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This research presents an evaluation and comparison of the various strain to

displacement transformation methods for a beam-like structure. Displacements can

provide useful information for the monitoring and assessment of structural performance,

health, and safety. The displacement of a structure is correlated with the curvature of a

structure, so any unusual behavior of the structure that alters the curvature will also affect

the displacement of the structure. Additionally, monitoring the displacement of a structure

is useful for evaluating service limits as excessive displacement are uncomfortable to

users and can cause damage to surround structures. Direct displacement monitoring of

a real-life structure can be challenging, especially for long-term measurements. Because

of this, the focus of this research is on in-direct displacement monitoring based on

strain sensors. Several methods to determine displacements from strain measurements

have been presented in the literature; this paper provides a quantitative comparison

of selected methods using both a static and dynamic analysis, providing the errors of

the methods. The methods were applied in a small-scale laboratory test to a beam

with fiber Bragg-grating strain sensors, with both static and dynamic loading cases.

The experimental displacement results are compared to displacement results from LVDT

displacement sensors. Finally, the methods are applied to an existing structure equipped

with long-gauge fiber Bragg-grating strain sensors, an in-service highway overpass

subjected to vehicle loading. The displacements for the overpass were obtained and

compared with the service requirements.

Keywords: displacement, strain, long-gauge fiber-optic strain sensors, fiber Bragg-gratings (FBG), structural

health monitoring (SHM), beam structures

1. INTRODUCTION

The development and application of structural health monitoring (SHM) methods for bridges
helps reduce and minimize the costs of inspection and maintenance of infrastructure and with
the growing problem of aging infrastructure it can provide a means for evaluating the structural
behavior over the life span of the structure. Displacement has been shown to be a useful parameter
for evaluating the performance and health of the structure (Calvi and Kingsley, 1995; Ruiz-García
and Miranda, 2003). Displacement is correlated with the strain and curvature of a structure, so any
unusual behavior of the structure that alters the curvature is expected to affect the displacement
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of the structure. Either sudden or gradual changes in the
displacement may indicate structural changes, damages, or
deterioration. Additionally, displacement is frequently used as
a serviceability design criteria because excessive displacements
are uncomfortable to users and can cause damage to surround
structures. In the United States, the American Society of Civil
Engineers (ASCE) provides serviceability design requirements
for buildings in ASCE/SEI 7-16 (American Society of Civil
Engineers, 2017), the American Association of State Highway
and Transportation Officials (AASHTO) provides serviceability
limits for bridges (American Association of State Highway and
Transportation Officials, 2010), the American Institute of Steel
Construction (AISC) provides serviceability design guidelines for
steel structures (American Institute of Steel Construction, 2011),
and the American Concrete Institute (ACI) provides deflection
limits for concrete structures (ACI 318R-11, 2011).

Several approaches can be used to determine the displacement
which can be separated into two categories: direct measurement
methods (contact and non-contact) and indirect measurement
methods. Direct-contact based methods consist of linear variable
differential transformers (LVDT’s) (Merkle and Myers, 2004;
Park et al., 2007), linear potentiometers (Corda and Al-Tayie,
2003), dial-gages, and hydrostatic systems (Marecos, 1978). To
measure the displacement, these systems must be physically
connected to the point of interest on the structure and be in
contact with a stationary reference point. On a real structure,
such as a bridge, these conditions may be challenging to find
especially for bridges spanning over bodies of water or with
high clearances. Non-contact direct measurement methods can
be beneficial because they do not require direct access to the
structure. Some of the non-contact direct monitoring methods
that have been employed for displacement monitoring of a
structure consist of global positioning systems (GPS) (Brown
et al., 2006; Casciati and Fuggini, 2011), photogrammetry
(Jáuregui et al., 2003), laser vibrometer (Nassif et al., 2005),
radar interferometry (Gentile and Bernardini, 2008), and vision
based methods (Lee and Shinozuka, 2006; Cigada et al., 2014;
Ribeiro et al., 2014; Feng et al., 2015; Feng and Feng, 2016,
2018). These methods can be beneficial because they do not
require pre-existing knowledge of the structure such as the
boundary conditions. However, they still depend on a fixed
reference point, GPS-based methods feature limited accuracy
in the vertical direction, and the other above methods face
various challenges when deployed for long term monitoring
of a structure.

This is where measuring displacement indirectly can be
beneficial, with methods using sensors such as accelerometers
(Park et al., 2005), tilt sensors/inclinometers (Hou et al.,
2005), or strain sensors (Foss and Haugse, 1995; Davis
et al., 1996; Sigurdardottir et al., 2017). The benefit of using
network of strain sensors to determine the displacement of
a structure, is that the same sensor network can also be
used to calculate other monitoring parameters such as the
neutral axis (Sigurdardottir and Glisic, 2014), pre-stressing
forces (Abdel-Jaber and Glisic, 2014), thermal signatures
(Reilly and Glisic, 2018), and curvature (Kliewer and Glisic,
2017), and that is the reason why this research focuses on
strain-based methods.

There are a variety of methods that can convert strain
measurements into deformed shape (see section 2). The aim of
this paper is to identify strengths and limitations of these various
methods. These methods will focus on the relative displacement
of the structure as opposed to the global displacement of the
structure due to rigid body translation or rotations of the beam
An overview of these methods is provided in the following
section. The methods were compared in both dynamic and static
tests for simply supported and cantilevered boundary conditions
through applications to a numerical simulation and small-scale
laboratory tests. The methods were also applied to an in-service
highway overpass to evaluate the displacement serviceability
limits. Fiber Bragg-grating strain sensors were used in all tests.

2. STRAIN TO DISPLACEMENT METHODS

The strain to deformed shape methods considered in this paper
are Newton-Cotes formulas (rectangle and trapezoidal rule),
polynomial spline, strain-mode transformation, and curve fitting.
An overview of these methods is given in this section. Readers
that are familiar with these methods can skip this section, and
move directly to section 3.

2.1. Newton-Cotes Formulas
2.1.1. Theoretical Background: Euler-Bernoulli Beam

Theory

Following the assumptions of linear beam theory, the curvature
in the cross-section of a beam, κ , can be determined using
two strain measurements in parallel topology as represented in
Equation (1):

κ =
εb − εt

h
(1)

where εb, εt and h are the strain at the bottom of the cross-
section, the strain at the top of the cross-section and the distance
between the sensors, respectively. Most common construction
materials such as concrete, steel, and timber can be regarded
as homogeneous at the macro-level (Glisic and Inaudi, 2008).
In a beam-like structure made of homogeneous material, the
curvature relates to the bending moment of beam:

κ(x) =
1

r
=

M

EI
(2)

where r, M, E, and I are the radius of curvature, the
bending moment, Young’s modulus, and the moment of inertia,
respectively. The slope of a beam is equal to the derivative of the
displacement and the curvature of a beam is equal to the negative
double derivative of its displacement (Gere and Goodno, 2008):

κ = −
d2v

dx2
(3)

FromEquation (3), the deflection of a beam can be found through
the double integration of the curvature:

v(x) = −

∫ ∫

κ(x)dxdx+ C1x+ C2 (4)
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FIGURE 1 | Beam, with length l, equipped with sensors at n+1 locations

(cross-sections) providing known curvature values at each locations

(κ (x0), κ (x1), · · · , κ (xn)).

where C1 and C2 are constants of integration determined based
on boundary conditions. For a simply supported beam the
boundary conditions are v(0) = 0 and v(l) = 0, where l is the
length of the beam. For displacement in a cantilevered beam, the
boundary conditions are v(0) = 0 and θ(0) = 0, where θ is
the slope of the beam. The deformed shape can be determined
from Equation (4) by using the rectangle rule or the trapezoid
rule (commonly known as Newton-Cotes quadrature). General
strengths of these methods are that they are independent of the
loading cases on the structure, require no assumptions of the
distribution of curvature on the structure and can be applied to
both static and dynamic strain data. This can be a very useful
method for determining deformation when little is known about
the structure and its loading conditions.While not widely present
in the literature, these methods were applied by Sigurdardottir
et al. (2017), where the static deformed shape of a pedestrian foot
bridge was determined and provides explicit equations for the
evaluation of the errors associated with numerical integration for
evenly spaced sensors.

This paper will also present the use of the Newton-Cotes
quadrature, where the quadrature points are fixed and the
interpolating function is a polynomial with an order m (Bradie,
2006). The Newton-Cotes quadrature can be either closed, where
the endpoints are included in the integration interval, or open,
where the endpoints are not included in the integrating interval.
Two types of Newton-Cotes formulas, the mid-point rectangular
rule and the trapezoid rule, will be presented along with their
application to determine the deformed shape from the curvature
of a beam.

2.1.2. Rectangular Rule

The rectangular rule has an interpolation polynomial of order
m = 0. It is the simplest open Newton-cotes formula. For
a function f (x), on the interval [a, b], the rectangular rule is
as follows:

∫ b

a
f (x)dx ≈ (b− a) f (

a+ b

2
) (5)

To expand the rectangular rule to a beam with curvature
values known curvature values at more than two locations,
the composite Newton-Cotes quadrature is used. The structure
consists of n sub-intervals along the length of the beam, as shown
in Figure 1, with n+ 1 known curvature values. The rectangular
rule, Equation (5), is applied to each sub-interval [xi−1, xi], and

the following equation is obtained:

∫ xn

x0

f (x)dx ≈

n
∑

i=1

∫ xi

xi−1

f (x)dx+ C1

=

n
∑

i=1

(xi − xi−1) f (
xi + xi−1

2
)+ C1

(6)

2.1.3. Trapezoid Rule

The trapezoid rule has an interpolation polynomial of order m=1
and is the simplest closed Newton-Cotes formula. For a function
f (x), on the interval [a, b], the trapezoid rule is as follows:

∫ b

a
f (x)dx ≈ (b− a)(

f (a)+ f (b)

2
)+ C1 (7)

Similar to the rectangular rule, Equation (7) is the integration
for one sub-interval. The composite trapezoid rule is used to
determine to apply the method to a beam with more than one
sub-interval:

∫ xn

x0

f (x)dx ≈

n
∑

i=1

∫ xi

xi−1

f (x)dx+ C1

=
1

2

n
∑

i=1

(xi − xi−1)(f (xi−1)+ f (xi))+ C1

(8)

From Equation (4), an expression for the deformed shape of
the beam at sensor location xi, can be found by applying the
rectangular integration rule in Equation (6) or applying the
trapezoid integration rules in Equation (8) twice to the curvature,
κ(xi). In the case where the distances between sensors are equal,
1x = l/n for all sub-intervals, simplified expression for the
deformed shape from the rectangular and trapezoid rules were
found by Sigurdardottir et al. (2017).

2.2. Polynomial Spline
This method estimates the displacement of a beam by fitting
a quadratic curve to each set of neighboring triplet of points.
This method is related to the Simpson’s rule, a second order
Newton Cote’s quadrature rule where the data points must be
equally spaced. However, this method is applicable to structures
with irregular sensor spacing and preserves the number of
measurement points, providing displacement estimates at each
sensor location, rather than reducing the number of estimation
points with each round of integration as the Simpson’s rule
does. This is particularly important as a structure may be
sparsely instrumented and strain to displacement transformation
requires double integration. In a structure with a continuously
smooth curvature curve, this method is expected to provide more
accurate results compared to numerical integration with the
trapezoid and rectangular rule for beam-like structures without
linear curvature distributions.

An application of this method was introduced by Kirby
et al. (1997) and applied to a composite tubular cantilever
instrumented with foil strain gages. Their experimental tests
showed estimating with quadratic curvature may improve the
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displacement estimation and suggested the error in the method
could be improved with the use of FBG strain sensors.

For this method, the beam must be instrumented with an odd
number of sensors greater than or equal to three. The beam is
divided into segments of three adjacent sensor locations, creating
a total of m = (n − 1)/2 segments, where n is the number
of sensor locations and m is the number of segments. At the
boundary between each segment, the continuity conditions for
the slope and displacement are preserved. For each segment, i,
a second order polynomial is fit to the three curvature values.
With three curvature values and three unknowns, the coefficients
of polynomials A1,B1, and C1 can be obtained directly without
needing regression analysis such as the method of least squares.
There is a system of equations for the curvature of each beam
segment can be defined in matrix form as:

κ = xα (9)

where the measured curvature vector is κ=

{κ1,1, κ1,2, κ1,3, · · · , κi,3}
T , the fitting parameters are

α = {A1,B1,C1, · · · ,Am,Bm,Cm}
T , and a matrix for the

sensor coordinates, x is defined as:

x =















x21,1 x1,1 1

x21,2 x1,2 1

x21,3 x1,3 1
...

...
...

x2m,j xm,j 1















(10)

Using the known values for κ and x, the fitting parameters can be
found with α = x−1

κ . With double integration, equations for the
slope, Equation (26), and displacement, Equation (27), for each
segment can be found. The constants of integration,Di and Ei, are
found using the continuity conditions between each segment and
the boundary conditions at the ends of the beam (see Equations
11 and 12). For adjacent segments:

θi(xi,3) = θi+1(xi+1,1) (11)

yi(xi,3) = yi+1(xi+1,1) (12)

Another system of equations is created using these conditions
and solving for the constants of integration for each segment,
i. From this method, the displacement at each sensor location
can be determined or a continuous displacement curve for every
location of the beam can be found. This method is applicable to
both static and dynamic beam systems, where it is repeated at
each time-step for dynamic cases.

2.3. Strain Mode Transformation
A commonly used method for strain to displacement
transformation is strain mode transformation (SMT). This
method was initially introduced by Foss and Haugse (1995)
and there have been numerous applications of this method
since then. Shin et al. (2012) provided an evaluation of the SMT
method, with application to a railroad bridge, a suspension
bridge and a multi-girder simple span bridge. Based on analysis
presented in that literature, the use of a scale factor from a
controlled field test is proposed, as opposed to a geometric

constant for actual structures. Kang et al. (2007) presented an
application of the SMT method to an aluminum and an acrylic
beam instrumented with FBG strain sensors. While this method
is typically applied only in dynamic monitoring, Bogert et al.
(2003) presented a static analysis of the SMT method with an
application to a small-scale laboratory test. Rapp et al. (2009)
expands the SMT method to a two-dimensional structure for
estimating the displacement field. This method relies on modal
analysis to translate strain to displacement. The transverse
vibration displacement, y(xi), of a beam can be represented by
modal superposition:

yi(t) = [φij]{qj(t)} (13)

where φij is the modal displacement and qj(t) are the generalized
coordinates. From beam theory, the strain at any location on the
beam is equivalent to the following expression:

ǫi(t) = yc[φ
′′
ij]{qj(t)} (14)

where yc is the distance from the neutral axis to the strain sensor,
φ′′
ij is the curvature of the modal displacement φij. From Equation

(14), the modal coordinates, {qj(t)}, are approximated using the
least squares method:

{qj(t)} = [[φ′′
ij]

T[φ′′
ij]]

−1[φ′′
ij]

T{ǫi(t)} (15)

Substituting Equation (15) into Equation (13), an equation for
the modal displacement is obtained:

yi(t) = [φij][[φ
′′
ij]

T[φ′′
ij]]

−1[φ′′
ij]

T{ǫi(t)} (16)

For the SMT method, the number of modes, n, is limited by
the number of sensors on the beam, m, where m ≥ n. The
modal displacement matrix must be determined for the beam
to implement the SMT method. This requires some assumptions
about the structure to be made, unlike the numerical integration
methods presented in section 2.1. If the behavior or loading
of the structure is unknown, this can be a limitation of this
method. There are several approaches that can be used to obtain
the modal coordinate matrix. The strain modes can be obtained
from a finite element model (FEM) of the beam and is the more
common approach for this method with applications presented
by Foss and Haugse (1995), Bogert et al. (2003), Kang et al.
(2007), Derkevorkian et al. (2013). A drawback of using a FEM
to determine the modal coordinate matrix is that developing
an accurate model of the structure can be time intensive and
computationally expensive. Wang et al. (2014) presented a new
method for determining the modal coordinated using the strain
response rather than relying on a numerical model. The modal
coordinate matrix can also be determined using theoretical mode
shapes, such as the approach presented by Shin et al. (2012).
This is the method that will be used in this paper. Using
Euler-Bernoulli beam theory, the theoretical mode shapes and
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theoretical curvature shapes for a simply supported beam are:

φij = sin
jπxi

l
(17)

φ′′
ij = −(

jπ

l
)2sin

jπxi

l

= −(
jπ

l
)2φij (18)

where l is the length of the beam. Similarly, using Euler beam
theory, the theoretical mode shapes and curvature shapes for a
cantilevered beam can be determined (Young et al., 1949; Leissa
and Qatu, 2011):

φij = cosh(βjxi)− cos(βjxi)− γj(sinh(βjxi)− sin(βjxi)) (19)

φ′′
ij = β2

j [cosh(βjxi)+ cos(βjxi)− γj(sinh(βjxi)+ sinh(βjxi))]

(20)

Where γj and βj are:

γj = {0.73410, 1.01847, 0.99922, 1.000, · · · } (21)

βjl = {1.875, 4.494, 7.855, (2 ∗ j− 1)π/2, · · · } (22)

This method will be applied to both laboratory tests and to an
in-service highway overpass and the results will be presented in
later sections.

2.4. Curve Fitting
This method determines the relative displacement curve of
the structure by performing regression analysis on the discrete
curvature data points to fit an equation (i.e., interpolate the
curvature distribution along the beam with an equation). The
double integration of that fit curve is performed which provides
the displacement curve of the beam. This method was utilized
by Kim and Cho (2004) to estimate the deflection of a simply
supported beam subjected to a static point load by fitting a first
order polynomial expression and compared the performance of
the method to dial strain gages. Xu et al. (2015) fit higher order
polynomial equations using the method of least squares to obtain
the coefficients, applying the method to dynamic numerical
test and static load tests. Vurpillot et al. (1996) used quadratic
equations fit to the curvature of a continuous beam and found
the displacement for each segment of the structure.

Unlike the Newton-Cotes formulas, this method requires
some assumptions to be made of the curvature curve profile in
order to determine what fitting function to use for the structure.
One method is to use a harmonic equation, such as the general
modal equation for a beam under any boundary conditions or
loading conditions:

φj(xi) = C1sin(βjxi)+ C2sinh(βjxi)

+ C3cos(βjxi)+ C4cosh(βjxi)
(23)

where C1–C4 and α are constants. From Equation (23) an
equation for the curvature of the beam is found and can be fit
to the discrete curvature data points for a structure:

κj(xi) = −βjx
2
i (−C1sin(βjxi)+ C2sinh(βjxi)

− C3cos(βjxi)+ C4cosh(βjxi))
(24)

If assumptions are made regarding the boundary conditions of
the beam, these equations become simplified to Equation (17) for
a simply supported beam and Equation (19) for a cantilevered
beam. Another method is to assume the curvature takes the shape
of a quadratic curve (e.g., due to a linearly distributed load) and
approximate the curvature using a second order polynomial:

κ(x) = Ax2 + Bx+ C (25)

Which, yields approximations for the slope and displacement
upon double integration:

θ(x) = −(
1

3
Ax3 +

1

2
Bx2 + Cx+ D) (26)

y(x) = −(
1

12
Ax4 +

1

6
Bx3 +

1

2
Cx2 + Dx+ E) (27)

WhereA, B, andC are the fitting parameters determined by curve
fitting and the constants D and E can be determined based on
the boundary conditions. In the case where linear curvature is
assumed, a first order polynomial can be used as opposed to
Equation (25).

Using the method of least squares to minimize the error
between the predicted curvature values from Equation (25) and
the curvature data points, the best fit line can be found. The
values for A, B, and C can then be input into Equation (27) to
find the predicted displacement curve. This method applies to
both static and dynamic beam loading cases, where it is repeated
at each time-step for dynamic cases.

From the mathematical point of view, the relationship
between curvature and shape of a line (e.g., centroid line of a
beam) is defined by the formula:

k(x) = y′′/(1+ y′2)∗3/2 (28)

where ′ denotes the first and ′′ the second derivative over x.
Any line belonging to a geometrical plane (e.g., centroid plane
of a plate structure) or spatial two-dimensional manifold (e.g.,
centroid manifold of a shell) would have the same relationship
between the curvature and shape. Given that in the linear
theory of beams the deformations (strain and shear strain) and
displacements (including rotations) are small, y′ term in the
above expression can be neglected, curvature becomes simply
the second derivative of deformed shape (i.e., k(x) = y′′), and
deformed shape can be found as double integral of curvature.
Thus, the applicability of methods discussed in this paper can be
expanded from beam-like structures to other structures, such as
plates and shells, as long as they behave under the assumptions of
small deformations and displacements.

3. ANALYTICAL AND NUMERICAL
SIMULATIONS

To evaluate the errors of the shape estimation algorithms
presented in the previous section, numerical simulations were
performed. The assumptions made in the different methods,
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for example a method using linear curvature assumption vs. a
quadratic curvature assumption, can introduce different levels of
error into the displacement estimation depending on the beams
loading conditions. To compare the errors for these different
methods, the following section will compare the estimated
displacement from strain to the displacement for several different
numerical test cases. Four different static load and boundary
condition cases were evaluated using linear beam theory. The
displacement estimation methods were also evaluated using a
finite element model of two dynamic cases, a cantilever beam and
a simply supported beam.

The aim of this section is to estimate inherent (theoretical)
error of each integration method for different sensor
configurations, and typical boundary conditions and loads.
Hence, the methods are compared with analytical and/or
numerical models rather than to real (experimental)
displacementmeasurements in order to exclude from analysis the
epistemic error of linear theory, which is unknown. Comparison
with experimental data is performed in sections 4 and 5.

3.1. Static Analytical Simulations
A total of four different static analytical simulations were done
to evaluate the performance of the different shape estimation
algorithms as shown in Figure 2: a cantilever beam modeled
with a point load at the free end, which results in a linear
curvature profile; a simply supported beam with a point load
at the center, which has a broken-linear curvature profile; a
cantilever beam with a uniform distributed load, which has a
quadratic curvature profile; and a simply supported beam with
a load increasing uniformly to one end, which results in a cubic
curvature profile. This choice of simulations was made to cover a
variety of boundary conditions and load cases.

A dimensionless analysis was performed, independent of the
load, stiffness or length of the beam and assuming a uniform
cross-section. The equations for the curvature for each boundary
condition and loading case can be rearranged to include the
parameter xn = x/L, representing the dimensionless location
along the beam and isolating all other parameters as shown in
the following equations:
cantilever beam with point load:

κ =
P

EI
(L− x) =

PL

EI
∗ (1− xn) (29)

cantilever beam with uniformly distributed load:

κ =
w

2EI
(L− x)2 =

wL2

2EI
∗ (1− xn)

2 (30)

simply-supported beam with central point load:

κ =
P

2EI
(x) =

PL

2EI
∗ (xn) (31)

and simply-supported beam with uniformly increasing
distributed load:

κ =
Wx

3EI ∗ L2
(L2 − x2) =

WL

3EI
∗ (xn − x3n) (32)

From Equation (4), the displacement is equal to the double
integral of the curvature. To perform the dimensionless analysis,
the initial term in the curvature equations is a constant,
consisting of a combination ofW, P,E, I, and L, and independent
of the location on the beam so it can be removed from
the integration as a constant. For the analysis, the curvature
and displacement were calculated at evenly spaced intervals,
simulating a structure instrumented with evenly spaced strain
sensors. To observe the effects the number of sensors has on the
error of the methods, four different sensor configurations were
explored: 5, 7, 9, and 11 evenly spaced locations including both
ends of the beam.

For each case, using the moment distribution from the
applied loads, the curvature of the beam was found at evenly
spaced locations on the beam. The displacement was then
approximated from the curvature values using four different
strain to displacement transformation methods: rectangular rule
trapezoid rule, curve fitting, and the cubic spline method. The
strain modal transformation method was not used for these cases
because they are static conditions. The actual displacement for
each case was determined directly from the loading cases using
linear beam theory. The results for the displacement analysis for
the case with seven sensor locations is shown in Figure 3, where
C is the constant term in Equations (29–32).

The methods were evaluated using the normalized root mean
square (RMS) error, as shown in Equation (33).

RMS =

√

1
n

∑n
i=i(yi − ŷi)2

max(y)
(33)

where ŷi is the estimated displacement, yi is the measured
displacement, and n,is the number of sensor locations. The
results with the RMS error for the static analysis for each sensor
configuration is shown in Table 1. It is important to note, these
error values only include the error inherent to the method, no
other errors are included such as sensor noise or epistemic error
of model (beam theory).

The results show that for all cases, other than the simply
supported beam with a distributed load, the rectangular rule had
the worst performance for calculating the vertical displacement
with the highest RMS error. Formost cases, the polynomial spline
has the smallest error. However, for the simply supported beam
with a central point load this is not always the case. As the
number of sensors on the beam increases, the RMS error does
not decrease. The results show that for the analysis with 7 and 11
sensors, the error is much higher than the analysis with 5 and 9
sensors. This is because the beam has a broken-linear curvature
distributions so when the point load on the beam is located in
the middle of a segment the error is higher than when the point
load is located at the boundary of two segments. If the loading
conditions are known for the structure, this can help guide in
the selection of the method to use for the analysis. The curve
fitting method had the second lowest error for most beam cases.
The results also show that as the number of sensors on the beam
increase, the RMS error decreases for most cases. However, for
the curve fitting method and the cubic spline method, for the
cantilever beam the number of sensors used does not impact the
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FIGURE 2 | Static numerical simulation loading conditions and curvature profiles: (A) cantilever with point load-linear, (B) simply supported with central point load-

broken linear, (C) cantilever with uniform distributed load-quadratic, and (D) simply supported with uniformly increasing distributed load-cubic.

FIGURE 3 | Dimensionless displacement estimations from static beam theory analysis for beam with 7 sensor locations: (A) cantilever with point load, (B) cantilever

with uniform distributed load, (C) simply supported with central point load, and (D) simply supported with uniformly increasing distributed load.

RMS error substantially. With only 5 sensor locations, both the
curve fitting and cubic spline methods provide exact estimations
of the displacement for a cantilever beam as the curvature for
the given loads is either linear or parabolic. The same is seen for
the cubic spline method for the simply supported beam with a
distributed load. In this case the curvature is cubic, so cubic spline
will make minimal errors.

In a real-life application, sensors are not likely to be installed
with equal spacing. There may be limitation, such as accessibility
to the structure, that limit the possible locations a sensor can be

installed. Because of these limitations, the previous four static
loading cases were repeated for a beam with uneven sensor
spacing. The curvature and displacement were calculated at seven
different location along the beam at the following locations:
{0, 0.125, 0.375, 0.5, 0.625, 0.75, 1} ∗ L, with increased spacing
between locations 2 and 3 and locations 6 and 7. The RMS error
for this analysis is shown in Table 1.

As expected, the error values for all methods increased
compared to the analysis with evenly spaced sensors. Overall, the
cubic spline method introduces the lowest levels of error when
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TABLE 1 | RMS for static displacement analysis with evenly spaced

measurements.

Number of

evenly spaced

measurements

Cantilever Simply supported

Point load
Distributed

load
Point load

Distributed

load

Trapezoid

method

5 0.010 0.007 0.034 0.066

7 0.004 0.003 0.015 0.030

9 0.002 0.002 0.009 0.017

11 0.001 0.001 0.006 0.011

Rectangular

method

5 0.249 0.347 0.068 0.033

7 0.159 0.218 0.031 0.015

9 0.116 0.159 0.017 0.009

11 0.092 0.125 0.011 0.006

Curve

fitting

5 0 0 0.030 0.015

7 0 0 0.014 0.013

9 0 0 0.010 0.012

11 0 0 0.009 0.011

Polynomial

spline

5 0 0 0 0

7 0 0 0.028 0

9 0 0 0 0

11 0 0 0.011 0

the sensors are unequally spaced and the rectangular method has
the highest error for all cases other than the simply supported
beam with a point load where the trapezoid method has the
highest error.

3.2. Dynamic Numerical Simulations
For the dynamic numerical simulations, a finite element analysis
(FEA) was performed in ANSYS for both a simply supported
beam and a cantilevered beam. The beam modeled was 1.6
m long, a width of 0.25 m and a height of 0.01 m. The
beam dimensions and the number of sensors used in this
analysis were selected based on the dimensions used in a
small-scale experimental test, see section 4, allowing for easier
comparison between the numerical simulations and laboratory
tests. A transient analysis was performed on the beam with
both cantilevered and simply supported boundary conditions.
An arbitrarily acceleration time-history, shown in Figure 4A, was
applied to the structure.

The resulting surface strains and vertical displacement at the
neutral axis were recorded for seven equally spaced locations
along the beam for both of the FEA cases. At each measurement
location, the displacement was calculated from the strain
measurements using the methods introduced in the previous
section. The resulting displacement at the center of the simply
supported beam is shown in Figure 4B and the resulting
displacement at the free end of the cantilever beam is shown
in Figure 4C.

To evaluate the performance of the displacement estimation
methods, the normalized root mean square (RMS) error,

Equation (33), and the Pearson’s coefficient of correlation (ρ),
Equation (34), were found for each measurement location.
The Pearson correlation coefficient is a measure of the linear
correlation between two variables and has a value ranging from
–1 to +1, where 0 is no linear correlation and +1 is a total positive
linear correlation.

ρj =

∑n
i=1(yj,i − ȳj)(ŷj,i − ¯̂yj)

√

∑n
i=1(yj,i − ȳj)2(ŷj,i − ¯̂yj)2

(34)

where ρj is the Pearson correlation at location j, ŷj,i is
the estimated displacement at time i, yi,j is the measured
displacement,ȳj is the mean of the measured displacement at
location j, and n is the number of sensor locations. The results for
the simply supported beam analysis are shown in Figures 5A,B.

For the simply supported beam, the highest errors were
observed at the first and the last instrumented cross-section.
Overall, the rectangular method had the highest RMS error for all
sensor locations. The polynomial spline method had the second
highest errors and the lowest Pearson coefficient for all locations
other than the mid-span of the beam. Overall, the trapezoid
method has the lowest RMS error for all locations. At the center
for the beam, the SMTmethod withm = 5 has the second lowest
RMS error and the second highest Pearson coefficient. For the
simply supported beam, the performance of the other methods
varies depending on the location on the beam. For applications
where higher accuracy is desired at a specific location, themethod
with best performance at the desired location can be used.

For the cantilever beam analysis, the rectangular method has
the worst performance for determining the beam displacement
with RMS errors significantly higher than any of the other
methods. These results for the cantilevered beam analysis are
shown in Figures 5C,D. The SMT method with m = 1 had the
second worst performance compared to all the other methods,
with a higher RMS error and the lowest Pearson coefficient at the
ends of the beam. This is likely because the SMT method with
m = 1 is only estimating the first modal shape so when additional
modes in the beam are excited, the method is unable to accurately
estimate the displacement. Alternatively, the SMT method with
m = 5 performs very well for estimating the displacement with
the second lowest RMS errors and a very high Pearson coefficient
at all measurement locations on the beam. The polynomial spline
method has the lowest RMS errors formost locations on the beam
with a very high Pearson coefficient >0.999.

The studies presented in this section show that the error of
each method depends on number of sensors, their location on
the structure, the load case, and boundary conditions of the
beam. As a consequence, it is practically impossible to propose
generalized formulas for prediction of error that may cover all
possible load cases, boundary conditions and configurations of
sensors (especially if the sensors are not equidistantly spaced).
Thus, in case of more complex cases than those presented
above, a specific error analysis should be performed taking into
account specific load cases, boundary conditions and sensor
configuration. However, this analysis can follow the workflow
presented in this section.
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FIGURE 4 | (A) Acceleration time-history applied to the FEA beam model, modified from PEER (2013), (B) Center displacement for FEA transient analysis of a simply

supported beam, and (C) Free end displacement for FEA transient analysis of a cantilever beam.

4. EXPERIMENTAL TESTING

In the previous section, analytical, and numerical modeling
helped assess the theoretical performance of the considered
methods and confirmed their potential applicability. However,
considerations in previous section ignored epistemic errors
related to linear theory, as well as the errors associated to the
monitoring system. That is the reason why in this section the
methods are evaluated through laboratory testing. The strain to
displacement methods discussed in the previous sections were
applied to an aluminum beam in small scale laboratory testing.
For the experimental tests, the beamwas tested with both simply-
supported and cantilevered boundary conditions. The beam was
instrumented with five fiber Bragg grating (FBG) fiber-optic
sensors along the top surface of the beam. The FBG sensors have
a gage length of 10 cm and are equally spaced at 10 cm apart. The
beam is 0.95 cm thick, 25.4 cm wide, and the length of the beam
between supports is shown in Figure 6. There are a total of 5 FBG
strain sensors installed on the aluminum beam. The sensors are
spaced 20 cm apart, center-to-center with the first FBG sensor
located at 62.5 cm for the simply supported condition and at 39.5
cm for the cantilever, measured from the left beam support.

Assuming linear beam theory, when there are no normal
forces, the strain in the cross-section is anti-symmetric about the
neutral axis. Based on this assumption, the strain at the bottom of
the beam is equal and opposite to the strainmeasured at the top of
the beam and the curvature at each sensor location can be found
using Equation (1). To provide a direct comparison, four LVDT
displacement sensors were installed, measuring the displacement
of the top surface of the beam. The LVDT sensors are shown
in Figure 6 and their position aligns with the center of the FBG
sensors. For the simply supported beam tests, the 4 LVDT sensors
are aligned with FBG sensors 1–4 and for the cantilever beam
tests, the 4 LVDT sensors are aligned with FBG sensors 2–5. The
experimental set up for the aluminum beam is shown in Figure 6.
The number of sensors and he number of LVDTs were chosen
based on availability and budget constraints.

The beam was tested under both static and dynamic
loading conditions. For all cases, the strain response from the
FBG sensors and the displacement response from the LVDT
sensors was obtained. A sampling rate of 250 Hz was used
for both the FBG and LVDT data collection. The following
sections will describe the loading cases and the provide the
experimental results.
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FIGURE 5 | (A) RMS error and (B) Pearson coefficient for the estimated displacement compared to actual displacement for a FEA transient analysis of a simply

supported beam and (C) RMS error and (D) Pearson coefficient for the estimated displacement compared to actual displacement for a FEA transient analysis of a

cantilever beam.

FIGURE 6 | Experimental set up for aluminum beam laboratory tests with simply-supported (A) and cantilever (B) boundary conditions.

4.1. Simply Supported Beam
Both static and dynamic loading cases were applied to the simply
supported beam. Static load tests consisted of a 11.69N point load
applied at the center of the beam and the measurements were
taken with the FBG strain sensors and the LVDT displacement
sensors. From the strain measurements the curvatures were
calculated using Equation (1). From the curvature values, the
displacement was calculated using each of the strain based
displacement methods. The results are shown in Figure 7. As
shown in the figure, all four methods are in good agreement
with the displacement measurements from the LVDT sensor
results, with the polynomial spline and the rectangular methods
overestimating the displacement and the trapezoid and curve
fitting methods underestimating the displacement. The RMS

error for each of the methods at each sensor location was also
determined. For the center of the beam, the rectangular method
had the lowest error and the Trapezoid method had the worst
performance with the highest RMS error for all locations. Overall,
all methods performed well for estimating the displacement with
a maximum error <6% and a minimum error of 2.5%. The
differences observed in the experimental testing compared to the
analytical estimation are likely attributed to epistemic error of the
linear theory and errors associated to monitoring system such as
repeatability, installation/strain transfer, and gauge length.

Dynamic free vibration experimental tests were performed on
the simply supported beam by displacing the beam at the mid-
span and releasing to induce a time-period of free vibration.
A total of 10 free vibration tests were done on the beam. For
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FIGURE 7 | Simply supported beam experimental tests with a point load at the mid-span (A) displacement from FBG and LVDT sensors and (B) RMS error of strain

based displacement estimations at each sensor location.

FIGURE 8 | Experimental free vibration results: (A) displacement at mid-span of simply supported beam, (B) RMS error, and (C) Pearson coefficient.

each test, the displacement was determined from the FBG strain
response and compared with the displacement measurements
from the LVDT sensors. An example of the displacement at
the mid-span of the beam for one time segment is shown in
Figure 8A. These results are typical for the displacement results
for all of the tests and measurement locations, showing there
is good agreement between the LVDT displacement and the

displacement calculated based on the strain. To evaluate the
performance of these methods, the RMS error and the Pearson
coefficient were calculated and are shown in Figures 8B,C. For
the free vibration tests, the errors observed for the methods were
similar in magnitude to the errors observed for the static tests
with a maximum error<6.5% and aminimum error of 2.5%. The
trapezoidmethod had the highest RMS error and the curve fitting
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FIGURE 9 | Random impact dynamic test (A) displacement response at mid-span of simply supported beam, (B) RMS error, and (C) Pearson coefficient.

FIGURE 10 | Cantilever beam static load tests with 16.35 N point load at the free end (A) displacement from FBG and LVDT sensors, and (B) RMS error of strain

based displacement estimations at each sensor location.

method had the lowest Pearson coefficient whereas the SMT
method had the lowest errors and highest Pearson coefficients.
Similarly, differences between the experimental testing compared
to the analytical estimation may be attributed to epistemic error
of the linear theory and errors associated to monitoring system.

Additional dynamic tests were performed on the simply
supported beam with random impact loading. A total of 10

random impact tests were performed by using a hammer to
randomly impact the beam for a 45 s time period. The resulting
FBG strain response and LVDT displacement response were
recorded. An example of the displacement at the mid-span from
a time segment of one of the impact tests is shown in Figure 9A.
This figure shows that there is good agreement between the
LVDT displacement and the calculated displacement methods.
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FIGURE 11 | Experimental free vibration tests on a cantilever beam, (A) displacement at sensor location S5 (1.2 meters), (B) RMS error, and (C) Pearson coefficient.

However, due to the limitations of the LVDT sensor it does not
record the higher frequency displacements, as illustrated at the
displacement peaks in Figure 9, that the displacement results
from the strain sensors are able to record. This is confirmed
when a fast Fourier transformation(FFT) is performed on the
FBG strain response and the LVDT displacement response. The
frequency domain for the FBG response shows the first four
natural frequencies whereas the frequency domain for the LVDT
sensors only clearly shows the first two natural frequencies.
Because of this, RMS errors are higher and the Pearson
coefficients are lower compared to the previous experimental
results presents, as shown in Figures 9B,C. The highest errors are
located closer to the left end of the beam with a maximum error
of 17% and the lowest errors are located on the right end of the
beam with errors >7%. Overall, the polynomial spline having the
best performance of the methods with the lowest RMS error at 3
of the 4 sensor locations.

4.2. Cantilever Beam
Both static and dynamic loading cases were applied to the
cantilever beam. For the static test case, a 16.35 N load was
applied to the free end of the beam. The static FBG strain
and LVDT displacement measurements were taken at each
sensor location. The displacement calculated from the strain
measurements and LVDT displacement measurements and the
associated RMS errors are shown in Figure 10. There is good

agreement for the curve fitting and the polynomial spline
method, however there is not good agreement for the trapezoid
method and the rectangular method. This is illustrated by the
high error values for the Rectangular method near the fixed end
of the beam and for the Trapezoid method at all locations, with
RMS errors near 30% in all locations.

Free vibration dynamic tests were also performed for the
cantilever beam. The beam was displaced at the free end
and released to induce a free vibration response. These tests
were repeated a total of 10 times, measuring the strain and
displacement response for each test. From the strain response,
the displacement was calculated at each sensor location. An
example of the displacement at the free end of the beam for
one test is shown in Figure 11A. The RMS errors and Pearson
coefficient were found for each method, see Figures 11B,C.
Similar to the static analysis, the trapezoid method has the
highest level of error, with a maximum RMS >27% compared
to the experimental results for the simply supported boundary
condition that had amaximum error of 6.5%. The error values for
the other displacement estimation methods are much lower with
maximum errors of 10.5% For all of the displacement calculation
methods, the RMS error decreases as the location along the beam
increases. However, at sensor location S5, at x = 1.2 m, the
Pearson correlation coefficient decreases.

When the laboratory tests are compared with the numerical
analysis, the RMS errors are all higher in the laboratory tests

Frontiers in Built Environment | www.frontiersin.org 13 October 2019 | Volume 5 | Article 118

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Kliewer and Glisic Strain-Based Displacement Methods

FIGURE 12 | (A) Underside of instrumented highway overpass, (B) the sensor locations and gage lengths for girder 2 and girder 5 on the structure, and (C) typical

girder 5 strain response for the structure.

due to experimental variability. Additionally, for the laboratory
tests, the RMS errors for all methods have the same order
of magnitude, unlike the numerical results where there was a
significant difference in the order of magnitude of the error
for the static analysis. For the simply supported beam static
lab tests, the rectangular method performs better than expected
with the lowest error in the mid-span and the trapezoid method
having the highest error compared to the numerical analysis.
For the simply supported beam free vibration lab tests, the
results are more consistent with the numerical results except
for the trapezoid method which has the highest error. For the
random impact dynamic tests, the highest error is observed at
the edge of the beam, which is consistent with the numerical
results. For the cantilever beam static tests both the numerical
and lab tests resulted in the trapezoid and rectangular methods
having the highest errors with the trapezoid under estimating
the displacement and the rectangular method over estimating
the displacement. For the dynamic cantilever tests, the trapezoid
method has a significantly higher RMS error for the lab tests
whereas the rectangular method has a significantly higher RMS

error for the numerical analysis. For some of the laboratory tests,
there were unexpected results for the performance of themethods
compared with the numerical analysis results. One factor that
may account for the difference in performance is the error in the
LVDT displacement measurements which is not accounted for in
this analysis.

5. APPLICATION TO HIGHWAY OVERPASS

Once assessed by numerical and experimental analysis, the
strain to displacement transformation methods presented in the
previous sections were also applied to data from an existing,
in-service highway overpass.

5.1. Overview of Structure
The bridge is a typical highway overpass is located in the
United States. The typical design is useful as it allows for
the testing of SHM methods that will be widely applicable to
many structures.
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FIGURE 13 | Displacement estimation at girders 2 and 5 from strain response due to service loads on the bridge.

FIGURE 14 | The maximum displacements for each sensor location on girder 2 at the quarterspans (A,C) and midspan (B) and on girder 5 at the quarterspans (D,F)

and the midspan (E).
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The structure contains multiple spans and consist of built-
up steel girders of varying sizes and concrete deck, as shown in
Figure 12A. The structure is skewed at the north end, providing
a unique structural behavior as all girders differ in length. In
this research, only the southbound span of the structure was
instrumented. Two of the eight girders on the span, girder 2
and girder 5, were instrumented with sensors. On both girders,
FBG strain sensors were installed in three locations: the mid span
and quarter spans. These locations are shown in Figure 12B. The
sensors are not evenly spaced on the structure and the total length
of the two girders differ. At each location, strain sensors were
installed in parallel topology on the top flange and the bottom
flange for a total of 6 sensors on each girder. Additionally, a
temperature sensor was installed with each strain sensor.

Since the installment of the monitoring system on the
structure periodic data collection site visits to the structure were
carried out, which occurred several times throughout the year
and have been ongoing for almost 6 years. During the data
collection site visits, the structure remains in-service during data
collection and the measurements consist of the strain response
of the structure caused by the traffic loading. A total of 28
measurement session have occurred from June 2011 to January
2017. The strain response of the structure is recorded for ∼1
h for each site visit and the data is recorded with a sampling
rate of 250 Hz. The typical strain response for girder 5 of the
structure is shown in Figure 12C, similar strain responses are
observed in girder 2 however the strain amplitudes are lower as
the girder is located near the edge of the structure with less traffic
loading. The strain response from the sensors is filtered using
a Butterworth low pass filter (Winder, 2002). The figure shows
several peak strain responses on the structure followed by periods
of free vibration which are the result of heavy weight vehicles
passing over the structure.

5.2. Results
For all data measurement periods, the displacement of both
girder 2 and girder 5 were estimated from the strain response
data. The strain displacement estimation methods presented
earlier in the paper were used including numerical integration
(Trapezoid and rectangular methods), curve fitting, polynomial
spline and SMT (m= 1 andm= 3). The displacement estimation
results for one segment of monitoring the bridge with service
traffic loads are shown in Figure 13 for all measurement locations
on the bridge. The displacement estimation for girder 5 are
higher than the displacement estimation for girder 2 because
girder 5 is located in the middle of the span, more directly under
the traffic lanes whereas girder 2 is located toward the edge of
the structure, in line with the highway shoulder, so the traffic
loading is lower. It was observed that the rectangular method
estimated the highest displacements for the first quarter-span and
mid-span locations on the bridge for both girder 2 and girder
5. These observations are consistent with the results observed
in the experimental tests with the rectangular method typically
overestimating and providing the highest displacement values
and the trapezoid method underestimating and providing lower
displacement values. The other methods vary in the displacement

estimation but provide displacement estimation between the
trapezoid and rectangular methods.

5.3. Serviceability Deflection Limits
The American Association of State Highway and Transportation
Officials (AASHTO) mandates that bridges without pedestrian
loads have a service limit of L/800 for the live load deflections
(American Association of State Highway and Transportation
Officials, 2010). For girder 2 the maximum allowable deflection is
0.048 meters and for girder 5 the maximum allowable deflection
is 0.044 meters. Using the deflections that were obtained from
the strain measurements for both girders, a check can be
performed to determine if the service limit is exceeded. For
each data collection site visit the maximum deflection at each
sensor location for both girder 2 and girder 5 was determined
using the strain to displacement estimation methods, as shown
in Figure 14.

Due to the sparse sensor layout on the structure, with only
three locations on each beam, variance of the different strain
to displacement estimation methods is high. However, for all
measurement locations on both girders, the estimated maximum
deflections due to live load are significantly below the service
limit for all of the estimation methods. The deflections calculated
for girder 2 are slightly higher than the values found for girder
5. Additionally, as expected, the measurement location near the
center of the girder had the highest deflections for both girders.
Figure 14 also shows that over time, the maximum deflection
values for the bridge stay relatively constant with no significant
changes for all of the measurement locations.

6. CONCLUSIONS

This paper presents an evaluation and comparison of five
strain-based displacement estimation methods using FBG
strain sensors. These methods were successfully evaluated
through static and dynamic analytical and numerical modeling
and through small scale laboratory tests with a variety of
loading conditions and both simply supported and cantilevered
boundary conditions. The errors of the methods were evaluated
to provide a comparison of the strain based methods for each
scenario. The quality of estimation of displacement for each
method depends on number of sensors, their location on the
structure, load case, and boundary conditions of the beam. For
most cases, the results show good agreement between the directly
measured displacement and the estimated displacement from
the strain sensors. However, the difference in estimation can
be important, depending of specific application. For example,
in Figure 14F, the spread of values is between 2 and 3.5
mm for various methods, which is 75% difference between
the one that estimates 2 mm an the other that estimates 3.5
mm. This difference can lead to significant errors in evaluating
structural health and performance of specific project (which
was fortunately not the case in this specific project, please
see text below). Similar considerations apply for several other
evaluations shown presented in this paper. While the rectangular
and trapezoid methods frequently resulted in higher errors
for both the numerical and laboratory tests they require no
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assumptions of the curvature distribution for the beam. For
many cases, the polynomial spline method can improve upon
the displacement estimation compared with the rectangular
and trapezoid methods and also does not require assumptions
regarding the curvature distribution for the structure. However,
the numerical results showed when the beam has a broken-linear
curvature distribution, depending on the sensor distribution,
some cases result in higher errors. Both the curve fitting
and SMT methods require some assumptions regarding the
curvature distribution of the beam, however they consistently
had lower errors for both the experimental and numerical
analysis. The methods were also applied to a real structure,
a highway overpass instrumented with FBG strain sensors.
It was found that all displacement during the monitoring
period for the highway overpass were well below the maximum
AASHTO displacement limits for all methods. This application
demonstrates the potential to use the strain-based displacement
methods for the monitoring of displacement service limits on
a bridge.
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