produced
either herein or (to the best of our knowledge) in the literature,
are utilized to screen successful from unsuccessful designs. The
success rate of each algorithm is not only evaluated at the end but
also monitored throughout the analysis, which reveals interesting
information regarding the relative convergence rate.

Based on this framework, a critical evaluation of a number
of metaheuristic algorithms is presented, including variants of
GAs, PSO, ABC, SA, and DE. The comparison is based on several
benchmark problems of varying complexity (number of design
variables D= 4–200, degree of static indeterminacy SI = 0–50).
Most of these problems have been studied by numerous
researchers using a large variety of methods; this allows for
absolute rather than relative comparison. The differences in
performance between the algorithms are shown and explained. In
addition, often a slightly better design is produced, as compared
to the existing literature.

PROBLEM STATEMENT

The size optimization problem of a truss with D variables can be
formally stated as follows.

Minimize the objective function:

f (x) = W (x) + P (x) (1)

which is subject to:

(a) side constraints xL ≤ x ≤ xU (note that vector inequalities are
applied element-by-element);

(b) additional constraints (depending on the problem) regarding
element stress, buckling stress and/or node displacements.

In Equation (1), x = {x1, x2, ..., xD} = a vector which contains
the areas of the cross-section of each group of elements, xL and
xU = vectors which define the minimum and maximum areas,

respectively, W (x) =
D
∑

i=1
(Lixiρi) = structural weight of the

truss, Li and ρi = total length and specific weight of the ith
group of bars, and P (x) = penalty function, which is a common
method to transform the constrained optimization problem into
an unconstrained problem.

The penalty function should follow the so-called “minimum
penalty rule,” which is not easy to achieve. This rule dictates that
the penalty should be kept as small as possible, yet large enough to
keep infeasible solutions from being optimal (Coello, 2002). If the
penalty is too large and the optimum solution lies at the boundary

of the feasible region, the algorithm will be driven back from the
boundary, inside the feasible region, in a strong manner. Also,
it will be difficult for the algorithm to move from one feasible
region to another if there are more than one, unless they lie very
close to each other. On the contrary, using a small penalty will
lead to a fruitless exploration of the infeasible region, and thus
wasted computational effort, because the penalty will be small
as compared to the objective value itself. Since, it is expected
that many of the problems examined herein will have optimum
solutions lying on the boundary between feasible and infeasible
regions, these issues are of importance. There are many types of
penalty functions which cannot be examined here; for a survey
on the state-of-the-art, see Coello (2002). Since, it is very difficult
to define a criterion to quantify what is a “small” violation of
the constraints, in this study a static penalty rule is used with a
small constant term to keep all best solutions strictly within the
feasible domain, i.e., no violation at all is accepted. A normalized
constraint violation function is defined as follows:

v
j
n =

v
j
o

v
j
a

− 1, (2)

where, v
j
n is the normalized violation of the jth optimization

constraint (stress, displacement, buckling stress, etc.), v
j
o is the

corresponding value computed for a candidate solution, and v
j
a is

the allowable constraint limit. The penalty function is of the form:

P (x) =

Nc
∑

j=1

δ j
(

Av
j
n + B

)

, (3)

where, A = 106, B = 103, Nc = the number of constraints and
δ j = the activation key defined as:

δ j =

{

1, v
j
n > 0

0, v
j
n ≤ 0

. (4)

The constant B is used to create a step-like rule, which adds a
significant penalty for slight violations. This has proved to be
particularly effective and ensures that the best solutions found are
devoid of any violations.

METAHEURISTIC ALGORITHMS

Basic Features of the Trade Study
The following assumptions/rules have been used equally for
all algorithms:

1) The same configuration was used for each algorithm in all test
problems. For well-established methods, internal parameters
were set according to literature. For newly established
algorithms, the best combination of parameters was found via
parametric analysis.

Frontiers in Built Environment | www.frontiersin.org 3 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

2) The number of structural analyses required in the
optimization process was chosen as the best performance
indicator to compare algorithms of different nature
and configuration.

3) Thirty independent runs with different random seeds
were conducted for each test case and each optimization
algorithm in order to obtain statistically significant results.
The conclusions are supported by t-tests regarding the
significance of the differences between algorithms.

4) A robust random number generator of L’Ecuyer with Bays-
Durham shuffle and added safeguards (Press et al., 2002)
was used. Henceforth, r = random variable with uniform
distribution in the interval (0,1), sampled anew each time it
is required, and r = corresponding vector.

5) For each test problem, a value-to-reach (VTR) defines the
limit between success and failure. The VTR is 1% heavier than
the best feasible design obtained in this study or reported in
the literature. Hence, “successful” designs lie very close to the
optimum region of design space. The final design is usually
more fine-tuned when the VTR threshold is reached early in
the optimization process.

6) Regarding the computational budget, it obviously needs to
be analogous to the problem difficulty which is generally
acknowledged that increases non-linearly in D. This rapid
growth in difficulty is commonly referred to as “curse
of dimensionality” (Bellman, 1957); however, the allocated
computing resources cannot follow this pattern. For this
reason, in this study a linear function is used, i.e., the
computational budget is set to 2500D structural analyses and
the best design is achieved strictly within this limit. This
budget balances two conflicting aspects: (a) it is high enough
to achieve good designs (often better than those reported
in the literature); (b) it is not too excessive to conflict with
limitations on computing resources.

7) The unit system utilized is the same as in the original
statement of the problem, in order to avoid rounding errors
during comparisons.

Cross-sectional areas of elements are rounded to three decimal
digits before performing structural analysis in double precision
without any further rounding. Literature designs including more
than three decimal digits are exactly reproduced in this paper;
however, the total weight is re-evaluated and may be slightly
different from the source value. The inversion of the stiffness
matrix is performed using Gauss-Jordan elimination with full
pivoting (Press et al., 2002).

Algorithm Description
Standard Genetic Algorithm (SGA)
The pseudocode of the so-called standard genetic algorithm
(SGA) is as follows:

1. Random initialization of the population;
2. Fitness calculation;
3. Selection of individuals to form the new population;
4. Crossover and mutation;

5. Repetition of steps (2–5) until some termination condition
is satisfied.

The particular implementation of SGAused herein includes jump
and creep mutation, as well as elitism. Jump mutation randomly
flips a bit in the genotype, while creep mutation randomly
increases or decreases a gene in the phenotype by a single
step. Elitism directly transfers the better individual(s) from the
previous generation to the next, ensuring that the solution quality
will not decrease during evolution. The parameters of SGA are set
as follows: gene length Lg = depending on the problem so that the

step
(

xiU − xiL
)

/

(

2L
i
g − 1

)

≤ 10−3 ∀i ∈ {1, 2, ...,D}; population

size P=50; single crossover with probability 0.7; jump mutation
with probability 1/P ; creep mutation with probability Lc/D /P

(Lc =
D
∑

i=1
Lig = chromosome length in bits); tournament selection

with 2 individuals; and elitism (with 1 elite individual).

Hybrid Genetic Algorithm (HGA)
The standard GA formulation is hybridized by combining the
search space reduction method (SSRM) and a local optimization
algorithm to form the Hybrid Genetic Algorithm (HGA). SSRM
is a systematic method which gradually reduces the search
space. It facilitates the optimization algorithm by focusing
on the promising areas which lead to better solutions. The
SSRM embedded in HGA was presented in Charalampakis and
Koumousis (2008) and later employed in several cases (e.g.,
Marano et al., 2011). It is based on a statistical analysis of a
population of P candidate designs, where each one is assigned a
weight w depending on its quality. For minimization problems:

wk =
max

(

f
)

fk
, k ∈ {1, 2, ..., P} , (5)

where max
(

f
)

= max
{

f1, f2, ..., fP
}

is the worst objective value
in the population, which corresponds to a weight of unity. The
weighted mean value of the design variable i is then calculated as:

mi =

P
∑

k=1

(wkxik)

P
∑

k=1

(wk)

, i = {1, 2, ...,D} , (6)

where xik is the value of the ith variable of the kth candidate
design. The descriptive weighted standard deviation of the design
variable i is given as:

si =

√

√

√

√

√

√

√

√

P
∑

k=1

(

wk(xik −mi)
2
)

P
∑

k=1

(wk)

. (7)

Frontiers in Built Environment | www.frontiersin.org 4 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

The new trial lower and upper bounds of the design variable i are
formed symmetrically aroundmi:

x̄iL,j = mi − q si

x̄iU,j = mi + q si
, (8)

where j is an index for SSRM steps and q is a scalar parameter.
Finally, the new range of values of the design variable i is
the intersection (common part) of the previous range and the
trial range:

[

xiL,j+1, x
i
U,j+1

]

=
[

xiL,j, x
i
U,j

]

∩
[

x̄iL,j, x̄
i
U,j

]

, (9)

Based on Equation (9), the search space is not allowed to expand.
Instead, it is gradually reduced on a variable-by-variable basis,
if justified by the statistical analysis. The scalar q controls the
aggressiveness of SSRM. Small values may stochastically lead to
exclusion of a promising area in subsequent SSRM steps; large
values cancel the beneficial effect of SSRM. In this study, q = 3
is set which is a rather conservative choice (Charalampakis and
Koumousis, 2008). The chromosomes of the existing population
are substituted by their closest counterpart in the new mapping.
If a variable falls out of a new bound, it is set equal to it.

Regarding variable discretization, the gene length is set to
10 bits irrespective of the problem at hand. This leads to a
relatively small chromosome length, which greatly facilitates the
GA. Refining of the solutions is achieved through SSRM, which
is triggered automatically. For the test problems considered in
this study, this happens every 5,000, 10,000, 20,000, and 50,000
function evaluations when D = {4}, D = {8, 10, 17}, D = {29}

and D = {200}, respectively.
A local optimization algorithm, namely the Greedy Descend

Hill Climber (GDHC) (Eiben and Smith, 2003), is also embedded
in the HGA. The final 5,000 function evaluations of each run
are dedicated to GDHC. The best solution found so far becomes
seed; this solution is continuously improved by alternating the
bits of the chromosome from left to right, keeping the best result
as a reference. When a full cycle has been concluded without
improvement of the best result, the local optimum has been
found and the process is terminated. If the limit of 5,000 function
evaluations is reached prior to finding the local optimum, the
reference solution becomes final.

Enhanced Particle Swarm Optimization (EPSO)
In the basic PSO algorithm, the population consists of P
particles. Each particle is assigned a position and velocity vector,
determined at time instant k by xk and vk, respectively. The
particles are initialized randomly in the box-constrained design
space, so that:

xL ≤ xm0 ≤ xU ∀m ∈ {1, 2, ..., P} . (10)

The initial velocities of the particles are also chosen randomly:

− vmax
0 ≤ vm0 ≤ vmax

0 ∀m ∈ {1, 2, ..., P} , (11)

where vmax
0 = γ (xU − xL) and γ = a scalar parameter. The

position vector of a particle m at the next time instant k + 1 is
given by:

xmk+1 = xmk + vmk+1. (12)

Note that the time step 1t between the distinct time
instants is taken equal to unity. The velocity vector vm

k+1
is

given as:

vmk+1 = wk v
m
k + c1 r1 ◦ (p

m
k − xmk)+ c2 r2 ◦ (p

g

k
− xmk), (13)

where,wk = inertia factor at time instant k; c1, c2 = cognitive and
social parameters, respectively; pm

k
= best-ever position vector

of particle m up to and including time instant k; p
g

k
= best-

ever position vector amongst all particles up to and including
time instant k; and the ◦ operator indicates element-by-element
multiplication. Note that these formulas are compatible with the
diverse “classical” version of PSO (Wilke et al., 2007). The side
constraints of Equations (10) and (11) are enforced after each
time step.

It is known that standard PSO suffers from convergence rate
problems, due to the delicate balance between exploration and
exploitation that is required. This was clear in the problems
considered in this study, so an enhanced variant is used
instead. This variant (EPSO) is based on the work by Fourie
and Groenwold (2002) and has been successfully applied in a
parameter identification problem (Charalampakis and Dimou,
2010, 2015). The differences with respect to the basic PSO
algorithm are the following:

◦ If a period of h consecutive steps passes without the best
solution found by the whole swarm being improved,
then it is postulated that the velocities are large and
“overshooting” prevents the algorithm from locating
better solutions. Therefore, a reduction is applied to
both the inertia factor and the maximum velocity,
as follows:

If f (p
g

k
) = f (p

g

k−h
) then

{

wk+1 = a wk

vmax
k+1

= β vmax
k

else

{

wk+1 = wk

vmax
k+1

= vmax
k

.

(14)

◦ The craziness operator imposes a random velocity vector to
a particle which hence strays from the swarm and examines
other regions of the search space. A probability Pcr is used to
activate the operator, as follows:

If r < Pcr then randomly assign vmk+1 with -vmax
k+1 ≤ vmk+1 ≤ vmax

k+1.

(15)

◦ The worst individual is moved to the best ever position found
by the swarm.

Frontiers in Built Environment | www.frontiersin.org 5 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

◦ If the velocity vm
k
leads to an improvement of p

g

k
then, instead

of Equation (12), the so-called “elite velocity” rule is applied
for particlem:

xmk+1 = p
g

k
+ c3 r3 ◦ v

m
k , (16)

where c3 = a scalar parameter. Note the difference between the
current implementation and the work by Fourie and Groenwold
(2002), where a single random variable r3 is multiplied by the
velocity vector vm

k
.

In this study, the parameters of EPSO are set as follows: P =

20, c1 = 0.5, c2 = 1.6, γ = 0.4, w0 = 1.40, h = 3, a = 0.99,
β = 0.95, Pcr = 0.22, and c3 = 1.30.

Artificial Bee Colony (ABC)
According to the ABC method, the colony of artificial bees is
divided into two equal groups, i.e., the employed bees and the
onlookers. Also, the number of food sources (possible solutions)
around the hive is equal to the number of employed bees.
Initially, the ABC initializes randomly SN/2 food source
positions, where SN = total colony size. Next, the food
source positions are subjected to repeated cycles of improvement
as follows.

The employed bee i modifies the position vector of the
associated food source i:

x̄ij = xij + (2r − 1)
(

xij − xkj
)

, (17)

where i, k ∈ {1, 2, ..., SN/2} = random indices with i 6= k
and j ∈ {1, 2, ...,D} = a randomly chosen dimension of the
D-dimensional vector xi to be modified. A greedy selection is
performed between the current and modified vector; the best
either becomes or remains the food source i.

Next, the employed bees share the information with the
onlooker bees. An onlooker bee chooses each food source with
a probability given by:

pi =
fiti

SN/2
∑

k=1

fitk

, (18)

where fiti = the fitness of food source i. For minimization
problems, this can be evaluated by:

fiti =
1

1+ fi
, (19)

where fi = the objective value of food source i. The onlooker bee
also modifies the selected food source according to Equation (17)
and applies a greedy selection criterion between the current and
modified vector.

Finally, if a food source has not been improved over a period of
LIMIT cycles, then the associated employed bee becomes a scout.
This means that the food source is re-initialized as:

x = xL + r ◦ (xU − xL) . (20)

In this study, the parameters of the ABC algorithm are set as
follows: SN = 50 and LIMIT = SN/2 × D.

Differential Evolution (DE)
In the classic DE algorithm, a population of P individuals is
initialized randomly within the design space, as follows:

xL ≤ xi,0 ≤ xU ∀i ∈ {1, 2, ..., P}

Px,g =
(

xi,g
)

, i ∈ {1, 2, ..., P} , g ∈
{

0, 1, ..., gmax

}

xi,g =
(

xj,i,g
)

, j ∈ {1, 2, ...,D} .
, (21)

where Px,g = array of P vectors (= candidate solutions); xi,g =D-
dimensional vector (= candidate solution); gmax = the maximum
number of generations; i, g, j = indices for vectors, generations,
and design variables; and the parentheses indicate an array.

Amutated population Pv,g =
(

vi,g
)

is created from the current
population Px,g in each generation g, as given by:

vi,g = xr0,g + F
(

xr1,g − xr2,g
)

, (22)

where, r0, r1 and r2 are random integers in {1, 2, ..., P}, mutually
different and also different from the index i; xr0,g = base vector;
and F = a scalar parameter. Note that after the formation of the
mutated population using Equation (22), all design variables are
relocated within their respective boundaries, if necessary.

In the next step, a trial population Pu,g =
(

ui,g
)

is created,
consisting of members taken from both the parent and mutated
populations, as follows:

ui,g =
(

uj,i,g
)

=

{

vj,i,g , if
(

r ≤ Cr or j = jrand
)

xj,i,g , otherwise
, (23)

where jrand = a random index in {1, 2, ..., P} which makes certain
that a minimum of one design variable will be taken from the
mutant vector vi,g ; and Cr = a parameter with values in the
range [0,1].

The last step of DE is a greedy selection criterion. In the case
of minimization problems, it is given by:

xi,g+1 =

{

ui,g , if f
(

ui,g
)

≤ f
(

xi,g
)

xi,g , otherwise
. (24)

The aforementioned classic DE implementation is denoted as
rand/1/bin (Price et al., 2005), or DE1 herein for short. In
general, it is acknowledged that DE1 exhibits intense exploration
capability and thus is more suitable for multimodal problems
(Qin et al., 2009). Following recommendations in Price et al.
(2005) and Rönkkönen et al. (2005), F = 0.5 and a high value
of Cr = 0.9 is selected which is anticipated to lead to good
performance with non-separable functions. The population size
is taken equal to 50 for all problems.

Another popular DE variant is denoted as best/1/bin (Price
et al., 2005) in which the currently best vector of the population

Frontiers in Built Environment | www.frontiersin.org 6 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

is used as a base vector. In addition, jitter is introduced to F and,
thus, Equation (22) becomes:

vi,g = xbest,g + Fj
(

xr1,g − xr2,g
)

Fj = F + d (r − 0.5)
, (25)

where d = 0.001 = the magnitude of jitter. This variant
was tested in this study and found to be too greedy, as it
showed great initial performance which was quickly followed
by stagnation in the more difficult problems. Instead, another
DE variant is included which is denoted as DE3 or “rand-
best/1/bin” (Charalampakis and Dimou, 2015). Let us define rb as
the expected ratio of evaluations with a random base vector to the
total number of evaluations. If r < rb, then evolution proceeds
according to rand/1/bin with jitter. Conversely, best/1/bin is
used. Based on the information presented in a separate section,
a high value rb = 0.90 is chosen to promote exploration.

From the very beginning, DE has proved to be a very efficient
and robust optimization algorithm. Of course, its performance
is dependent to a certain degree on both the strategy for the
generation of trial vectors and the values of control parameters.
Although there exist suggested values for parameters, there is
no specific setting that is equally suitable for all problems or
even at different optimization stages of a single problem. For
this purpose, several adaptive algorithms have been proposed,
such as SaDE (Qin et al., 2009), JADE (Zhang and Sanderson,
2009), and SaNSDE (Yang et al., 2008). In this study, SaDE is
considered as the final DE variant, in which four competing
strategies are employed simultaneously, namely rand/1/bin,
rand-to-best/2/bin, rand/2/bin, and current-to-rand/1, with K =

4 = the total number of strategies. The probability of selecting
each strategy is initialized to 1/K and the stochastic universal
selection method is used to determine which strategy is going
to be adapted for each vector in the population. The successes
and failures of each strategy are recorded to the corresponding
memory of the last LP = 50 generations, where LP = learning
period. Once the memory overflows, new results replace the
earliest ones. At generation G > LP, the probability of choosing
the kth strategy is given by:

pk,G =
Sk,G
K
∑

k=1

Sk,G

, (26)

where

Sk,G =

G−1
∑

g=G−LP
nsk,g

G−1
∑

g=G−LP
nsk,g +

G−1
∑

g=G−LP
nfk,g

+ ε, (27)

where Sk,G = the success rate of the kth strategy; nsk,g , nfk,g =

the number of successes and failures, respectively, of strategy
k at generation g; and ε = 0.01 a small constant value to

avoid zero success rate. Parameter F, which is closely related to
the convergence speed, is sampled from a normal distribution
with mean value 0.5 and standard deviation 0.3, denoted by
N (0.5, 0.3). Regarding parameter Cr , it has been observed that
good settings generally fall into a small range of values for a given
problem (Qin et al., 2009). In SaDE, Cr for the kth strategy is
sampled from a normal distribution N (CRmk, 0.1), where CRmk

is a parameter initialized by the value 0.5. A memory named
CRMemoryk stores the values of Cr that produced trial vectors
which successfully competed with existing vectors and entered
the next population using the kth strategy. When the memory
overflows, the earliest entries are replaced. At generationG > LP,
CRmk is overwritten by the median value of CRMemoryk. For
more implementation details, see Qin et al. (2009).

Simulated Annealing (SA)
The implementation of the SA algorithm used herein is based
on the work by Balling (1991). The algorithm begins with the
creation of D random designs in the box-constrained design
space xL ≤ x ≤ xU . The best of these designs becomes the current
design xc. This preliminary loop is done in order to avoid the
possibility that the starting point for the optimization is too poor.
Following the selection of a suitable cooling schedule, the current
design xc is subjected to small perturbations to create a candidate
design xa. Whenever, xa is better than xc, it replaces it with a
probability of 1. For a minimization problem, this is expressed
mathematically as:

1f = f (xa) − f (xc) ≤ 0 ⇒ P (xa → xc) = 1. (28)

If xa is worse than xc, it still replaces it with a probability given by:

1f = f (xa) − f (xc) > 0 ⇒ P (xa → xc) = e−1f /(Ktc) ≤ 1, (29)

where, K = Boltzman parameter and tc = the current system
temperature, corresponding to the cooling cycle c. The Boltzman
parameter is not kept constant during optimization. Instead, it is
updated prior to using Equation (29) as follows:

KNa+1 =
KNaNa +

∣

∣1f
∣

∣

Na + 1
, (30)

where, Na = number of accepted designs so far, and KNa =

previous Boltzman parameter. Initially, Na = 0 and K0 = 1. The
starting and final system temperatures are given by:

ts = −
1

ln (Ps)
, tf = −

1

ln
(

Pf
) , (31)

where, Ps and Pf = the starting and the final probability of
acceptance, respectively. The temperature is reduced gradually in
Nc cooling cycles, as follows:

tc+1 = cf × tc, (32)

Frontiers in Built Environment | www.frontiersin.org 7 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

where, cf ∈ (0, 1) = cooling factor, given by:

cf =

(

tf

ts

)
1

Nc−1

. (33)

At each cooling cycle, a number of inner loops of
perturbation/improvement of the current design xc is executed.
For each loop, an array of integers representing the design
variables (1 to D) is shuffled. According to the sequence
indicated in the shuffled array, each design variable i is in turn
perturbed to form the candidate design xa according to:

xia = xic + (2r − 1) di, (34)

where di = the magnitude of perturbation of variable i. Note that
the side constraints xL ≤ xa ≤ xU are re-enforced after using
Equation (34). It has been observed that inner loops are more
important at low temperatures. For this reason, the repetitions
I of the inner loop are not kept constant but instead, they are
determined as follows:

I = round

(

Is +
(

If − Is
) tc − ts

tf − ts

)

, (35)

where, Is and If = the starting and the final number of repetitions
of inner loops, respectively. Note that in SA the current design
is occasionally replaced by a poorer design due to Equation (29).
This means that even if a better design replaces the current design
due to Equation (28), it may not be the best ever design. For our
purposes, it is desirable to keep track of the best design found
so far during the optimization process. This best design xb is
updated after each function evaluation.

The driving force of the algorithm is based on three pillars:
(i) high temperatures observed at the beginning of the cooling

cycle encourage acceptance of poorer designs (ii) poorer designs
with small 1f have higher probability of acceptance than poorer
designs with large 1f (iii) the temperature is gradually decreased
during the cooling process and, thus, the probability of accepting
a poorer design is reduced accordingly. This gradually shifts the
focus from the exploration of the search space to the exploitation
of the most promising solution.

In this study, the parameters of the SA algorithm are set as
follows: Ps = 0.5, Pf = 1E − 07, Nc = 300, Is = 1, If = 3, d =

0.01 (xU − xL).

TEST PROBLEMS

18-Bar Truss (D = 4, SI = 0)
The planar 11-node, 18-bar truss shown in Figure 1 is subjected
to concentrated loads of P = 20 kips acting on the free nodes of
the upper chord. The same material is used for all members (E=

10,000 ksi and ρ = 0.1 lb/in3). A symmetrical stress limit σmax =

−σmin = 20 ksi is imposed for both tension and compression. In
addition, the Euler buckling limit of the ith bar is calculated as:

σ E
i = −

βEAi

L2i
, (36)

where, Li, Ai = length and area of the ith bar, respectively, and
β = 4 = a constant determined from geometry. The problem
features four design variables (D = 4) which correspond to the
following bar groups: (i) 1, 4, 8, 12, and 16; (ii) 2, 6, 10, 14, and
18; (iii) 3, 7, 11, and 15; (iv) 5, 9, 13, and 17. The areas of each
group of elements can vary between 0.10 and 50 in2.

This problem has been solved in the literature either
considering only sizing variables (Lee and Geem, 2004; Sonmez,
2011), or combining layout and sizing variables (Lamberti,
2008). Note that the truss is statically determinate, which
means that the force acting in each bar is independent of the

FIGURE 1 | Planar 18-bar truss.

Frontiers in Built Environment | www.frontiersin.org 8 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

cross-sectional areas of the bars. The forces can be evaluated
analytically using simple equilibrium equations (Charalampakis
and Chatzigiannelis, 2018).

The optimization becomes more challenging if there are
displacement constraints. The exact global optimum for a 6 in.
tip displacement constraint and four-element groups (D = 4),
obtained with the Cylindrical Algebraic Decomposition method,

has been evaluated in Charalampakis and Chatzigiannelis (2018).
This result is used as a target to evaluate the relative performance
of metaheuristic methods by setting VTR = 9568.715 × 1.01
= 9664.402 lb.

Table S1 shows that all DE variants, EPSO, and SA practically
converged to the analytical solution of the optimization problem,
while HGA and ABC exhibited larger statistical dispersion. The

FIGURE 2 | Size optimization of the planar 18-bar truss (A) average progress of the best solution (B) evolution of success rate.

FIGURE 3 | Spatial 25-bar tower.

Frontiers in Built Environment | www.frontiersin.org 9 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

average progress of the best solution, as well as the evolution
of the success rate, are shown in Figure 2. It can be seen
that EPSO and DE variants find the optimum region very
quickly; 100% success rate is reached after only ∼350D analyses.
SA ranks next, requiring ∼1250D analyses for 100% success
whereas HGA reaches ∼95% success at the end. Although it
appears that ABC is not trapped into local optima, its progress
is slow, and many structural analyses are required to obtain
good results.

TABLE 1 | Member grouping and stress limits for the spatial 25-bar tower.

Member

group

Members Compressive

stress limit [ksi]

Tensile stress

limit [ksi]

1 1 35.092 40

2 2, 3, 4, 5 11.590 40

3 6, 7, 8, 9 17.305 40

4 10, 11 35.092 40

5 12, 13 35.092 40

6 14, 15, 16, 17 6.759 40

7 18, 19, 20, 21 6.959 40

8 22, 23, 24, 25 11.082 40

TABLE 2 | Load cases for the spatial 25-bar tower.

Node Px [kips] Py [kips] Pz [kips]

Load case I

1 0 20 −5

2 0 −20 −5

Load case II

1 1 10 −5

2 0 10 −5

3 0.5 0 0

6 0.5 0 0

25-Bar Tower (D = 8, SI = 7)
The spatial 25-bar tower with 10 nodes shown in Figure 3 has
been studied extensively in the literature. The same material is
used for all members (E = 10,000 ksi, ρ = 0.1 lb/in3). The cross-
sectional area of each bar may vary between 0.01 and 35 in2. Bars
are grouped in eight groups (D = 8) with different compressive
stress limit but the same tensile stress limit (see Table 1). In
addition, displacements of top nodes 1 and 2must be<0.35 in. in
all directions. Two independent loading conditions are applied,
as shown in Table 2.

Table S2 shows that DE1 and DE3 obtained the same best
design, which is slightly better than the one found in literature
in terms of weight [including MSPSO (Talatahari et al., 2013) by
a very small margin]. This design was hence used as reference
(VTR= 545.172× 1.01= 550.623 lb). The statistical data shown
in Table S3 indicate that EPSO ranked right after DE in terms
of best weight but was less robust than ABC and HGA. The
average progress of the best solution and the variation of the
success rate of each algorithm measured against the number
of structural analyses are compared in Figure 4. It can be seen
that DE1 and DE3 could reach 100% success after ∼750D
analyses, while SaDE follows at ∼1250D analyses. SA, being
the only method not employing a population of solutions but
rather perturbing/improving a single solution, was the slowest
to converge.

10-Bar Truss (D = 10, SI = 2)
Figure 5 shows the geometry and forces acting on a cantilever
truss consisting of 10 bars and 6 nodes which has been analyzed
by many researchers. Two loading cases are considered: in case
I, P1 = 100 kips and P2 = 0; in case II, P1 = 150 kips and P2 =
50 kips. The same material is used for all members (E = 10,000
ksi and ρ = 0.1 lb/in3). The cross-sectional area of each bar may
vary between 0.10 and 35 in2. The stress limit is set to ±25 ksi,
while the displacement of the free nodes must be limited to 2 in.
in all directions.

FIGURE 4 | Size optimization of the spatial 25-bar tower (A) average progress of the best solution (B) evolution of success rate.

Frontiers in Built Environment | www.frontiersin.org 10 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

FIGURE 5 | Planar 10-bar truss.

FIGURE 6 | Size optimization of the planar 10-bar truss (load case I) (A) average progress of the best solution (B) evolution of success rate.

Regarding load case I, Table S4 shows that the best result was
discovered by DE3 and used as reference (VTR = 5060.855 ×

1.01 = 5111.464 lb). It is clear from Figure 6 that EPSO, DE1
and DE3 variants find the optimum region very quickly, as 100%
success rate is reached after only ∼500D analyses. SaDE follows
next, producing very good results but with a slower convergence
rate. Interestingly, SA may be the slowest to converge, but its

final results are comparable to EPSO. HGA follows next, reaching
∼60% at the end. The small difference between SGA and HGA
during the first 10,000 analyses is due to the coarser discretization
of the search space (16 and 10 bits per variable for SGA andHGA,
respectively). The SSRM is triggered at 10,000 analyses while
GDHC is introduced at 20,000 analyses, as shown in Figure 6A.
Table S5 reveals the very small standard deviation of the results

Frontiers in Built Environment | www.frontiersin.org 11 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

FIGURE 7 | Size optimization of the planar 10-bar truss (load case II) (A) average progress of the best solution (B) evolution of success rate.

FIGURE 8 | Planar 17-bar truss.

obtained by DE1 and DE3, as well as the small final ranges for all
design variables.

Regarding load case II, Table S6 shows that the best solution
was discovered by DE3 and used as reference (VTR = 4676.932
× 1.01 = 4723.701 lb). The average progress of the best solution
and the evolution of the success rate are presented in Figure 7,
whereas a statistical analysis of the results is given in Table S7.
The same conclusions can be drawn as in load case I. Once again,
the final variable ranges for DE variants are very narrow.

17-Bar Truss (D = 17, SI = 3)
The planar 17-bar with 9 nodes shown in Figure 8 has been
studied in Berke and Khot (1987), Adeli and Kumar (1995), and
Lee and Geem (2004). The same material is used for all members

(E = 30000 ksi and ρ = 0.268 lb/in3). The structure is subject to
a vertical force of 100 kips at node 9. The cross-sectional area of
each bar may vary between 0.1 and 50 in2. The stress limit is 50
ksi for both tension and compression, while the displacement of
free nodes must be < ±2 in. Since no design variable linking was
used, the problem dimensionality is D = 17.

It can be seen from Table S8 that the best design was obtained
by DE3. The corresponding structural weight was taken as
target to compute VTR = 2581.895 × 1.01 = 2607.714 lb. The
statistical data are given in Table S9 confirm the robustness of
DE1 and DE3 that achieved a standard deviation on optimized
weight equal to 0.047 and 0.086 lb, respectively, and converged
practically to the same optimized weight. The other algorithms
ranked in the following order: SaDE, EPSO, SA, HGA, and ABC.

Frontiers in Built Environment | www.frontiersin.org 12 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

FIGURE 9 | Size optimization of the planar 17-bar truss (A) average progress of the best solution (B) evolution of success rate.

The average progress of the best solution and the variation of
the success rate of each algorithm with respect to the number
of structural analyses are compared in Figure 9. It can be seen
that DE1, DE3 could reach 100% success after ∼900D analyses.
SaDE also reached 100 success but much later. EPSO was the
best algorithm in the early stages of the optimization process but
about 20% of the runs failed to succeed at the end. SA achieved a
65% success rate when measured at the end of the analyses.

200-Bar Truss (D = 29, SI = 50)
Figure 10 shows a planar 200-bar truss consisting of 200 bars and
77 nodes. The same material is used for all members (E= 30,000
ksi and ρ = 0.268 lb/in3). The structure is subjected to three
independent loading conditions: (i) 1.0 kips acting in the positive
x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71; (ii)
10 kips acting in the negative y-direction at nodes 1, 2, 3, 4, 5, 6,
8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33,
34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60,
61, 62, 64, 66, 68, 70, 71, 72, 73, 74, 75; (iii) the first two load cases
acting together. Bars are linked in 29 groups (D = 29), as shown
in Table 3, and their cross-sectional area may vary between 0.1
and 35 in2. The structure is optimized with respect to limitations
on member stresses that cannot exceed±10 ksi; no displacement
constraints are imposed.

This optimization problem has been solved with both
gradient-based and metaheuristic algorithms as an example of
average-scale structure. Some optimum designs for this problem
are presented in Table S10. Overall, the two best solutions
were obtained by Coster and Stander (1996), although these
designs slightly violate a few constraints. In order to correct this,
cross-sectional areas of some element groups were increased by
0.001 in2. The modified designs turned feasible and the VTR is
computed as 25452.332× 1.01= 25706.855 lb.

The statistical data given in Table S11 indicate that DE
variants are definitely superior over the other metaheuristic
algorithms considered in this study. In particular, DE1 and
DE3 converged to designs that are, on average, only 0.58–0.67%

heavier than the target best design of Coster and Stander (1996),
while SaDE produced designs that are, on average, 3.21% heavier.
Remarkably, all DE variants exhibited at least one order lower
standard deviations than the other algorithms. HGA ranked
next in terms of average weight and standard deviation. ABC
was comparable to HGA as far as best weight is concerned,
but its standard deviation was more than three times larger.
The average progress of the best design and the evolution of
success rate with respect to the number of structural analyses
are plotted in Figure 11 for all algorithms. SA shows an almost
linear convergence rate, ranking last. It can be seen that only
DE1 and DE3 reached a significant success rate, ranging between
85 and 90%, demonstrating excellent fine-tuning capabilities.
SaDE barely missed producing successful runs, with the best
design of 25794.837 lb achieved within 2500D analyses. Finally,
Table S12 indicates that the superiority of DE3 is statistically very
significant against all algorithms with the exception of DE1, with
which no safe conclusion can be drawn.

200-Bar Truss (D = 200, SI = 50)
In order to compare the algorithms in a large-scale problem,
the previously described planar 200-bar truss is re-examined
without bar grouping; thus D = 200. Note that the best designs
of the previous example are actually valid in this case as well,
although not optimal anymore. Table S13 presents the statistical
data gathered from optimization runs. It can be seen that the
best design was found by DE1 (VTR = 21999.715 × 1.01 =

22219.712 lb); this design is quoted in Table S14. DE1 and
DE3 were overall the best algorithms, followed by SaDE. Next
comes ABC although the standard deviation of this algorithm
was about 25% larger than that of HGA. The average progress
of the best design measured against the number of structural
analyses is shown in Figure 12A. It is confirmed that DE1 and
DE3 are definitely superior over the other algorithms, exhibiting
remarkable scalability with respect to problem dimensionality.
SA again shows an almost linear convergence rate, which is
not enough to surpass other algorithms within the selected

Frontiers in Built Environment | www.frontiersin.org 13 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

FIGURE 10 | Planar 200-bar truss.

computational budget. Figure 12B shows that success rate never
exceeded 10%, because, for such a difficult problem, the VTR is
too strict for a computational budget that increases linearly in D.

CONCLUDING REMARKS

In this study the relative performance of variants of Genetic
Algorithms (SGA, HGA), Particle Swarm Optimization (EPSO),
ABC, Differential Evolution (DE1, DE3, and SaDE), and SA in
sizing optimization problems of truss structures including up to
200 design variables was investigated. The comparison was based
on a framework that is both unbiased and meaningful. In order
to clearly assess the differences between algorithms, rigorous
statistical analysis with large samples was used, based on common

TABLE 3 | Bar group members for the planar 200-bar truss (D = 29).

Group Members

1 1, 2, 3, 4

2 5, 8, 11, 14, 17

3 19, 20, 21, 22, 23, 24

4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177

5 26, 29, 32, 35, 38

6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34,

36, 37

7 39, 40, 41, 42

8 43, 46, 49, 52, 55

9 57, 58, 59, 60, 61, 62

10 64, 67, 70, 73, 76

11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71,

72, 74, 75

12 77, 78, 79, 80

13 81, 84, 87, 90, 93

14 95, 96, 97, 98, 99, 100

15 102, 105, 108, 111, 114

16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107,

109, 110, 112, 113

17 115, 116, 117, 118

18 119, 122, 125, 128, 131

19 133, 134, 135, 136, 137, 138

20 140, 143, 146, 149, 152

21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142,

144, 145, 147, 148, 150, 151

22 153, 154, 155, 156

23 157, 160, 163, 166, 169

24 171, 172, 173, 174, 175, 176

25 178, 181, 184, 187, 190

26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180,

182, 183, 185, 186, 188, 189

27 191, 192, 193, 194

28 195, 197, 198, 200

29 196, 199

computational budget depended on the problem dimensionality,
careful accounting for all function evaluations and monitoring of
the success rate of each algorithm during the analyses.

Regarding the algorithms, SGA provides a baseline
performance while the HGA, which combines a SSRM with a
local optimizer, showed improved performance with respect
to SGA. The difference became more clear for larger problems
because of the relatively small chromosome length, as the
coarse discretization appears to be very beneficial to the HGA.
Refinement of the solutions is achieved through SSRM. The local
search initiated 5,000 function evaluations before the end of
each run. Except for the largest problem (200 bar truss with 200
design variables), the local optimum was usually found before
the end of each run. The local search was invariably beneficial
since the normal progress of the GA at this stage of optimization
is usually very limited. Intermediate applications of the local
search may improve performance; however, it is known that with

Frontiers in Built Environment | www.frontiersin.org 14 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

FIGURE 11 | Size optimization of the planar 200-bar truss (D = 29) (A) average progress of the best solution (B) evolution of success rate.

FIGURE 12 | Size optimization of the planar 200-bar truss (D = 200) (A) average progress of the best solution (B) evolution of success rate.

GAs there is always the possibility of premature convergence
when a single individual is much better than the other members
of the population.

Simple PSO was tested in the preliminary versions of this
study and produced very poor results; it was clear that the
algorithm could not maintain a stable exploration/exploitation
balance. Thus, an enhanced PSO algorithm (EPSO) was
examined instead. It resulted very competitive in small to
medium problems but failed in the larger problems. This
is due to the scheme of Equation (14) employed to reduce
maximum velocity and inertia factor. If h = 3 steps
have passed without improving the global best position
of the swarm, it is assumed that large velocities prevent
progress due to overshooting. However, in large-scale problems,
unjustified reduction of maximum velocity and inertia factor
leads to search stagnation, as the particles literally freeze
in place.

ABC is not easily trapped into local optima but has slow
convergence because a single design variable is changed per
mutant vector. The present results indicate that ABC could not
compete with EPSO and DE variants in most test cases.

As far as it concerns DE variants, DE1 is based on rand/1/bin
and DE3 is a stochastic mixture of rand/1/bin and best/1/bin.
These variants combined particularly good convergence rate
with robustness, stability, and scalability. DE3 showed improved
convergence rate in the small-scale problems. A very greedy
DE variant, based solely on best/1/bin, was also tested in
the preliminary versions of this study and found to be very
competitive only in small problems. Regarding SaDE, it appears
that the advantage of its adaptive nature is traded-off by a
small hysteresis (delay) in the convergence rate, as compared
to DE1 and DE3. Note that the latter algorithms utilize fixed
settings that were expected to work well based on the specific
problem characteristics. This information may not be available

Frontiers in Built Environment | www.frontiersin.org 15 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

for other problems, which makes SaDE and similar self-adapting
algorithms a very good choice.

SA is the only method examined in this study which
perturbs/improves a single solution. The lack of synergistic
information within a population had the obvious effect that
SA did not show explosive initial performance. Nevertheless,
its progress was clear and it is evident that the Metropolis test
(Equation 29) is a powerful method to escape local optima.
For most of the small problems, this was enough to allow
SA to rank among the best. For the planar 200-bar truss, the
large dimensionality did not allow SA to compete within the
strict computational budget. A more sophisticated control of
the Boltzmann parameter than Equation (30) would improve
its performance.

Overall, DE was superior over the rest of the algorithms and
found very competitive designs, which in some cases were even
better than those reported in the literature.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
manuscript/Supplementary Files.

AUTHOR CONTRIBUTIONS

AC had the research idea, drafted the article, and contributed to
the numerical analysis of the examples and the statistical analysis
of the results. GT contributed to the conception and design of the
work, and interpretation of the results.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbuil.
2019.00113/full#supplementary-material

REFERENCES

Adeli, H., and Kumar, S. (1995). Distributed Genetic Algorithm

for structural optimization. J. Aerosp. Eng. 8, 156–163.

doi: 10.1061/(ASCE)0893-1321(1995)8:3(156)

Balling, R. J. (1991). Optimal steel frame design by Simulated Annealing. J. Struct.

Eng. 117, 1780–1795. doi: 10.1061/(ASCE)0733-9445(1991)117:6(1780)

Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton

University Press.

Berke, L., and Khot, N. S. (1987). “Structural optimization using optimality

criteria,” in Computer Aided Optimal Design: Structural and Mechanical

Systems, eds E. Atrek, R. H. Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz

(Berlin, Heidelberg: Springer), 271–311. doi: 10.1007/978-3-642-83051-8_7

Bureerat, S., and Pholdee, N. (2016). Optimal truss sizing using an adaptive

Differential Evolution algorithm. J. Comput. Civ. Eng. 30: 04015019.

doi: 10.1061/(ASCE)CP.1943-5487.0000487

Camp, C. V. (2007). Design of space trusses using big bang–

big crunch optimization. J. Struct. Eng. 133, 999–1008.

doi: 10.1061/(ASCE)0733-9445(2007)133:7(999)

Camp, C. V., and Farshchin, M. (2014). Design of space trusses using

modified teaching–learning based optimization. Eng. Struct. 62–63, 87–97.

doi: 10.1016/j.engstruct.2014.01.020

Charalampakis, A. E. (2016). “Comparison of metaheuristic algorithms for size

optimization of trusses,” in 11th HSTAM International Congress on Mechanics

(Athens), 27–30.

Charalampakis, A. E., and Chatzigiannelis, I. (2018). Analytical solutions for the

minimum weight design of trusses by cylindrical algebraic decomposition.

Arch. Appl. Mech. 88, 39–49. doi: 10.1007/s00419-017-1271-8

Charalampakis, A. E., and Dimou, C. K. (2010). Identification of Bouc–Wen

hysteretic systems using Particle Swarm Optimization. Comput. Struct. 88,

1197–1205. doi: 10.1016/j.compstruc.2010.06.009

Charalampakis, A. E., and Dimou, C. K. (2015). Comparison of evolutionary

algorithms for the identification of Bouc-Wen hysteretic systems. J. Comput.

Civ. Eng. 29:04014053. doi: 10.1061/(ASCE)CP.1943-5487.0000348

Charalampakis, A. E., and Koumousis, V. K. (2008). Identification of Bouc–

Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 314,

571–585. doi: 10.1016/j.jsv.2008.01.018

Clerc, M., and Kennedy, J. (2002). The particle swarm - explosion, stability, and

convergence in a multidimensional complex space. IEEE Trans. Evol. Comput.

6, 58–73. doi: 10.1109/4235.985692

Coello, C. A. (2002). Theoretical and numerical constraint-handling

techniques used with evolutionary algorithms: a survey of the state

of the art. Comput. Methods Appl. Mech. Eng. 191, 1245–1287.

doi: 10.1016/S0045-7825(01)00323-1

Coello, C. A., and Christiansen, A. D. (2000). Multiobjective optimization

of trusses using Genetic Algorithms. Comput. Struct. 75, 647–660.

doi: 10.1016/S0045-7949(99)00110-8

Coster, J. E., and Stander, N. (1996). Structural optimization using augmented

Lagrangian methods with secant Hessian updating. Struct. Optim. 12, 113–119.

doi: 10.1007/BF01196943

Dede, T., and Ayvaz, Y. (2015). Combined size and shape optimization of

structures with a new meta-heuristic algorithm. Appl. Soft Comput. 28,

250–258. doi: 10.1016/j.asoc.2014.12.007

Degertekin, S. O. (2012). Improved harmony search algorithms for sizing

optimization of truss structures. Comput. Struct. 92–93, 229–241.

doi: 10.1016/j.compstruc.2011.10.022

Degertekin, S. O., and Hayalioglu, M. S. (2013). Sizing truss structures

using teaching-learning-based optimization. Comput. Struct. 119, 177–188.

doi: 10.1016/j.compstruc.2012.12.011

Dimou, C. K., and Koumousis, V. K. (2009). Reliability-based optimal design of

truss structures using Particle Swarm Optimization. J. Comput. Civ. Eng. 23,

100–109. doi: 10.1061/(ASCE)0887-3801(2009)23:2(100)

Eiben, A. E., and Smith, J. E. (2003). Introduction to Evolutionary Computing. New

York: Springer. doi: 10.1007/978-3-662-05094-1

Erol, O. K., and Eksin, I. (2006). A new optimization method: Big Bang–

Big crunch. Adv. Eng. Softw. 37, 106–111. doi: 10.1016/j.advengsoft.2005.

04.005

Feury, C., and Geradin, M. (1978). Optimality criteria and mathematical

programming in structural weight optimization. Comput. Struct. 8, 7–17.

doi: 10.1016/0045-7949(78)90155-4

Fourie, P. C., and Groenwold, A. A. (2002). The Particle Swarm Optimization

algorithm in size and shape optimization. Struct. Multidiscip. Optim. 23,

259–267. doi: 10.1007/s00158-002-0188-0

Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). A new heuristic

optimization algorithm: harmony search. Simulation 76, 60–68.

doi: 10.1177/003754970107600201

Hasançebi, O., and Azad, S. K. (2015). Adaptive dimensional search: a new

metaheuristic algorithm for discrete truss sizing optimization. Comput. Struct.

154, 1–16. doi: 10.1016/j.compstruc.2015.03.014

Hasançebi, O., Çarbaş, S., Dogan, E., Erdal, F., and Saka, M. P. (2009).

Performance evaluation of metaheuristic search techniques in the optimum

design of real size pin jointed structures. Comput. Struct. 87, 284–302.

doi: 10.1016/j.compstruc.2009.01.002

Holland, J. H. (1975).Adaptation in Natural and Artificial Systems. Ann Arbor, MI:

University of Michigan Press.

Karaboga, D., and Basturk, B. (2008). On the performance of Artificial

Bee Colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697.

doi: 10.1016/j.asoc.2007.05.007

Frontiers in Built Environment | www.frontiersin.org 16 October 2019 | Volume 5 | Article 113

https://www.frontiersin.org/articles/10.3389/fbuil.2019.00113/full#supplementary-material
https://doi.org/10.1061/(ASCE)0893-1321(1995)8:3(156)
https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1780)
https://doi.org/10.1007/978-3-642-83051-8_7
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000487
https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)
https://doi.org/10.1016/j.engstruct.2014.01.020
https://doi.org/10.1007/s00419-017-1271-8
https://doi.org/10.1016/j.compstruc.2010.06.009
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000348
https://doi.org/10.1016/j.jsv.2008.01.018
https://doi.org/10.1109/4235.985692
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1016/S0045-7949(99)00110-8
https://doi.org/10.1007/BF01196943
https://doi.org/10.1016/j.asoc.2014.12.007
https://doi.org/10.1016/j.compstruc.2011.10.022
https://doi.org/10.1016/j.compstruc.2012.12.011
https://doi.org/10.1061/(ASCE)0887-3801(2009)23:2(100)
https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1016/0045-7949(78)90155-4
https://doi.org/10.1007/s00158-002-0188-0
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1016/j.compstruc.2015.03.014
https://doi.org/10.1016/j.compstruc.2009.01.002
https://doi.org/10.1016/j.asoc.2007.05.007
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Charalampakis and Tsiatas Critical Evaluation of Metaheuristic Algorithms

Kaveh, A., Bakhshpoori, T., and Afshari, E. (2014a). An efficient hybrid particle

swarm and swallow swarm optimization algorithm.Comput. Struct. 143, 40–59.

doi: 10.1016/j.compstruc.2014.07.012

Kaveh, A., and Ghazaan, M. I. (2015). A comparative study of CBO and

ECBO for optimal design of skeletal structures. Comput. Struct. 153, 137–147.

doi: 10.1016/j.compstruc.2015.02.028

Kaveh, A., and Khayatazad, M. (2013). Ray optimization for size and

shape optimization of truss structures. Comput. Struct. 117, 82–94.

doi: 10.1016/j.compstruc.2012.12.010

Kaveh, A., and Mahdavi, V. R. (2015a). Colliding bodies optimization for size

and topology optimization of truss structures. Struct. Eng. Mech. 53, 847–865.

doi: 10.12989/sem.2015.53.5.847

Kaveh, A., and Mahdavi, V. R. (2015b). Two-dimensional colliding bodies

algorithm for optimal design of truss structures. Adv. Eng. Softw. 83, 70–79.

doi: 10.1016/j.advengsoft.2015.01.007

Kaveh, A., Sheikholeslami, R., Talatahari, S., and Keshvari-Ilkhichi, M. (2014b).

Chaotic swarming of particles: a new method for size optimization of truss

structures. Adv. Eng. Softw. 67, 136–147. doi: 10.1016/j.advengsoft.2013.09.006

Kaveh, A., and Talatahari, S. (2009a). Particle swarm optimizer, ant colony strategy

and harmony search scheme hybridized for optimization of truss structures.

Comput. Struct. 87, 267–283. doi: 10.1016/j.compstruc.2009.01.003

Kaveh, A., and Talatahari, S. (2009b). Size optimization of space trusses

using Big Bang–Big Crunch algorithm. Comput. Struct. 87, 1129–1140.

doi: 10.1016/j.compstruc.2009.04.011

Kaveh, A., and Talatahari, S. (2010). Optimal design of skeletal structures via

the charged system search algorithm. Struct. Multidiscip. Optim. 41, 893–911.

doi: 10.1007/s00158-009-0462-5

Kaveh, A., and Zakian, P. (2014). Enhanced bat algorithm for optimal design

of skeletal structures. Asian J. Civ. Eng. 15, 179–212. Available online at:

https://ajce.bhrc.ac.ir/Portals/25/PropertyAgent/2905/Files/5878/179.pdf

Kazemzadeh Azad, S., andHasançebi, O. (2015). Computationally efficient discrete

sizing of steel frames via guided stochastic search heuristic.Comput. Struct. 156,

12–28. doi: 10.1016/j.compstruc.2015.04.009

Keane, A. J. (1996). “A brief comparison of some evolutionary optimization

methods,” in Modern Heuristic Search Methods, eds. V. J. Rayward-Smith, I.

H. Osman, C. R. Reeves, and G. D. Smith (Chichester: John Wiley), 255–272.

Kennedy, J., and Eberhart, R. C. (1995). “Particle swarm optimization,” in IEEE

International Conference on Neural Networks IV (Piscataway, NJ: IEEE Press),

1942–1948. doi: 10.1109/ICNN.1995.488968

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Sci. New Ser. 220, 671–680. doi: 10.1126/science.220.4598.671

Koumousis, V. K., and Georgiou, P. G. (1994). Genetic Algorithms in

discrete optimization of steel truss roofs. J. Comput. Civ. Eng. 8, 309–325.

doi: 10.1061/(ASCE)0887-3801(1994)8:3(309)

Lamberti, L. (2008). An efficient Simulated Annealing algorithm for

design optimization of truss structures. Comput. Struct. 86, 1936–1953.

doi: 10.1016/j.compstruc.2008.02.004

Lamberti, L., and Pappalettere, C. (2009). “An improved harmony-search

algorithm for truss structure optimization,” in 12th International Conference

Civil Structural and Environmental Engineering Computing, ed. B. H. V.

Topping (Stirlingshire: Civil-Comp Press).

Lee, K. S., and Geem, Z. W. (2004). A new structural optimization method

based on the harmony search algorithm. Comput. Struct. 82, 781–798.

doi: 10.1016/j.compstruc.2004.01.002

Li, L. J., Huang, Z. B., Liu, F., and Wu, Q. H. (2007). A heuristic

particle swarm optimizer for optimization of pin connected

structures. Comput. Struct. 85, 340–349. doi: 10.1016/j.compstruc.2006.

11.020

Marano, G. C., Quaranta, G., and Monti, G. (2011). Modified Genetic

Algorithm for the dynamic identification of structural systems using

incomplete measurements. Comput. Civ. Infrastruct. Eng. 26, 92–110.

doi: 10.1111/j.1467-8667.2010.00659.x

Perez, R. E., and Behdinan, K. (2007). Particle swarm approach for

structural design optimization. Comput. Struct. 85, 1579–1588.

doi: 10.1016/j.compstruc.2006.10.013

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2002).

Numerical Recipes in C++: the Art of Scientific Computing. Cambridge:

Cambridge University Press.

Price, K. V., Storn, R. M., and Lampinen, J. A. (2005). Differential Evolution : a

Practical Approach to Global Optimization. Berlin; Heidelberg: Springer-Verlag.

Qin, A. K., Huang, V. L., and Suganthan, P. N. (2009). Differential Evolution

algorithm with strategy adaptation for global numerical optimization. IEEE

Trans. Evol. Comput. 13, 398–417. doi: 10.1109/TEVC.2008.927706

Rajan, S. D. (1995). Sizing, shape, and topology design optimization

of trusses using Genetic Algorithm. J. Struct. Eng. 121, 1480–1487.

doi: 10.1061/(ASCE)0733-9445(1995)121:10(1480)

Rao, R. V., Savsani, V. J., and Vakharia, D. P. (2011). Teaching–learning-based

optimization: a novel method for constrained mechanical design optimization

problems. Comput. Des. 43, 303–315. doi: 10.1016/j.cad.2010.12.015

Ray, T., and Saini, P. (2001). Engineering design optimization using a swarm with

an intelligent information sharing among individuals. Eng. Optim. 33, 735–748.

doi: 10.1080/03052150108940941

Rönkkönen, J., Kukkonen, S., and Price, K. V. (2005). “Real-

parameter optimization with Differential Evolution,” in 2005 IEEE

Congress on Evolutionary Computation (Edinburgh: IEEE), 506–513.

doi: 10.1109/CEC.2005.1554725

Schutte, J. F., and Groenwold, A. A. (2003). Sizing design of truss

structures using particle swarms. Struct. Multidiscip. Optim. 25, 261–269.

doi: 10.1007/s00158-003-0316-5

Sonmez, M. (2011). Artificial Bee Colony algorithm for optimization of truss

structures. Appl. Soft Comput. 11, 2406–2418. doi: 10.1016/j.asoc.2010.09.003

Storn, R. M., and Price, K. V. (1997). Differential Evolution – a simple and efficient

heuristic for global optimization over continuous spaces. J. Glob. Optim. 11,

341–359. doi: 10.1023/A:1008202821328

Talatahari, S., Kheirollahi, M., Farahmandpour, C., and Gandomi, A. H.

(2013). A multi-stage particle swarm for optimum design of truss

structures. Neural Comput. Appl. 23, 1297–1309. doi: 10.1007/s00521-012-

1072-5

Wilke, D. N., Kok, S., and Groenwold, A. A. (2007). Comparison of linear

and classical velocity update rules in Particle Swarm Optimization: notes

on diversity. Int. J. Numer. Methods Eng. 70, 962–984. doi: 10.1002/nm

e.1867

Wu, C.-Y., and Tseng, K.-Y. (2010). Truss structure optimization using

adaptive multi-population Differential Evolution. Struct. Multidiscip. Optim.

42, 575–590. doi: 10.1007/s00158-010-0507-9

Yang, Z., Tang, K., and Yao, X. (2008). “Self-adaptive Differential Evolution with

neighborhood search,” in 2008 IEEE Congress on Evolutionary Computation

(IEEE World Congress on Computational Intelligence) (Hong Kong: IEEE),

1110–1116. doi: 10.1109/CEC.2008.4630935

Zhang, J., and Sanderson, A. C. (2009). JADE: adaptive Differential Evolution

with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958.

doi: 10.1109/TEVC.2009.2014613

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Charalampakis and Tsiatas. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Built Environment | www.frontiersin.org 17 October 2019 | Volume 5 | Article 113

https://doi.org/10.1016/j.compstruc.2014.07.012
https://doi.org/10.1016/j.compstruc.2015.02.028
https://doi.org/10.1016/j.compstruc.2012.12.010
https://doi.org/10.12989/sem.2015.53.5.847
https://doi.org/10.1016/j.advengsoft.2015.01.007
https://doi.org/10.1016/j.advengsoft.2013.09.006
https://doi.org/10.1016/j.compstruc.2009.01.003
https://doi.org/10.1016/j.compstruc.2009.04.011
https://doi.org/10.1007/s00158-009-0462-5
https://ajce.bhrc.ac.ir/Portals/25/PropertyAgent/2905/Files/5878/179.pdf
https://doi.org/10.1016/j.compstruc.2015.04.009
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1061/(ASCE)0887-3801(1994)8:3(309)
https://doi.org/10.1016/j.compstruc.2008.02.004
https://doi.org/10.1016/j.compstruc.2004.01.002
https://doi.org/10.1016/j.compstruc.2006.11.020
https://doi.org/10.1111/j.1467-8667.2010.00659.x
https://doi.org/10.1016/j.compstruc.2006.10.013
https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1480)
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1080/03052150108940941
https://doi.org/10.1109/CEC.2005.1554725
https://doi.org/10.1007/s00158-003-0316-5
https://doi.org/10.1016/j.asoc.2010.09.003
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s00521-012-1072-5
https://doi.org/10.1002/nme.1867
https://doi.org/10.1007/s00158-010-0507-9
https://doi.org/10.1109/CEC.2008.4630935
https://doi.org/10.1109/TEVC.2009.2014613
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	Critical Evaluation of Metaheuristic Algorithms for Weight Minimization of Truss Structures
	Introduction
	Problem Statement
	Metaheuristic Algorithms
	Basic Features of the Trade Study
	Algorithm Description
	Standard Genetic Algorithm (SGA)
	Hybrid Genetic Algorithm (HGA)
	Enhanced Particle Swarm Optimization (EPSO)
	Artificial Bee Colony (ABC)
	Differential Evolution (DE)
	Simulated Annealing (SA)

	Test Problems
	18-Bar Truss (D = 4, SI = 0)
	25-Bar Tower (D = 8, SI = 7)
	10-Bar Truss (D = 10, SI = 2)
	17-Bar Truss (D = 17, SI = 3)
	200-Bar Truss (D = 29, SI = 50)
	200-Bar Truss (D = 200, SI = 50)

	Concluding Remarks
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

