CiteScore 2.14
More on impact ›

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Built Environ. | doi: 10.3389/fbuil.2019.00128

Nationwide Earthquake Risk Model for Wood-frame Houses in Canada

  • 1Civil Engineering, University of Western Ontario, Canada

Quantitative seismic risk assessments involve hazard characterization, exposure database, vulnerability assessment, and uncertainty modelling, and promote consistent risk management actions, when conducted systematically across a country. This study implements a performance-based earthquake engineering methodology to develop a nationwide earthquake risk model for Canadian wood-frame houses by integrating probabilistic seismic hazard analysis results provided by the Geological Survey of Canada and seismic fragility functions derived from incremental dynamic analysis. To facilitate the implementation of the seismic risk analysis method, an in-house probabilistic seismic hazard analysis tool for Canada is developed and used to verify the accuracy of the adopted approach of approximating the upper tail of the seismic intensity measure distribution and to generate detailed seismic disaggregation results for ground motion record selection and seismic fragility modelling purposes. By integrating the preceding two elements via Monte Carlo methods, a full seismic risk curve can be obtained in a computationally efficient manner. The approach is applied to 1,620 representative locations used for the 2016 Canadian Census and thus facilitates the development of seismic risk maps of key risk metrics that are derived from exceedance probability curves in terms of earthquake damage/loss ratio. The developed seismic risk maps serve as valuable decision-support tools to implement risk-based management strategies consistently across Canada.

Keywords: Seismic risk analysis, Probabilistic seismic hazard analysis (PSHA), Seismic fragility analysis, Ground motion record selection, Wood structure building

Received: 23 Aug 2019; Accepted: 10 Oct 2019.

Copyright: © 2019 Goda. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Katsuichiro Goda, University of Western Ontario, Civil Engineering, London, BS8 1TR, Canada,