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This paper investigates the seismic design of fluid viscous dampers connecting adjacent

structural systems. A simplified dampers design strategy is proposed, which relies on

a linearized reduced order model of the coupled system. A stochastic linearization

technique is adopted with the aim of extending the design method to non-linear viscous

dampers. The effectiveness of the design method and of the coupling strategy are

assessed via numerical analysis of two adjacent buildings with shear-type behavior

connected by linear or non-linear viscous dampers and subjected to Gaussian stochastic

base acceleration. Different dampers locations are analyzed. The accuracy of the

reduced order model is assessed, by comparing the relevant response statistics to

those provided by a refined multi degree of freedoms model. Finally, a parametric

study is performed to assess the effectiveness of dissipative connection for different

values of seismic intensity and dampers parameters (i.e., viscous coefficients and

velocity exponents).

Keywords: non-linear viscous dampers, adjacent buildings, stochastic linearization, reduced order model,

dampers design, dissipative coupling

INTRODUCTION

Many experimental and analytical studies have proven that the introduction of damping devices
between adjacent buildings provides an efficient mean for improving the seismic performance
of the two systems. The behavior of adjacent structures linked by rigid, active, or passive control
devices (Soong and Spencer, 2002; Christopoulos and Filiatrault, 2006; Takewaki, 2009) has been
object of study of many papers in the last decades (Xu et al., 1999; Ni et al., 2001; Kim et al.,
2006; Cimellaro and Lopez-Garcia, 2007; Roh et al., 2011; Richardson and Walsh, 2012; Tubaldi
et al., 2014; Tubaldi, 2015). These studies have shown that the interaction between two systems
with different dynamic properties through the connecting devices allows to reduce the structural
seismic responses in terms of displacements and accelerations with respect to the unconnected
case. The dissipative coupling constitutes also an effective tool to mitigate the seismic pounding
(Sorace and Terenzi, 2013; Abdeddaim et al., 2016; Karabork and Aydin, 2019) between adjacent
buildings without sufficient seismic joint, by avoiding invasive retrofit interventions finalized to
joint enlargement.

The dissipative coupling of adjacent structures also includes the case of existing structures
connected to new external systems. This retrofit measure has been recently investigated in different
studies (Gioiella et al., 2018a; Reggio et al., 2019), because it presents several advantages compared
to other methods (e.g., dissipative braces inserted within the frames), thanks to the reduced
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interferences with the existing frame and the low downtime
associated with the installation of the retrofit measure. There
can be different arrangements for the external protection system,
which can be for example a new external reaction tower or an
exoskeleton structure wrapping the building to be protected. The
study reported in (Gioiella et al., 2018a), investigated the modal
properties and the seismic response of an r.c. frame building
coupled with an external pinned-rocking truss equipped with
linear fluid viscous at its base and connected at the floor level
with the building to protect. Also in (Impollonia and Palmeri,
2018) a similar system is investigated, but in this case, the external
reaction towers have been equipped with non-linear devices.
In (Gioiella et al., 2018b), a comparison was made in terms
of efficiency between alternative external retrofitting systems,
one consisting in a pinned-rocking truss with dampers at its
base, and the other in a fixed base external structure with the
dampers located at floor level. In (Reggio et al., 2019), the
behavior of a primary structure protected by an external self-
supporting exoskeleton system, rigidly connected to the inner
frame is assessed.

A significant number of the studies reported above has focused
on the definition of procedures or closed-form expressions for
the design of the optimal damper properties of the connecting
dampers. Many works have considered the simplified case
of adjacent buildings modeled as single degree of freedom
(SDOF) systems. In this context, Zhu and Iemura (2000)
and Zhu and Xu (2005) derived analytical expressions for
the optimal properties of respectively a Kelvin-type damper
and a Maxwell-type connecting damper, under a white-noise
ground excitation. The optimal properties have been evaluated
by minimizing the averaged vibration energy of either the
primary structure or the two adjacent structures. Bhaskararao
and Jangid (2007) also derived closed-form expressions for
the optimal linear viscous damper properties that minimize
the systems’ relative displacements and absolute accelerations
under harmonic excitation, and the mean square responses
under stationary white-noise random excitation. Hwang et al.
(2007), based on complex modal analysis, proposed a closed-
form expressions of the relation between the viscous constant
of the linear viscous dampers and the damping factors of the
adjacent connected SDOF systems. The optimal properties of
hysteretic dampers were evaluated by Basili and De Angelis
(2007a) by minimizing an energy performance index, i.e., the
ratio of themaximum value of the energy dissipated in the device,
to the corresponding maximum value of the input energy.

In general, different approaches can be followed to evaluate
the optimal properties of the connecting system. Some authors
(Zhang and Xu, 1999; Kim et al., 2006; Tubaldi et al., 2014),
perform extensive parametric analyses, other (Basili and De
Angelis, 2007a; Ok et al., 2008; Bigdeli et al., 2012) suggest
optimization procedures, which are generally able to provide
the optimal damper location as well. An alternative strategy
could be that of looking only at the damping in correspondence
of one or more vibration modes (Luco and De Barros,
1998), or reducing the model order, i.e., by transforming the
multiple degree of freedom (MDOF) models into two simplified
equivalent SDOF systems (Aida et al., 2001; Basili and De
Angelis, 2007b; Zhu et al., 2010), and then defining the damper

properties based on already available closed-form expressions
or methodologies.

In this paper, the seismic response of adjacent buildings
connected by energy dissipation devices is further investigated,
with specific focus on the use of fluid viscous dampers (FVDs).
The effectiveness for seismic protection purposes of such class
of devices has been extensively analyzed in the past decades
(Symans and Constantiou, 1998; Pekcan et al., 1999; Lin and
Chopra, 2002; Christopoulos and Filiatrault, 2006; Takewaki,
2009), and specific issues have been also studied. These include
the effect of the ground motion variability on the response of
systems equipped with linear or non-linear viscous dampers
(Tubaldi et al., 2015; Dall’Asta et al., 2016) and the influence
of the variability of the damper properties, due to the device
manufacturing process, on the seismic performance of the system
(Lavan and Avishur, 2013; Dall’Asta et al., 2017; Scozzese et al.,
2019).

Moreover, this study aims at developing a design strategy for
fluid viscous dampers connecting adjacent buildings based on
a linearized reduced order model. Starting from the knowledge
of the dynamical properties of the unconnected buildings, the
design method requires an assumption on the distribution of
the dampers at the various floors. Once the amount of added
damping necessary to protect one of the two frames is decided,
the dimensions of FVDs are determined. A simplified expression
for the design of the dampers, applicable in many situations, is
also provided. Finally, a stochastic linearization technique is used
to extend the design procedure to the case of non-linear dampers,
which are diffused in design practice. In the last part of the
paper, extensive analyses of various case studies are reported, in
order to compare the results achieved by the MDOF systems and
by the reduced order model, considering linear, and non-linear
dampers, as well as different damper configurations.

PROBLEM FORMULATION

In this section, the formulation of the problem involving two
adjacent MDOF structures coupled by fluid viscous dampers is
presented in general terms, in section “Equation of Motion for
MDOF Systems Connected by Non-Linear Viscous Dampers”
with reference to non-linear devices and in section “MDOF
Systems Connected by Linear FVDs and Reduced Order Model”
for the case of linear ones. In this latter section, a reduced
order model of the coupled systems is developed. Moreover, a
simplified formula for estimating the added damping ratio is
derived, which can be used for design purposes. Afterwards, in
section “Non-Linear System and Linear Equivalence Based on
Stochastic Response”, an equivalence criterion is used to relate
the properties of non-linear FVDs to linear ones, to be used along
with the design approach proposed.

Equation of Motion for MDOF Systems
Connected by Non-Linear Viscous
Dampers
The equation of motion of two adjacent MDOF systems, A and
B, coupled by viscous dampers (Figure 1), is:

Mü (t)+Cu̇ (t)+Ku (t) + f [u̇ (t)]=−Mrüg (t) (1)

Frontiers in Built Environment | www.frontiersin.org 2 March 2020 | Volume 6 | Article 25

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tubaldi et al. Dissipative Coupling of Adjacent Buildings

FIGURE 1 | Frame structures connected by means of fluid viscous dampers.

whereM, C, and K are linear operators (i.e., matrices) describing
the mass, damping and stiffness distribution in the two systems;
r is the load distribution vector; üg (t) is a function describing
the seismic input; f [u̇ (t)] is the vector of forces due to coupling
damper devices; a superposed dot denotes differentiation with
respect to time. The vector u (t), describing the floor motion,
can be split into two vectors collecting the displacements at
floor level of structural system A and structural system B, i.e.,

u =
[

uA(m)

uB(n)

]

. Accordingly, the linear operators can be split

into: M =
[

MA(mxm) 0(mxn)

0(nxm) MB(nxn)

]

; K =
[

KA(mxm) 0(mxn)

0(nxm) KB(nxn)

]

; C =
[

CA(mxm) 0(mxn)

0(nxm) CB(nxn)

]

.

The vector f [u̇ (t)] has the following expression:

f [u̇ (t)]=





fd[u̇ (t)](n)
0

(m−n)

−fd[u̇ (t)]
(n)



 (2)

where fd [u̇ (t)] = fd (t) is a n-dimension vector, whose j-th
component is given by:

fdj [u̇ (t)] = cd,j
∣

∣u̇j (t) − u̇j+m (t)
∣

∣

α
sgn

[

u̇j (t) − u̇j+m (t)
]

j = 1 : n (3)

where cd,j represents the viscous constant of the j-th damper with
behavior described by the value of the constant α. When α= 1 the
behavior of the dampers is linear, instead when α <1 the behavior
is non-linear.

MDOF Systems Connected by Linear FVDs
and Reduced Order Model
In the case of linear dampers, Equation (1) can be rewritten as:

Mü (t)+ (C+ Cd) u̇ (t)+Ku (t)=−Mrüg (t) (4)

in which matrix Cd describes the properties and the location of
the linear viscous dampers connecting the adjacent buildings.

According to the previous general expression of f [u̇ (t)], matrix
Cd has the following expression:

Cd =





Cd0(nxn) 0(nx(m−n)) −Cd0(nxn)

0((m−n)xn) 0((m−n)xn) 0((m−n)xn)

−Cd0(nxn) 0(nx(m−n)) Cd0(nxn)



 (5)

where Cd0 is the diagonal matrix, containing the values cd0,j of
the viscous constants of the dampers at each connected story.

In order to simplify the problem and develop a reduced
order model, suitable for the design of the dissipative system,
the following decomposition of the motion is considered for
the system:

u (t) = 8q (t) (6)

where 8 is the matrix containing the undamped eigenvectors
(modal shapes) of the combined system and q (t) is a vector of
order n+m, containing the generalized displacements. In this
case, the set of all the modal shapes consists of the two separated
sets containing the modal shapes of A and the modal shapes of B.

After substituting Equation (6) into Equation (4) and
premultiplying by 8

T , one obtains:

8
TM8q̈ (t)+8

T(C+ Cd) 8q̇ (t)+8
TK8q (t)

=− 8
TMrüg (t) (7)

This corresponds to a system of n+m coupled equations.
To develop a reduced order model capable to describe the

coupled system dynamic behavior with good accuracy, at least
the first undamped modes of each building alone have to be
considered. Let ϕAu and ϕBu denote the vectors containing the
first modal shapes of building A and B, respectively. Matrix 8

reduces to:

8 =
[

ϕA ϕB

]

=
[

ϕAu(m)

0(n)

0(m)

ϕBu(n)

]

=





ϕAud(m)

ϕAuu(m−n)

0(n)

0(n)

0(m−n)

ϕBud(n)



(8)

where ϕBud = ϕBu and ϕAu is further split into ϕAud, containing
the modal displacements of building A for the first n degree
of freedom, and ϕAuu containing the modal displacements of
building A for the upper stories, from n+1 to m, not connected
to building B.

Under this approximation, the vector q contains two
components only, denoted as qA and qB, and Equation (7) reads
as follows:

ϕAu
TMAϕAuq̈A (t)+ϕAu

TCAϕAuq̇A (t) + ϕAud
TCd0ϕAudq̇A (t)

−ϕAud
TCd0ϕBudq̇B (t)+

+ϕAu
TKAϕAuqA (t)=− ϕAu

TMArüg (t)

ϕBu
TMBϕBuq̈B (t)+ϕBu

TCBϕBuq̇B (t) + ϕBud
TCd0ϕBudq̇B (t)

−ϕBud
TCd0ϕAudq̇A (t) +

+ϕBu
TKBϕBuqB (t)=− ϕBu

TMBrüg (t) (9)
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After posing:

mi = ϕiu
TMiϕiu

ci = ϕiu
TCiϕiu

ki = ϕiu
TKiϕiu for i = A, B

leff ,i = ϕiu
TMir

γi = leff , i
mi

(10)

and dividing by the modal participation factor γi, Equation (9)
can be rewritten as:

q̈A (t)+2ξAωAq̇A (t) +
ϕAud

TCd0ϕAud

mA
q̇A (t)

−
ϕAud

TCd0ϕBud

mA
q̇B (t)+ω2

AqA (t)=− üg (t)

q̈B (t)+2ξBωBq̇B (t) +
ϕBud

TCd0ϕBud

mB
q̇B (t)

−
ϕBud

TCd0ϕAud

mB
q̇A (t)+ω2

BqB (t)=− üg (t) (11)

where qi (t) = qi(t)
γi

, ci
mi

= 2ξiωi and
ki
mi

= ω2
i for i = A, B. This

way, there is a clear correspondence between the MDOF systems
and the reduced order model.

The total amount of damping due to the frame and to the
dissipative connection of the equivalent 2-SDOF system can be
expressed as follows:

ξA = ξA +
ϕAud

TCd0ϕAud

2mAωA
−

ϕAud
TCd0ϕBud

2mAωA

ξB = ξB +
ϕBud

TCd0ϕBud

2mBωB
−

ϕBud
TCd0ϕAud

2mBωB
(12)

In the case of a single damper with viscous constant cd0,r
connecting story r of buildings A and B, these expressions
coincide with those reported in (Aida et al., 2001):

ξA = ξA +
cd0,r

2mAωA
ϕ2
Aud,r −

cd0,rϕAud,rϕBud,r

2mAωA

ξB = ξB +
cd0,r

2mBωB
ϕ2
Bud,r −

cd0,rϕAud,rϕBud,r

2mBωB
(13)

In general, the system is non-classically damped (Sivandi-Pour
et al., 2014, 2015) because of the non-zero term ϕAud

TCd0ϕBud.
By neglecting the off-diagonal terms in Equation (12), the
following approximate expressions of the damping ratio for the
first two fundamental vibration modes of the coupled system can
be obtained:

ξA, app = ξA +
ϕAud

TCd0ϕAud

2mAωA

ξB, app = ξB +
ϕBud

TCd0ϕBud

2mBωB
(14)

The study of Hwang et al. (Hwang et al., 2007), based on complex
modal analysis of two adjacent SDOF systems connected by a

viscous damper, has shown that the decoupling approximation
yields very accurate results in the case of well-separated vibration
frequencies of the two systems and low added damping. Usually,
for ratios ωB/ωA > 1.5 ÷ 2, Equation (14) can be assumed
to provide accurate estimates of the buildings damping ratios
(Hwang et al., 2007). It is noteworthy that the dampers
connecting adjacent buildings are efficient in dissipating energy
only for buildings with different dynamic properties and that in
the case of two identical adjacent buildings, the dampers would
not be activated.

It is worth to note that, under the approximation of Equation
(14) and recalling the expression of Cd0, the addition of dampers
between two adjacent buildings induces a mass-proportional
damping in each system (Trombetti and Silvestri, 2004). Thus,
the dissipation capacity of the added dampers depends on
the absolute displacements of each system, rather than on the
interstorey drifts (stiffness-proportional damping), and obviously
is different from building to building.

Non-Linear System and Linear Equivalence
Based on Stochastic Response
Non-linear devices are widely diffused, due to their ability to
reduce dampers forces in case of high velocity (Tubaldi et al.,
2015), and thus it is useful to establish a link between the linear
formulation of section “Equation of motion for MDOF systems
connected by nonlinear viscous dampers” and the non-linear
one of section “MDOF systems connected by linear FVDs and
reduced order model”. This can be achieved by choosing an
equivalence condition between the two systems and by defining
the relationship between the parameters of the non-linear FVDs
and the parameters of the equivalent linear FVDs. On this regard,
in literature there are different linearization approaches, one of
the most diffused being based on energy considerations under
harmonic inputs [see Christopoulos and Filiatrault (2006)]. In
this work. a stochastic linearization technique, already employed
in Rüdinger and Krenk (2003), Rüdinger (2006), Rudinger
(2007), Di Paola et al. (2007), Di Paola and Navarra (2009), and
De Domenico and Ricciardi (2018, 2019), is chosen to identify
the equivalent linear expression for non-linear devices.

For this purpose, it is assumed here that the input üg (t) to
the non-linear system of Equation (1) is a Gaussian stochastic
stationary process. Equation (1) becomes a stochastic equation
and the displacement response and relevant derivatives are
also stochastic quantities. The equation of the equivalent linear
system is:

MÜ (t)+
(

C+ C
eq

d

)

U̇ (t)+KU (t)=−MRüg (t) (15)

where the effect of the non-linear dampers is expressed by the
equivalent linear matrix C

eq

d
, whose terms are evaluated using

a force-based equivalent criterion (De Domenico and Ricciardi,
2018, 2019). In particular, the matrix C

eq

d
has the same structure

of the matrix Cd, shown in Equation (5), where C
eq

d0
is a

nxn diagonal submatrix containing the values of the equivalent
viscous constant, determined as follows:

c
eq

d0,j
= cNLd,j

21+
α
2 Ŵ

(

1+ α
2

)

√
2π

σ α−1
1u̇j

j = 1 : n (16)

Frontiers in Built Environment | www.frontiersin.org 4 March 2020 | Volume 6 | Article 25

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tubaldi et al. Dissipative Coupling of Adjacent Buildings

where σ1u̇j is the standard deviation of the relative velocity
between the ends of the damper at the j-th floor.

It is evident that the equivalence holds only for the assigned
stationary process üg (t), that can be described by its power
spectral density SÜg

(ω), so equivalent parameters vary by varying

the input intensity and the input frequency content. In the
considered case, oriented to study the seismic response, the
equivalence is found by considering a Kanai-Tajimi process
(Kanai, 1957; Tajimi, 1960).

Passing from the MDOF systems to the reduced order model,
Equation (16) becomes:

c
eq

d0,j
=cNLd,j E

[

∣

∣1u̇j
∣

∣

α−1
]

=
2α/2Ŵ

(

α
2

)

√
2π

σ α−1
1u̇j

j = 1 : n (17)

where:

σ1U̇j
=

√

E
[

1u̇2j

]

=
√

ϕ2
Au,jE

[

q̇2A
]

+ ϕ2
Bu,j+mE

[

q̇2B
]

− 2ϕAu,jϕBu,j+mE
[

q̇Aq̇B
]

j = 1 : n (18)

and where ϕi,r denotes the value of modal shape i at degree of
freedom r.

FLUID VISCOUS DAMPERS DESIGN

The dissipative system is designed by exploiting the classically
damped reduced order model.

The distribution of dampers is described by Cd0 = λC̃d0,
where C̃d0 is an arbitrary diagonal matrix fixed in advance and
controlling the dampers’ distribution story by story and λ is a
scale factor controlling the global dimension of the dissipative
system. The components of the matrix C̃d0 are c̃d0,j.

The scale factor λ is determined by requiring that the damping
added to one of the two frames, denoted as primary structure
in the following and conventionally coinciding with system B, is
equal to a target value ξadd. The value of λ can be obtained from
Equation (14), and its expression is the following:

λ =
2mBωBξadd

ϕBud
TC̃d0ϕBud

(19)

Once λ is known, the constant of the damper connecting the j-th
level is cd0,j = λc̃d0,j. There can be a large number of dampers
arrangements equivalent in terms of ξadd; in the following
examples two different arrangements of dampers, widely diffused
in applications, are analyzed.

In the case of non-linear dissipative system with damping
exponent α, it is possible to exploit the equivalence condition
described above, but it is necessary to fix the properties of the
stochastic process Üg (t) at which the equivalent condition must
hold. Many times, the frequency contents are fixed and it is only
necessary to assign a scale factor related to the intensity level,
as in the following application where a Kanai-Taijmi process is
assumed and the scale factor of the power spectral density (PSD)

describing the process is calibrated according to the intensity of
the design action.

In order to assign the properties of the non-linear dampers,
the MDOF linear system obtained for the previous design
procedure is assumed as the equivalent linear system and the
variance of the relative velocity at each story σ1u̇j

is evaluated by

using the numerical procedure described inAppendix A, starting
from the PSD of the input.

At this point, the constants of the non-linear dampers
ensuring an equivalent response for the assumed input intensity
can be obtained from Equation (20).

cNLd,j = λc̃d0,j

√
2π

21+
α
2 Ŵ

(

1+ α
2

)

σ α−1
1u̇j

j = 1 : n (20)

APPLICATION EXAMPLES

In this section, the proposed design method for the dampers
is applied with reference to a case study, involving two planar
structures of different story number. Parametric analysis is
conducted, both in the case of linear and non-linear dampers,
by varying the values of the viscous damping constants and
of the parameter α. Two different configurations of dissipative
connection are analyzed, the first one, defined as uniform
distribution, considers the installation of devices with equal
properties at all the stories of the lower building. The second
configuration involves the installation of a single damper at
the last floor of the lower structure. The response parameters
monitored, both in the MDOF system and in the reduced order
model, are the floor displacements, the absolute accelerations and
the dampers’ forces. Finally, the behavior of linear and non-linear
devices is analyzed for different levels of the seismic intensity, far
from the design condition.

Case Study and Seismic Input
Two coupled steel moment-resisting frame buildings with shear-
type behavior are considered as case study in this application
example (Figure 1). The properties of these buildings, assumed as
deterministic, are taken from (Tubaldi et al., 2014). Building A is
an 8-story frame with constant floor mass,mA = 454,540 kg, and
stiffness, kA = 628,801 kN/m. Building B is a four-story building
with constant story mass, mB = 454,540 kg, and stiffness, kB =
470,840 kN/m. The story heights are equal to 3.2m. Matrices CA

(with dimensions 8× 8) andCB (with dimensions 4× 4) describe
the inherent buildings’ damping. They are based on the Rayleigh
model and are obtained by assuming a damping factor ζA = ζB
= 2% for the first and last fundamental vibration modes of each
system. The fundamental vibration periods of building A and B
are TA = 0.915 and TB = 0.562 s, respectively.

The two degrees of freedom reduced order model
corresponding to the adjacent buildings has the following
properties: mA = leff ,A = 3113.9 kNs2/m, mB = leff ,B = 1624.4

kNs2/m, kA = 1.4669·105 kN/m, kB = 2.0295·105 kN/m, cA =
854.91 kNs/m, cB = 726.28 kNs/m.

The stochastic seismic input considered in all the examples is
modeled as a stationary Gaussian process whose PSD function is

Frontiers in Built Environment | www.frontiersin.org 5 March 2020 | Volume 6 | Article 25

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tubaldi et al. Dissipative Coupling of Adjacent Buildings

FIGURE 2 | Input ground motion: (A) PSD function of the seismic input process, and (B) relation between S0 and PGA.

described by the widely-used Kanai-Tajimi model (Kanai, 1957;
Tajimi, 1960) i.e.,

SKT (ω) = S0 ·
ω4
g + 4 · ξ 2g · ω2 · ω2

g
[

ω2
g − ω2

]2
+ 4 · ξ 2g · ω2 · ω2

g

(21)

in which: S0 is the amplitude of the bedrock excitation
spectrum, modeled as a white noise process; ωg and ζ g are the
fundamental circular frequency and the damping factor of the
soil, respectively. The following values of the parameters are used
hereinafter: ωg = 12.5 rad/s, ζ g = 0.6.

Figure 2A shows the PSD function for S0 = 1 m2/s3 whereas
Figure 2B shows the relationship between the parameter S0 of the
Kanai-Tajimi spectrum and the average peak ground acceleration
(PGA) at the site. This relation has been assessed empirically
based on the procedure reported in Tubaldi et al. (2012).

Fluid Viscous Dampers Design
The dissipative system is designed by using the procedure
described above. Two different arrangements of dampers widely
diffused in applications are considered. The first refers to a
uniform distribution of dampers with equal properties placed,
connecting the first four floors of building A and B. In this case
the shape of the damper distribution is described by c̃d0,j = 1 and
the viscous constants are:

cd0,j =
2mBωBξadd
ndof B
∑

j=1
ϕ2
B,j

(22)

The second configuration, instead, corresponds to a single
damper placed between the fourth floors of building A and B,
where the velocities are expected to be the highest. In this case
the shape of the damper distribution is described by c̃d0,j = 0 for
j = 1 : 3, c̃d0,4 = 1 and the viscous constant at the forth level is:

cd0,4 =
2mBωBξadd

ϕ2
B,4

(23)

The amount of added damping used for the dampers’ design is
ξadd = 0.10, applied to the shorter building B (the expected value

of the total damping is ξ = 0.12, being ξ = 0.02 the amount of
inherent damping).

According to the MDOFs, for the case with four dampers, the
design damping constant of each device from Equation (22) is
cd0,j = 1016.0 kNs/m; for the case of the single damper at the
fourth floor the viscous damping constant from Equation (23)
is cd0,4 = 2357.50 kNs/m.

In the case of non-linear dissipative system with characteristic
parameter α, the equivalence condition is applied with reference
to the stationary input describing the design seismic input
(PGAref = 0.3 g).

The values of the coefficient cNL
d,j

of the equivalent linear

viscous dampers depend on the value assumed for the velocity
exponent α. Figure 3 shows the variation with α of the cNL

d,j
values

evaluated via Equation (16), for both the cases of dampers at each
floor with homogeneous properties (Figure 3A) and of single
damper (Figure 3B).

Modal Properties of the Systems With
Linear Dampers Before and After the
Coupling
Complex modal analysis of the two uncoupled and coupled
MDOF adjacent buildings is carried out and the relevant results
are summarized in Table 1, in terms of modal vibration periods
and damping factors. As expected, the coupled buildings are non-
classically damped and tend to vibrate together, as a single system.
However, because of the low added damping, the vibration shapes
for each of the composite vibration modes are such that the
displacements of a building prevail over the displacement of the
other building, and thus pertinent modal shapes can be identified
for each building (labeled as A if the modal displacement of A
prevails, as B otherwise).

It is observed (Table 1) that the addition of viscous dampers
does not significantly affect the vibration periods of the systems,
whereas it increases significantly the modal damping factor. The
increase of damping, more relevant for building B (the shorter
structure), is significant only at the lower vibration modes.
Moreover, the effects on the system dynamic properties are
comparable between the two considered dampers configurations
(single and uniform).
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FIGURE 3 | Design equivalent viscous coefficients for non-linear dampers vs. damper exponent α : (A) Dampers at each floor with homogeneous properties, (B)

Single damper.

TABLE 1 | Modal analysis results for uncoupled buildings (subscript “0”) and coupled buildings (subscript “d”).

Mode Uncoupled buildings MDOF Coupled with uniform dampers MDOF Coupled with single damper

T0 [s] ζ0 [–] Td [s] ζd [–] Td [s] ζd [–]

A B A B A B A B A B A B

1 0.915 0.562 0.0200 0.0200 0.909 0.563 0.0532 0.1226 0.907 0.562 0.0589 0.123

2 0.309 0.195 0.0113 0.0148 0.310 0.194 0.0455 0.0599 0.309 0.195 0.0304 0.0447

3 0.189 0.127 0.0121 0.0176 0.191 0.127 0.0175 0.0406 0.190 0.128 0.0145 0.0251

4 0.140 0.104 0.0140 0.0200 0.140 0.104 0.0282 0.0386 0.140 0.114 0.0271 0.0174

Response Statistics Assessment at the
Dampers Design Conditions
In the following, the performance of the MDOF coupled system,
assumed as reference solution, is compared with the one of
the non-classically damped reduced order model. The reduced
order model equipped with linear dampers is characterized by
the following damping matrix components. For what concerns
the buildings coupled with dampers uniformly distributed along
the first four floors one has 2ξAmAωA + ϕAud

TCd0ϕAud =
2321.2 kNs/m, 2ξBmBωB + ϕBud

TCd0ϕBud = 4357.5 kNs/m,
and ϕAud

TCd0ϕBud = ϕBud
TCd0ϕAud = 2299.6 kNs/m.

For the case of a single damper at the fourth floor, instead,
the damping parameters are 2ξAmAωA + ϕAud

TCd0ϕAud =
2579.6 kNs/m, 2ξBmBωB + ϕBud

TCd0ϕBud = 4357.7 kNs/m
and ϕAud

TCd0ϕBud = ϕBud
TCd0ϕAud = 2502.6 kNs/m.

In the case of dampers at each floor, the damping factors for
the first two modes of the coupled buildings are, respectively,
ξA = 0.0535 and ξB = 0.121, in very good agreement
with the corresponding values evaluated by considering the
refined MDOF model (Table 1). In the case of a single damper
connecting the two buildings, the corresponding damping factors
for the first two modes of the coupled buildings are, respectively,
ξA = 0.0595 and ξB = 0.121, again in very good agreement with
the corresponding values evaluated by considering the refined
model (Table 1).

Figure 4 compares the root mean square (RMS) stationary
response (i.e., the standard deviation of the response) of both
the uncoupled and coupled buildings with uniform dampers
subjected to the seismic input described in the previous section.

Figure 5 compares the response for the buildings coupled by a
single damper. The comparison is made in terms of RMS of floor
displacements (Figures 4A, 5A), floor absolute accelerations
(Figures 4B, 5B) and relative displacements between the first
four floors (Figures 4C, 5C), which are demand parameters
particularly useful to describe the effectiveness of the dissipative
coupling strategy in improving the performance of the buildings.
Moreover, Figures 4C, 5C show the relative displacement
demands between the first four floors of the adjacent buildings,
which is the parameter controlling the pounding probability.

In general, it is observed that the dampers are effective
in reducing the displacement and acceleration response of
both the buildings, as well as the relative displacements. The
displacement response of building B is more damped than that
of building A, as expected from the results of modal analysis
of the coupled buildings. Similar trends are observed for the
acceleration responses. Finally, it is noted that the reduced order
model provides accurate estimates of the response in terms
of displacements, being the responses of the 2SDOF model
very close to those corresponding to the refined MDOF model.
Higher deviations are observed between the responses in terms
of RMS acceleration.

Figure 6 compares the RMS forces of the dampers. For
the uniform dampers configuration (Figure 6A) these forces
increase with increasing building height, because the absolute
and relative velocities of the two buildings increase along the
height. Again, a very good agreement is observed between the
estimates of the reduced order and the refined model. For the
case with single damper (Figure 6B), the agreement between the

Frontiers in Built Environment | www.frontiersin.org 7 March 2020 | Volume 6 | Article 25

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tubaldi et al. Dissipative Coupling of Adjacent Buildings

FIGURE 4 | RMS displacement (A), acceleration response (B), and relative displacement (C) of the uncoupled and coupled buildings with uniform dampers,

according to the refined model (MDOF) and the reduced order model (2SDOF).

FIGURE 5 | RMS displacement (A), acceleration response (B), and relative displacement (C) of the uncoupled and coupled buildings with single damper, according to

the refined model (MDOF), and the reduced order model (2SDOF).

FIGURE 6 | Comparison of RMS damper forces according to the refined model (MDOF) and the reduced order model (2SDOF): (A) Case with uniform dampers; (B)

Case with single damper.

results from the reduced order and the refined model is very
good, too.

Furthermore, it is observed that, for a given level of added
damping ratio, the sum of the forces experienced by the dampers
placed according to the uniform distribution is much lower than
the force of the single damper placed at the top floor of building
B. This result has important effects on the costs of the retrofit

strategy, being the damper cost strictly related to the damper
force (Altieri et al., 2018).

Parametric Study and Response Statistics
Assessment
The following subsections analyses the stochastic response
sensitivity to the following parameters: the viscous coefficients

Frontiers in Built Environment | www.frontiersin.org 8 March 2020 | Volume 6 | Article 25

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tubaldi et al. Dissipative Coupling of Adjacent Buildings

FIGURE 7 | Comparison between first two modes damping ratios evaluated by using different models: (A) case with uniform dampers; (B) case with single damper.

cd0,j and cd0,4, the velocity exponent α, and the seismic
input intensity.

Influence of the Viscous Coefficient
In this section, a parametric study is carried out to evaluate the
effectiveness of the dampers in mitigating the building stationary
responses to the previously described seismic input. This study
also permits to assess the accuracy of the reduced order model
for different damper properties. For this purpose, the value of the
viscous coefficients cd0,j and cd0,4 is varied in a range between 0.0
and 5,000 kNs/m.

Figure 7 plots and compares the damping ratios of the
first two modes of the coupled system (corresponding to the
modes of building A and B, respectively) for the following
three different models: (1) the refined model (MDOF), (2)
the reduced order model (2SDOF) with CMA, and (3) the
2SDOF model with the approximation introduced by Equation
(15) (i.e., neglecting the off-diagonal terms). Curves related to
building A are shown in red, those of building B in blue;
solid, dashed and dotted styles are used to distinguish the
results concerning the MDOF, the 2SDOF and the approximated
approach, respectively. It is worth noting that the estimates
obtained by using the refined model are exact, thus they are
assumed as reference solution.

In general, it is noted that the addition of viscous dampers
between the two adjacent buildings increases the damping factor
of the second vibration mode, related to building B, rather than
that of the first mode, related to the vibration of the building
A. It is also observed that the three models provide equivalent
results for low values of the added damping. For high values
of cd0,j and cd0,4, the two modal damping factors evaluated by
applying complex modal analysis on the 2DOF model are still
quite accurate (in particular for Building A vibration mode),
whereas the damping factors evaluated by applying Equation
(14) become very inaccurate for increasing values of cd0,j and
cd0,4. Similar results were observed in the works (Tubaldi et al.,
2014) and (Tubaldi et al., 2012). A better agreement among

the estimates of the different models is observed when a single
damper configuration is used (Figure 7B).

The parametric study is also extended to evaluate the
stochastic response in terms of buildings’ displacements
(Figures 8A,C) and damper forces (Figures 8B,D).

With reference to the arrangement with uniform dampers, it
is observed that:

• For both the buildings, there exists an optimal value of
the damping constant cd0,j that minimizes the displacement
response. For values of cd0,j higher than 1,500 kNs/m
the displacement response of building B does not change
significantly, while for the building A this happens for values
of cd0,j higher than 3,000 kNs/m.

• The dampers force always increases for increasing values
of cd0,j, although the relative velocities between the two
buildings reduce.

• The reduced order model provides very accurate estimates of
the building displacement response and of the damper forces
for a wide range of damper properties. Its accuracy slightly
decreases for increasing cd0,j values.

Influence of the Damper Non-Linearity
A second parametric study is performed by considering the case
of non-linear viscous dampers connecting the two buildings in
the same configurations already analyzed before, i.e., uniform
distribution with equal properties at the first four floors and a
single device at the last elevation of building B. The values of the
dampers viscous constants, cd0,j and cd0,4 are varied in the range
between 0 and 5,000 kNs/m. The discrete values of the damper
exponent considered are α = 0.3, 0.5, 0.7, and 1, this latter for
comparison purpose only. The optimal damping constant for
building A and B are summarized in Table 2. Figure 9 reports
the stationary response in terms of building top displacements
and forces of the damper at the fourth floor for different values of
cd0 and of α.

The optimal damping constant for building A and B are
summarized in Table 2.
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FIGURE 8 | Stationary response vs. damping viscous constant: (A) Top-floor displacement of building A and B (uniform dampers case), (B) Damper forces (uniform

dampers case), (C) Top-floor displacement of building A and B (single damper case), (D) damper forces (single damper case).

TABLE 2 | Optimal damping constants for different α values and corresponding RMS building top displacements and 4th story damper force.

Optimal cd0,j [kNs/m] RMS displacements [m] RMS damper force [kN]

α A B A B A B

Uniform dampers 1 3,100 1,700 0.0392 0.0161 495.8 359.6

0.7 1,800 1,100 0.0394 0.0160 442.2 336.6

0.5 1,300 800 0.0396 0.0160 446.4 318.1

0.3 900 600 0.0397 0.0159 427.6 310.1

Single damper 1 5,500 3,500 0.0380 0.0168 912 750

0.7 4,200 2,400 0.0379 0.0168 1,050 748

0.5 3,050 1,900 0.0379 0.0168 1,052 760

0.3 2,200 1,400 0.0379 0.0168 1,100 730

In Figures 9A, 10A it is observed that the optimal damper
viscous constant reduces significantly for decreasing α values
and that the RMS displacements at the optimal damping
constant value are practically insensitive to the exponent α

(Table 2). Thus, if the properties of the non-linear viscous
dampers are appropriately calibrated, the same performance in

terms of response reduction of the linear viscous dampers can
be achieved.

The results reported in Figures 9B, 10B show that, for a given
cd0,j value, the damper force increases for decreasing α values.
However, the damper forces at the optimal cd0,j values evaluated
for the different exponents α are comparable (Table 2) and
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FIGURE 9 | Stationary response vs. damping viscous constant cd0,j for different α values: (A) Top-floor displacement of building A and B, (B) 4th floor damper force.

Case with uniform dampers.

FIGURE 10 | Stationary response vs. damping viscous constant cd0,4 for different α values: (A) top-floor displacement of building A and B, (B) 4th floor damper force.

Case with single damper.

reduce only slightly for increasing α values. Thus, the non-linear
viscous dampers with optimal properties exhibit a performance
similar to the linear viscous dampers with optimal properties also
in terms of damper forces.

Influence of the Seismic Intensity
In order to compare the efficiency of the dampers, the seismic
response corresponding to the optimal damper properties
obtained for building B for the different α values and for PGAref

= 0.3 g, is evaluated by considering different seismic intensities,
as described by the PGA (Figure 11).

The buildings coupled by the dampers with different
exponents exhibit comparable displacement responses for
the various seismic intensities considered. In fact, the top
displacement responses of building A and B tend to increase only
slightly for increasing damper non-linearity (i.e., for decreasing
α values). On the other hand, the damper forces reduce
significantly for decreasing α values and for PGA values higher

than the reference design value PGAref = 0.3 g. This result is
extremely important because the viscous damper costs depend
on the design force rather than on the viscous constant (Tubaldi
and Kougioumtzoglou, 2015; Altieri et al., 2018).

CONCLUSIONS

In this paper, the seismic response of adjacent buildings
connected by fluid viscous dampers is analyzed. A simplified
dampers design strategy is proposed, which relies on a
linearized reduced order model of the coupled system. A
stochastic linearization technique is adopted with the aim of
extending the design method to non-linear viscous dampers.
The effectiveness of the design method and of the coupling
strategy is assessed via numerical analysis of two adjacent
buildings with shear-type behavior connected by linear or non-
linear viscous dampers and subjected to Gaussian stochastic
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FIGURE 11 | RMS response for increasing seismic intensities: (A) top-floor displacement of building A and B (uniform dampers case), (B) 4th floor damper force

(uniform dampers case), (C) top-floor displacement of building A and B (single damper case), (D) 4th floor damper force (single damper case).

base acceleration. Among the possible damper arrangements
consistent to the target amount of added damping, two limit
configurations are analyzed, consisting of: a uniform distribution
along the height; a single damper at the last elevation of
the shorter building. The performance of the coupled system
is investigated by considering different response parameters
including buildings’ displacements and accelerations as well as
dampers’ forces.

The outcomes of this study show that the reduced order
model provides accurate estimates of the building displacement
response and of the damper forces for a wide range of damper
properties. Its accuracy slightly decreases for increasing values of
the viscous constants.

For what concerns the use of linear dampers, the following
conclusions can be drawn:

- The use of dampers to connect the adjacent buildings can
improve significantly the performance of both the buildings.

- An optimal value of the damping constant exists for both the
buildings and minimizes the displacement response.

- The dampers force always increases for increasing values of the
viscous constant, although the relative velocities between the
two buildings reduce. The increase of the root mean square
force is less than linear for both the cases of uniform dampers
and single damper.

- Linear viscous dampers are more effective in damping the
displacement response for seismic intensities higher than the
reference seismic intensity, at the expense of significantly
increased damper forces.

For what concerns the use of non-linear devices, it is
concluded that:

- The configuration with a single damper placed at the fourth
floor provides forces that are notably lower than the sum
of the forces of the fourth viscous damper employed in the
alternative arrangement. This result has important effects on
the optimization of the costs associated to the retrofit of
adjacent buildings with viscous dampers.

- The optimal damper viscous constant reduces significantly
for decreasing α values and the displacement response in
correspondence of the optimal damper constant value are
insensitive to the exponent α. Thus, an appropriate calibration
of the non-linear dampers provides the same performance
in terms of seismic response reduction as for the case with
linear devices.

To conclude, it is worth noting that the proposed damper
design method is valid for a wide range of ωB/ωA ratios,
however the results presented in this study may quantitatively
change by varying the features of the buildings. More
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precisely, the efficiency of the coupling strategy diminishes
for systems with similar fundamental vibration periods,
because of the in-phase dynamic motion experienced by
the buildings.

Future developments of this work should also aim to assess
the effectiveness of the dynamic coupling for mitigating seismic
pounding hazard.
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