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Research was conducted on the quasi-static in-service evaluation and long-term

monitoring of bridge bearings through a field case study. The challenge with assessment

of bearings, in their current state, is that the visual appearance is not a sufficient indicator

of performance. In addition, bearings are difficult to monitor long-term in many cases

due to their complex non-linearity. The motivation for evaluation and monitoring of

these components is that they are critical to the long-term performance of bridges,

particularly those with long-spans. At the service level, bearings accommodate thermal

movements along with those from live load and wind effects. For extreme events,

such as earthquakes, they dissipate energy and reduce the transfer of force into the

superstructure. For the presented study, two primary objectives were established. The

first was to evaluate the case study bridge bearings in their present state under service

loads. Physics-based methods were evaluated using equilibrium and thermoelasticity.

The second objective was to identify a long-term monitoring baseline. Artificial neural

networks (ANNs) were explored due to the non-linear behavior present at two of the

bearings. An ANN was trained with temperature changes to predict longitudinal bearing

movement. The overall study illustrates potential techniques (with their limitations) for

in-service evaluation and/or long-term monitoring of bridge bearings that have been

assessed with structural health monitoring data.

Keywords: bridge, bearings, structural health monitoring, thermal, displacement, strain, artificial neural networks,

field testing

INTRODUCTION

Bearings are critical components within the movement systems of most bridge structures.
The objective of bridge bearings are to release or restrain different translational or rotational
movements. These movements occur at different rates and are induced from different sources. For
example, thermal variations induce gradual movements. If the bridge does not accommodate these
movements, it typically results in degradation of the structure. On the other hand, seismic ground
motion induces rapid movements in the bridge bearings. In this case, the inability of the bearings
to perform under this movement can induce permanent damage or even result in failure of the
structure. In the United States, visual inspection has been the primary source of information to aid
bridge owners in the assessment of bearings since the inception of the National Bridge Inspection
Standards over 40 years ago (FHWA, 2001). Since bearings are a time-dependent mechanism,
they are difficult to assess with bi-annual visual inspection, which is still the federally mandated
minimum inspection interval.
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Recently some bridge owners have turned to technology
driven solutions like Structural Health Monitoring (SHM) as a
complement to traditional visual assessment. The overall goal is
to provide faster and more accurate information to allow for pro-
active maintenance and preservation of structural systems. SHM
applications come in several forms that are typically based on
the objectives of themonitoring, type of structure, environmental
conditions, potential hazards, etc. The SHM may be quasi-static
based and/or dynamic-based, which typically track the structures
behavior as a result of live load, wind load, seismic acceleration,
and so on. For successful SHM at least four criteria need to
be considered (so called levels of SHM): existence (detection),
localization, extent, and prognosis of structural impairment
(Rytter, 1993). For SHM of bridges all four levels are yet to be
reliably achieved.

The most common general SHM approach for long-span
bridges is the use of ambient vibration monitoring (Fujino
et al., 2000; Zhu et al., 2003; LeDiourion and Hovhanessian,
2005; Li et al., 2006; He et al., 2008; Ko et al., 2008; Cruz
and Salgado, 2009; Soyoz and Feng, 2009; Brownjohn et al.,
2010; Wong, 2010; Gangone et al., 2011). This methodology
provides an overall characterization through tracking the modal
parameters of the structure. Long-term vibration monitoring
suffers some widely recognized drawbacks (Catbas et al., 2007;
Brownjohn et al., 2011). First, the small signal-to-noise ratio is
a significant problem with vibration-based techniques due to
the effect of varying environmental conditions on the modal
parameters, masking effects of structural changes (Cornwell
et al., 1999; De Roeck, 2003). Second, they require significant
data processing and storage requirements. Additional important
weaknesses include the unknown nature of the inputs (e.g.,
loads), that are assumed as wide-banded white noise, predication
on modal theory assumptions (e.g., linearity, stationarity, etc.),
and small signal-to-noise ratio in the case of localized damage.
The two former shortcomings are gradually being mitigated
by advances in technology (Moser and Moaveni, 2011; Mosavi
et al., 2012; Kostić and Gül, 2017). However, the latter will
persist as they are associated with fundamental assumptions
of the method itself. In particular, the unknown nature of
the inputs along with low signal-to-noise ratio in the event
of damage represent important challenges in many other
SHM approaches.

To address these challenges, researchers have studied quasi-
static methods, some of which utilize temperature-driven data
(Cao et al., 2011; Kulprapha and Warnitchai, 2012; Gaoxin
and Youliang, 2015; Kromanis et al., 2015; Yarnold and Moon,
2015; Kromanis and Kripakaran, 2016; Reilly et al., 2016;
Yarnold et al., 2016; Xia et al., 2017). This is because the
temperature variations are measurable inputs that result in
significant changes in the structure (e.g., they generate large
strains and displacements), and thus provide high signal-to-noise
ratios in the case of localized damage. In addition, a temperature-
driven baseline has shown to be highly sensitive, resulting in
the potential for increased identification of structural changes
(Yarnold andMoon, 2015). One of the main drawbacks, however,
is the complexity of thermal behavior, which can yield non-
linear responses.

A common component among all SHM approaches, trying
to achieve the four SHM levels mentioned above, is the
establishment of one or multiple baselines of “normal” behavior,
which is then used to identify future anomalies (or outliers),
potentially as a result of damage. Detection of potential damage
is arguably the most critical of the four criteria because without
this, none of the other criteria can be achieved. Therefore,
motivation for this paper stems from the inability of many SHM
approaches to track a baseline (or signature) of the structure that
is sufficiently sensitive to realistic changes to bridge bearings.

The scope of the presented study focuses on quasi-static
methods for in-service evaluation and long-term monitoring of
bridge bearings. Methods were researched through a case study
using real SHM data. The initial phase focused on evaluation
in the present condition under service loading. Physics-based
techniques were developed utilizing fundamental principles such
as force equilibrium and thermoelasticity. Then, these techniques
were implemented for the case study and conclusions were drawn
about the techniques themselves and the structure. The latter
phase of the study aimed to identify an accurate baseline for
potential use in a long-term SHM system. The highly non-
linear bearing behavior at select locations led to the study of
non-physics based methods. A technique was researched which
utilized artificial neural network training with thermal variations
to predict bearing displacements. This technique was tested with
real data and compared to a conventional SHM baseline.

QUASI-STATIC BEARING EVALUATION
AND MONITORING

Physics-Based In-Service Bearing
Evaluation
A variety of approaches have been conducted utilizing physics-
based methods for evaluation of bearings (McDonald et al.,
2000; Dubbs et al., 2010; Yang et al., 2010; Yarnold and Dubbs,
2015). The value of these methods is that they typically provide
readily understood information for practicing engineers that
are more valuable than visual techniques since bearings are
time-dependent mechanisms. This increases the potential for
application. The authors researched two general approaches,
which are explained below and later evaluated with real SHM
data from the case study bridge.

Background on Thermal Behavior
The bearing evaluation concepts researched in the presented
study take advantage of the fundamental relationship between
temperature changes and structural movements/deformations.
This temperature-driven relationship can be utilized for in-
service bridge evaluation along with a long-term SHM baseline.
Figure 1 graphically illustrates the overarching approach
(Yarnold, 2013).

Prior to presenting the research concepts and findings,
background on thermal behavior of structural systems is
discussed. The intent is to show the direct correlation between
support stiffness and thermal member forces. In addition,
the two different components of displacement (restrained and
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FIGURE 1 | Temperature-driven bridge evaluation and monitoring approach.

FIGURE 2 | (A) simple span beam with a longitudinal spring, (B) beam without spring support, (C) total deformation due to uniform temperature change, and (D)

restrained deformation due to spring force (shown in the negative direction).

unrestrained) are to be clearly defined. To easily convey this
behavior, consider a simple beam with a flexible longitudinal
support at one end (Figure 2A). To determine the stress
resulting from a uniform temperature change (1T) a statically

indeterminate problem results. The solution can be obtained
using superposition. The spring is removed and then applied
as the redundant reaction. First, consider the member without
the spring support (Figure 2B). The unrestrained deformation
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(δT) can be calculated as show in Equation (1) (corresponding
to Figure 2C), where α and L are the coefficient of thermal
expansion and member length, respectively.

δT = α (1T) L (1)

The redundant force provided by the spring (Fs) is applied and
the corresponding deformations can be identified (Figure 2D).
This spring force is equal to the spring stiffness (ks) multiplied by
the unrestrained deformation (δU). The restrained deformation
(δR) can be calculated from Equation (2), where Am and E
are the cross-sectional area of the member and modulus of
elasticity, respectively.

δR =
FSL

AmE
(2)

From Figure 2D, the portion of deformation that produces
stress and strain can be observed. The unrestrained deformation
(δU) produces strain without stress. However, the restrained
deformation (δR) produces stress without strain. Therefore, the
resulting thermal stress (σT) can be calculated from Equation (3)
with εm representing the mechanical (or restrained) strain. Note
the spring force and resulting axial stress is compressive for a
positive ∆T (tensile for a negative ∆T).

σT = Eεm =
Fs

Am
(3)

The study presented herein builds on these fundamental
relationships to develop and implement several evaluation and
monitoring methods focused on bridge bearings.

Force Equilibrium Concept
Measurements can be taken at appropriate locations on a
structure such that equilibrium can be used to evaluate and
monitor bridge bearings (Yarnold and Dubbs, 2015). The overall
concept is tomeasure the change in deformations of themembers
framing into the bearing, which can be used to back-calculate the
change in member forces. The horizontal components of these
member forces are then used with force equilibrium to identify
the restraining force of the bearings. This restraining force can
be compared to the original design drawings (if available) or
reasonable estimates based on the structure.

To apply this method the appropriate sensing technology
and instrumentation setup will depend on a number of factors.
Stable sensing technology must be used. Measurements cannot
drift over time so that adequate data sets are acquired (typically
weeks to months). In addition, the equipment must be durable to
withstand environmental effects and record reliable information.
Fiber optic or vibrating wire sensors are adequate alternatives
(Zalt et al., 2007).

The instrumentation setup must be able to obtain
measurements that allow for back-calculation of the change in
member forces. Typically, member deformations are measured
using strain gages along with thermistors for temperature
readings. The configuration of the sensors should allow for
a free-body slice of the structure. Figure 3 illustrates general

alternatives for two common bridge types (girder and truss).
In Figure 3A, the intent is to measure the vertical strain profile
and temperature gradient near the support of a girder bridge.
Therefore, the induced axial deformation and curvature can be
captured. As a result, the extent of any restrained translation
and/or rotation can be obtained. For primarily axial members,
such as those within trusses, a setup like that shown in Figure 3B

is recommended.
The number of sensors per member cross-section is critical.

Local member level gradients can be induced in the bridge
members. It is recommended to provide four sensors, as shown in
Figure 3C, to capture bending of the member in both directions.
This information may not be required in all studies. However,
one additional advantage is the redundancy of the measurements
in that member allowing for easier data interpretation in
the event one sensor is performing inadequately. If resources
cannot support four sensor per member-cross section, then at
a minimum two sensors, as shown in Figure 3D, should be
provided. This setup allows for the capture of bending in one
direction. Nonetheless, with the sensors placed at the neutral axis
the measurements will not be affected for bending in the other
direction. In either setup, the measurements can be averaged to
identify the change in member axial component.

Thermoelasticity Concept
For expansion bearings a method is presented that uses the
fundamentals of thermoelasticity. The overall concept is to
measure temperature changes along with the corresponding
longitudinal bearing movements. The movement of expansion
bearings should correlate with temperature change. Therefore,
measurement of the longitudinal movement of the bearings
along with the ambient temperature provides the input-output
relationship needed to compare the theoretical movement
with reality.

The theoretical movement of bridge expansion bearings (δT)
can be calculated from Equation (1). Rearranging terms produces
Equation (4). The left side of the equation is field identified and
compared to the right side, which is the product of a material
property and a geometric property.

δT/∆T = α·L (4)

The coefficient of thermal expansion (α) for steel and concrete
is well-understood. In cases where this parameter is uncertain,
material property testing can be performed to determine precise
values. The unrestrained length of the bridge (L) is typically
identified from the layout of the structure. The confidence is
further improved by measuring movement at multiple locations.
For example, consider a two-span continuous bridge with a fixed
center pier and expansion abutments. The thermal neutral point
(location where no temperature-induced movement occurs)
should be at the pier, if all movement systems are functioning.
Measurement of the movement at both ends of the bridge (as
opposed to just one end) allows for more accurate identification
of the thermal neutral point and resulting L values.
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FIGURE 3 | Free-body slice general illustrations for (A) Girder bridges or (B) Truss bridges and the potential sensor cross-section layouts for a truss member using a

(C) detailed option and (D) less refined option.

Non-physics Based Long-Term Bearing
Monitoring for Damage Detection
As mentioned earlier, to achieve the four levels of SHM, a reliable
baseline must be established to track “normal” behavior with
time. This baseline can then be used for detection of anomalies,
which are potentially as a result of structural damage. Identifying
a sound baseline can be complex due to the highly non-
linear behavior of constructed bridge systems. As a result, many
non-physics based approaches have been used for monitoring
bridges. The method for bearing assessment presented herein
utilizes artificial neural networks (ANNs); however, many other
algorithms could be applied.

Background of Bridge Monitoring using ANNs
ANNs are computing systems that emulate the information
processing within the human brain. The primary components of
ANNs are the processing elements (referred to as neurons) and
the interconnection between these neurons. These connections
have different strengths called weights, which are obtained
through adaptive learning. This is achieved through an iterative
input-output mapping process (Haykin, 1999). During this
learning process, the weighted connections between neurons
are modified by using optimization algorithms according
to specific properties of the learning scheme. This allows
ANNs the capability to model complex input-output functional
relationships with general non-linear mapping capacity.

Researchers have investigated the use of ANNs for monitoring
and damage detection of bridges. Earlier work performed by
Pandey and Barai (1995) included numerical simulation studies
of a simple truss bridge (Pandey and Barai, 1995). Damage
scenarios included members simulated with a reduction in
stiffness. Further numerical simulation studies of damage to
truss joints (Mehrjoo et al., 2008) along with beam and frame
structures (Zhao et al., 1998) using ANNs have been conducted.
In these studies, the primary parameters used for damage
detection were modal properties (frequencies and mode shapes).
These studies did not include environmental effects. Recent
research has focused on compensation of environmental effects
using ANNs. The focus has been on the relationship between
temperature and modal parameters (Ko and Ni, 2005; Li et al.,
2010; Zhou et al., 2011). Kostić and Gül (2017) developed
a generalized framework for damage assessment accounting
for temperature effects by using output-only vibration and
temperature data using ANNs (Kostić and Gül, 2017).

ANN SHM Baseline Concept
The chosen approach for bearing monitoring was to train an
ANN using local temperature changes as the input layer along
with global structural deformations (longitudinal displacement)
as the output layers (Figure 4A). Supervised neural networks
can be trained to produce desired outputs in response to sample
inputs, making them particularly well-suited for modeling and
controlling dynamic systems and predicting future events. The
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FIGURE 4 | (A) Illustration of the multi-layer neural network and (B) illustration of the NARX model.

case study (presented in the following section) utilizes a dynamic
time series analysis with a non-linear autoregressive (NARX)
network. This allows for the prediction of a time series y(t)
from past values of itself (d) and from another time series x(t).
Figure 4B graphically illustrates the general NARX model.

Once the ANN is trained, it can be used to predict future
behavior (displacements in this case). These predictions can be
compared with future measured values to identify anomalies. A
damage index (DI) can be defined for automated detection. A
basic expression is presented in Equation (5), where yP(t) and
yM(t) are the ANN predicted and measured results at each time
step, respectively.

DI (t)=|yP (t)−yM (t) | (5)

There are benefits for this overall method. One benefit is the
ability to readily obtain the information required to train the
ANN and then compare with future measurements. Thermal
“loads” can be the most significant service level demands a bridge
experiences. Therefore, the responses of the structure can be
accurately measured. However, one of the biggest challenges with
these thermal measurements is that they can be highly non-linear
and difficult to predict. This is an advantage of using machine-
learning algorithms such as ANNs, since they have the capability
to “learn” complex non-linear behavior.

CASE STUDY BRIDGE

Hernando Desoto Bridge
The Hernando Desoto (HD) Bridge was utilized for the case
study. The main section of the structure is a 548m long, two-
span, steel through arch bridge. Originally built in 1973, the HD

Bridge is located in Tennessee, USA and carries Interstate 40 over
the Mississippi River connecting Memphis, Tennessee to West
Memphis, Arkansas. The structure supports six lanes of traffic
with an overall width of 28m and is a critical structure for the
region. Figure 5 shows the main section of the structure and
includes the pier labels.

In 2000, the Tennessee Department of Transportation
(TDOT) partnered with the Arkansas State Highway and
Transportation Department (AHTD) to retrofit the bridge for
a seismic event due to the New Madrid Fault system. The
HD Bridge lies on the southeastern end of the New Madrid
Seismic Zone, which is the most active seismic zone in the
Central United States. The seismic retrofit protects the bridge
from earthquakes with a moment magnitude of up to 7.7.
One of the critical aspects of the retrofit was bearing system
replacement with friction-pendulum isolation bearings. These
friction pendulum bearings lengthen the natural period of
the structure to help isolate the superstructure during any
ground acceleration and dampen the lateral forces created by
an earthquake. Due to the significant role the bearings have
on the structure’s seismic performance (and serviceability under
thermal variations), significant time and research was conducted
to evaluate the current behavior along with potential baselines for
long-term monitoring.

Case Study SHM System
An SHM system was installed along the HD Bridge to
provide TDOT with information for proactively maintaining the
structure along with actionable information after a seismic event.
Therefore, three main systems were installed. The first system
is a vibration-based seismic monitoring program maintained
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FIGURE 5 | Hernando Desoto (HD) bridge main spans (with Pier labels).

FIGURE 6 | General instrumentation layout at Pier A (Pier C similar).

by the University of Memphis, which includes a network of
accelerometers at 36 locations along the structure (Steiner
et al., 2006). The second system is a trigger-based non-contact
displacement monitoring system that will capture the movement
of the bearings in the event of seismic ground motion (Yarnold
et al., 2017). The third system is a quasi-static setup that measures
slow-speed strains of the members framing into the bearings,
the longitudinal movement of the bearings, and the temperature
changes. This quasi-static setup is the only portion of the SHM
system used for the case study and, as a result, is the only system
discussed further.

The instrumentation for the third system is concentrated at
Pier A (west end) and Pier C (east end) of the double arch
spans. The setup is the same at each location. Figure 6 graphically
illustrates the setup at Pier A and Pier C. Note that access to the
inside of the box-shaped members was restricted so the sensors
were mounted to the outer face, but along the inside (or roadway
side) of the member to avoid direct solar radiation effects.

Vibrating wire (VW) sensing technology is utilized for the
quasi-static system. Geokon Model 4420 sensors were selected
(including internal thermistors) to measure the longitudinal
displacements and temperatures (Figure 7). Geokon Model 4000
strain gages were selected (including internal thermistors) for
measuring the member strains and temperatures. For all sensors,
a relatively fast sampling rate (for thermal monitoring) of once
every 5min was chosen and then smoothed using a 25-min
moving average during the future data processing stage. This
helps remove any isolated influence of heavy traffic response,
which is relatively small for a structure of this scale.

The data acquisition system for the project is from Campbell
Scientific (CR1000) and is located at Pier A. The data from Pier
C is collected and periodically sent to Pier A through a radio. At
select time intervals, radio interference disrupts the data transfer
and not all of the Pier C data is collected. Solutions to correct
this issue were explored but due to budget and access issues, it
was decided to proceed since the majority of the data (>75%)
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FIGURE 7 | Longitudinal displacement measurement setup.

is being transferred. A cellular modem is also located at Pier A
allowing the data to be wirelessly accessible offsite. Significant
internal memory and battery backup power is included in the
event communication and power are lost.

Installation of the SHM system was completed in 5 days with
the last day designated for quality controls checks. Throughout
the installation, TDOT provided lane closures to allow for the
use of their Aspen A-62 snooper truck for strain gage attachment.
These gages were epoxy mounted to the member surfaces. The
VW displacement gages were mounted to the surface of the
bearings and attached to a vertical bracket that was anchored
to the pier cap (Figure 7). Once all the sensors were attached,
cabling was performed for connection to the data acquisition
system, which was housed in a weatherproof enclosure at the
center of the pier cap. Further information regarding the SHM
system itself can be found under Yarnold et al. (2017).

In-Service Bearing Evaluation
Force Equilibrium Method Results
The force equilibrium approach was applied for the case study
bridge with the installation setup shown in Figure 6. The HD

FIGURE 8 | Example “stick-slip” behavior at the Pier A bearings.

Bridge bearing mechanism is intended to behave in a non-
linear cyclic pattern under service loads since it is a friction-
based system. Essentially the bearings do not move until the
static friction is overcome. Therefore, in the morning when the
structure begins to heat up, the bearing is in the “stick” position
until a temperature is reached which exerts a sufficient horizontal
force. The bearing then “slips” and continues to move until the
structure starts to cool. The movement in the other direction
during cooling works in the same manner. This mechanism
provides a unique signature for the structure that can be tracked
with time. Figure 8 illustrates the typical bearing displacement vs.
temperature relationship for 1 day of SHM data at Pier A. Note
that this behavior is consistent with other friction-based bearing
systems (Yarnold et al., 2015).

The short-term data was processed to identify the “stick”
subsets of response. For each of these time windows the change
in mechanical strains measured in each arch member were
collected. The strains were averaged, for each member, to obtain
the axial components. Then the axial mechanical strains (εm)
were converted to axial forces (F) using Equation (6), which is
simply Equation (3) reordered.

F = E·εm·AM (6)

This process allowed for identification of the axial forces for each
arch member framing into the bearings as shown in Figure 9.

Horizontal equilibrium was then used to determine the static
frictional force (FF) (Equation 7).

FF = FL + FD·cos(θ) (7)

Once this frictional force was obtained for each “stick” period it
was divided by the dead load reaction (provided by TDOT) to
obtain the coefficient of friction.

Pier A and Pier C were evaluated separately. Pier A was
evaluated first, which included the analysis of 24 “stick” periods
for both the upstream (US) and downstream (DS) bearings.
Table 1 shows a summary of the static frictional force results.
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FIGURE 9 | Free-body diagram at the arch bearings.

TABLE 1 | Pier A static friction results.

Upstream bearing Downstream bearing

Static friction force (FF)

Range (kN) 750–1,308 709–1,306

Mean (kN) 957 1,033

Standard Deviation (kN) 145 180

Coefficient of friction*

Range 0.04–0.07 0.04–0.07

Mean 0.05 0.06

Standard Deviation 0.008 0.010

*Note the design coefficient of friction was specified as 0.06.

The mean frictional force was slightly higher (8%) for the
downstream bearing along with a higher standard deviation.
The resulting mean coefficients of friction for the upstream
and downstream bearings were the same or below the design
(installation) value of 0.06. Table 1 also provides a summary of
the Pier A coefficient of friction results, which are still within the
original design specifications.

It was intended to repeat the analysis for the bearings at
Pier C. The arch bearings and installation setup at Pier C are
identical to those at Pier A. However, the measured data is very
different in nature. The order of magnitude of the displacements
is much lower. During the first month of recording, virtually no
appreciable displacements were observed. It was initially assumed
that the bearings at each end experience similar movement since
the two-span arch superstructure is symmetric.

An extensive assessment was conducted after reviewing the
first month of Pier C data. First, data quality was evaluated to
ensure the measurements were accurate. Then, an investigation
was performed to ensure the Pier C bearings were not “frozen.”
This was ruled out due to the minimal mechanical strains in the
arch members framing into the bearings. Therefore, the resulting
theory is that substructure movement is occurring (illustrated
in Figure 10). The supporting piers are relatively flexible. In

addition, the approach structures at each end of the arch spans are
not symmetric superstructure types and have different bearing
types. Therefore, the restoring longitudinal force provided by the
approach at Pier C is much less than at Pier A. As a result, in
many situations it is easier for Pier C to flex and/or rotate than it
is for static friction to be overcome in the bearings. The result
of this phenomenon is highly non-linear bearing longitudinal
displacement at Pier C. Further evaluation concluded that this
behavior is acceptable and is considered “normal” for this
particular structure. Note that movement of Pier A is also
possible. Though the data suggests it is relatively small.

Due to the non-linear response at Pier C it was concluded
the force equilibrium approach could not be applied. The
isolation of “stick” periods was inaccurate, which produced
unreliable results. Further measurements of the Pier C global
movement/rotation would be required. This clearly illustrates
a limitation of the method and the challenges associated with
long-term monitoring.

Thermoelasticity Method Results
The thermoelasticity approach was also applied for the case study
bridge. This was a challenge due to the non-linear behavior.
However, the long-term data sets were approximated as a linear
relationship. Ten months of average displacement vs. average
change in temperature data was used to identify the current
relationship. Another technique was to only utilize evening data,
minimizing thermal gradient effects, to capture near steady-
state response. This technique was considered sufficient through
analysis of the temperature data sets, which illustrated minimal
evening differential between the 16 measurements. In addition, a
comparison to a local weather station was performed. It should
be noted that some studies (particularly of concrete structures)
have shown this technique to not be valid (Reilly et al., 2016).

Pier A was evaluated and found <2% difference between the
theoretical and actual movement. The Pier A upstream (US) and
downstream (DS) bearings exhibited a 3.15 and 3.19 mm/◦C,
respectively. Figure 11 illustrates evening data over 10 months
along with a linear best-fit line. The theoretical behavior was
calculated as 3.21 mm/◦C. Overall, the Pier A results from the
force equilibrium and the thermoelasticity approaches indicate
adequate functionality of the bearings.

Pier C could not be adequately evaluated using the
thermoelasticity approach for similar reasons mentioned in the
prior section. The movement of Pier C itself made it unreliable
to use this method without further measurements of the Pier C
global movement.

Long-Term Bearing Monitoring
ANN SHM Baseline Assessment
Baselines for long-term monitoring and future damage detection
of the HD Bridge bearings were investigated using dynamic
time series analyses, which was performed utilizing the Matlab
neural network toolbox. The time series tool was chosen for the
capabilities to solve dynamic modeling and prediction problems.
As mentioned earlier, non-linear autoregressive exogenous
models (NARX) were utilized. This allowed for the prediction of
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FIGURE 10 | Illustration of the Pier C substructure movement.

FIGURE 11 | Displacement vs. temperature relationship over 10 months at (A)

Pier A upstream and (B) Pier A downstream.

a time series y(t) from past values of itself (d) and from another
time series x(t) (Figure 4B).

To train the ANN, the input/output thermal relationship was
utilized. The input to the system were the time series temperature
values for all of the 16 sensor locations. These 16 sensors include
the 12 member cross-sections instrumented. Figure 6 illustrates
the three arch members instrumented at each of the four corners
of the bridge. The remaining four temperature sensors were
located at each of the four displacement sensors. This provided
an overall distribution of temperature measurements.

The output was the corresponding longitudinal displacements
at each of the four bearings. The network was set with 10
hidden neurons and 2 time delays. Figure 12 provides the neural
network diagram (w indicates weight factor and b the bias).

The Levenberg-Marquardt method for algorithm training was
selected where a performance index is used to minimize the sum
of squares of errors, with optimizing parameter vectors. Note the
number of hidden neurons and time delays were selected from
a sensitivity study utilizing the training error data. Less hidden
neurons could have been utilized, however, processing time was
not an issues so it was not reduced.

Approximately 10 months of data was used for this study
with 85% selected for training. The training results were excellent
with very low mean square errors (9.2 × 10−6) along with near
one regression R values (correlation between the outputs and
targets). The remaining 15% was utilized for the evaluation of
the baseline for potential bearing damage detection. The more
accurate prediction capabilities could indicate higher probability
for identifying anomalies.

Prediction Study
A comparison of the predicted data verses the measured SHM
data using ANNs is presented in Figures 13A, 14A (time axis
denoted by the measurement record number). These figures
provide the upstream displacements at Pier A and Pier C,
respectively. The downstream results are not shown, but are very
similar. As mentioned earlier, radio interference disrupted data
transfer causing some data to be lost. This is the reason for
the gaps in the measured data presented in the figures. Notice
that despite gaps in the data the baseline still accurately predicts
the response.

To quantitatively evaluate the potential for anomaly detection
the rootmean square error (RMSE) was calculated. The RMSE for
Pier A upstream and downstream bearings were both 0.06mm.
The RMSE for Pier C upstream and downstream bearings were
both 0.04mm. To adequately identify damage the change in
baseline must be well outside the typical variability. Note that the
specific threshold values should be defined after rigorous analysis.

Comparison Study
To further assess the capabilities of the ANN SHM baseline,
a comparison was performed with a conventional service level
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FIGURE 12 | Neural network diagram for the case study.

FIGURE 13 | (A) Pier A measured and ANN predicted results and (B) Pier A measured and conventional SHM baseline results.
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FIGURE 14 | (A) Pier C measured and ANN predicted results and (B) Pier C measured and conventional SHM baseline results.

SHM baseline for bearings. One conventional technique for long-
term tracking of bearing movement is to utilize thermoelasticity
similar to that shown earlier. Equation (4) can be rearranged to
predict the displacements (δ) based on themeasured temperature
changes (1T) along with an estimated coefficient of thermal
expansion (α) and unrestrained length (L). For the case study
bridge α and L were taken as 1.17e-5 mm/mm◦C (provided by
the bridge owner) and 274m (assuming a thermal neutral point
at the center pier), respectively.

Predicted bearing movements were developed using the
conventional technique for the last 15% of measured SHM data
and compare to the ANN predictions. Localized temperatures
were used at each of the four bearing locations. A comparison of
the Pier A upstream results is provided in Figure 13B. It can be
seen that the general time history trends was matched. However,
comparing the DI values for the conventional technique with the

ANN baseline (shown in Figure 13A) quantitatively concludes
that the ANN baseline has significantly more accurate prediction
capabilities. For example, the DI range for the conventional
method was ±23mm where the ANN baseline was only
±0.4mm. The results for the Pier A downstream bearing were
consistent with the upstream results.

A comparison of the Pier C results was also performed.
Figure 14B provides the upstream conventional technique
predictions compared with those measured. In this case, even
more severe discrepancy was found. The order of magnitude
is substantially different. As mentioned earlier, it was identified
in the evaluation that Pier C itself is moving. Therefore, it
was not surprising that the conventional baseline provided poor
prediction. Essentially a mechanism was not being accounted
for. The purpose of showing the conventional technique for
Pier C is to further illustrate the necessity in this case study to
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utilize a non-physics based baseline (such as ANNs) and their
drastic improvement over conventional approaches (shown in
Figure 14A).

CONCLUSIONS

Bridge bearing mechanisms can be evaluated in-service and/or
monitored long-term using quasi-static measurements. This
was researched though a field case study of a long-span arch
bridge with friction-pendulum isolation bearings. The specific
case study findings for both evaluation and monitoring are
summarized below. In addition, general contributions of the
research are included.

In-Service Evaluation
Physics-based methods were evaluated to assess the current
bearing condition. This included two general approaches that
utilized force equilibrium and thermoelasticity. The equilibrium
methodology was able to identify the friction force both Pier
A bearings. They were found to still be within 8% of their
original design specified values and therefore considered to be
functioning properly. Conversely, the frictional force could not
be identified at Pier C due to the highly non-linear behavior
exhibited. This behavior was tracked to unique pier movement.
In general, the equilibrium methodology can be considered for
evaluation of bearings that behave in a linear or bi-linear manner.
However, thismethod should not be applied for highly non-linear
situations (such as the bearing at Pier C in the case study).

The thermoelasticity methodology produced consistent
results with the force equilibrium approach. The bearings at
Pier A were evaluated and exhibited <2% difference between
the theoretical and actual movement. Again, the Pier C highly
non-linear bearing behavior did not allow for evaluation.

Overall, the research contribution to the state-of-the-art is two
valid methods for in-service bearing evaluation. Currently, the
literature is limited on accurate in-service evaluation techniques,
particularly for friction-based systems. The presented research
illustrates the methods, evaluates them through a case study, and
provides the benefits and limitations of each.

Long-Term Monitoring
The limitations found with the in-service bearing evaluations
(due to highly non-linear behavior) led the research team to
explore non-physics-based methods to establish a baseline for
long-term monitoring. Artificial neural networks (ANNs) were

utilized with success. This was determined through comparison
with a conventional bearing monitoring baseline (using
thermoelasticity). The results from the Pier A bearings showed
a conventional damage index range (prediction capability) of
±23mm, whereas the ANN found only ±0.4mm. At Pier C, an
even larger disparity was found. In general, the study concluded
that the prediction capabilities of the ANN were excellent. The
comparative study between a conventional baseline with the
ANN baseline showed significantly higher potential for bearing
damage detection.

A unique aspect of the study was that an ANN was trained
using thermal “loads” to predict longitudinal displacement of the
bearings. Thermal demands are commonly the largest service
level response that can bemeasured and are sensitive to structural
changes. The presented research illustrates a viable method that
was evaluated through a challenging case study.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

All authors have contributed to the contents within this paper.
The primary research was conducted by JA during his graduate
studies. MY was JA’s advisor and contributed to this study
through the review of each research stage along with assisting the
field installation.

FUNDING

This material is partly based upon work supported by the NSF
under Grant No. CMMI-1434373.

ACKNOWLEDGMENTS

The authors would like to thank the Tennessee Department of
Transportation for their funding of this project. The authors
would also like to thank the University of Memphis for
their support and coordination of the field installation. In
addition, the authors would like to thank the National Science
Foundation (NSF). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

REFERENCES

Brownjohn, J. M. W., Magalhaes, F., Caetano, E., and Cunha, A. (2010). Ambient

vibration re-testing and operational modal analysis of the Humber Bridge. Eng.

Struct. 32, 2003–2018. doi: 10.1016/j.engstruct.2010.02.034

Brownjohn, J. W., Stefano, A., Xu, Y.-L., Wenzel, H., and Aktan, A. E.

(2011). Vibration-based monitoring of civil infrastructure: challenges and

successes. J. Civil Struct. Health Monitor. 1, 79–95. doi: 10.1007/s13349-011-

0009-5

Cao, Y., Yim, J., Zhao, Y., and Wang, M. L. (2011). Temperature

effects on cable stayed bridge using health monitoring system: a case

study. Struct. Health Monitor. 10, 523–537. doi: 10.1177/1475921710

388970

Catbas, F. N., Ciloglu, S. K., Hasancebi, O., Grimmelsman, K., and Aktan, A. E.

(2007). Limitations in structural identification of large constructed structures. J.

Struct. Eng. 133, 1051–1066. doi: 10.1061/(ASCE)0733-9445(2007)133:8(1051)

Cornwell, P., Farrar, C. R., Doebling, S. W., and Sohn, H. (1999).

Environmental variability of modal properties. Exp. Tech. 23, 45–48.

doi: 10.1111/j.1747-1567.1999.tb01320.x

Cruz, P. J. S., and Salgado, R. (2009). Performance of vibration-based damage

detection methods in bridges. Comput. Aided Civil Infrastruct. Eng. 24, 62–79.

doi: 10.1111/j.1467-8667.2008.00546.x

Frontiers in Built Environment | www.frontiersin.org 13 May 2020 | Volume 6 | Article 69

https://doi.org/10.1016/j.engstruct.2010.02.034
https://doi.org/10.1007/s13349-011-0009-5
https://doi.org/10.1177/1475921710388970
https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1051)
https://doi.org/10.1111/j.1747-1567.1999.tb01320.x
https://doi.org/10.1111/j.1467-8667.2008.00546.x
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Alexander and Yarnold Quasi-Static Bearing Evaluation and Monitoring

De Roeck, G. (2003). The state-of-the-art of damage detection by vibration

monitoring: the SIMCES experience. J. Struct. Control 10, 127–134.

doi: 10.1002/stc.20

Dubbs, N., Moon, F., and Aktan, A. E. (2010). Design and Implementation of

Load Cells to Measure Dead and Live Load Effects in an Aged Long Span

Bridge. Philadelphia, PA: International Association for Bridge Management

and Safety.

FHWA (2001). 23 CFR Part 650. FHWA Docket No. FHWA−2001–8954. National

Bridge Inspection Standards. Washington, DC. RIN 2125–AE86.

Fujino, Y., Abe, M., Shibuya, H., Yanagihara, M., Sato, M., Nakamura,

S.-I., et al. (2000). Forced and ambient vibration tests and vibration

monitoring of hakucho suspension bridge. Transport. Res. Rec. 1696, 57–63.

doi: 10.3141/1696-43

Gangone, M. V., Whelan, M. J., and Janoyan, K. D. (2011). Wireless monitoring

of a multispan bridge superstructure for diagnostic load testing and

system identification. Comput. Aided Civil Infrastruct. Eng. 26, 560–579.

doi: 10.1111/j.1467-8667.2010.00711.x

Gaoxin, W., and Youliang, D. (2015). Research on monitoring temperature

difference from cross sections of steel truss arch girder of Dashengguan

Yangtze Bridge. Int. J. Steel Struct. 15, 647–660. doi: 10.1007/s13296-015-

9011-9

Haykin, S. (1999). Introduction. Neural Networks: A Comprehensive Foundation.

Upper Saddle River, NJ: Prentice-Hall.

He, X., Moaveni, B., Conte, J. P., Elgamal, A., and Masri, S. F. (2008). Modal

identification study of vincent thomas bridge using simulated wind-induced

ambient vibration data. Comput. Aided Civil Infrastruct. Eng. 23, 373–388.

doi: 10.1111/j.1467-8667.2008.00544.x

Ko, J. M., and Ni, Y. Q. (2005). Technology developments in structural

health monitoring of large-scale bridges. Eng. Struct. 27, 1715–1725.

doi: 10.1016/j.engstruct.2005.02.021

Ko, J. M., Zhou, H. F., and Ni, Y. Q. (2008). “A data processing and analysis system

for the instrumented suspension Jiangyin Bridge,” in World Forum on Smart

Materials and Smart Structures Technology (London: CRC Press).
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