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Block walls, consisting of stacked unreinforced prefabricated concrete blocks, are

commonly used for the construction of quay walls in the presence of rocky subgrades.

A traditional design of block quay walls is based on manual design iterations, envisaging

sufficient safety against ultimate limit states (ULS) such as sliding, overturning or loss

of bearing capacity of the foundation soil. In addition, the designer should consider

stability during the different construction stages of the block wall, referred to as

construction constraints. This design process can be laborious, while the resulting

designs comprise a large volume of concrete. In order to optimize block quay walls,

we developed an automated design procedure in the framework of gradient-based

optimization, accounting for the various ULS and construction constraints encountered

in engineering practice. The design checks for a block quay wall are first explained

in detail. This includes global ULS requirements that apply to the block wall as a

whole, and internal ULS requirements to consider sliding and overturning of separate

blocks. During all construction stages, the block wall has to be stable, which imposes

additional construction constraints. Block walls consisting of rectangular blocks and

chamfered blocks are optimized. The resulting designs obtained with the automated

design procedure satisfy all design requirements, and have a realistic layout. Furthermore,

the influence of the different construction stages is studied, demonstrating the practicality

of the proposed automated design procedure.

Keywords: shape optimization, quay wall design, construction constraints, block walls, ultimate limit states

1. INTRODUCTION

Block walls are gravity retaining walls that consist of unreinforced prefabricated concrete blocks.
While block walls use a lot of material, they are commonly used as a retaining wall in the case
of rocky subgrades that are characterized by a large bearing capacity, and where soil penetrating
constructions such as combi-walls, sheet piling, or slurry walls are difficult or impossible to install
(de Gijt and Broeken, 2013). Block quay walls reach typical retaining heights of up to 30 m and can
be both constructed in dry conditions, or by placing blocks under water. The blocks are commonly
prefabricated near the construction site, and stacked using construction cranes. Block quay walls
are characterized by permeable joints, providing drainage that results in little or no water pressure
differences over the wall.

A traditional design of block quay walls is based onmanual iterations, governed by ultimate limit
states (ULS) that require sufficient safety against failure mechanisms such as sliding, overturning
or loss of bearing capacity of the foundation soil (de Gijt and Broeken, 2013). This traditional
design approach, with manual iterations based on engineering judgement, is laborious and time
consuming. Therefore, the question arises whether numerical optimization techniques could yield
similar or better, more economic designs, at the same time reduce engineering costs.
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Numerical design optimization has already been applied to a
variety of geotechnical applications, including the design of piled
foundations (Chan et al., 2009), underground excavations (Ren
et al., 2014), and rock bolt design (Nguyen et al., 2015), mostly
based on genetic algorithms and simplified design methods.
For example, for cantilever retaining walls, Camp and Akin
(2012) and Kaveh et al. (2011) employ a Big Bang-Big Crunch
optimization algorithm, Khajehzadeh et al. (2013), Moayyeri
et al. (2019), and Talatahari et al. (2012) use a gravitational
search in the context of particle swarm optimization, whereas
Gandomi et al. (2016) and Nandha Kumar and Suribabu (2017)
apply evolutionary algorithms. While such genetic algorithms
are easy to understand and implement, they can only cope with
a limited number of design variables, such as the geometry
of a cantilever wall that is described by a limited number
of parameters. Furthermore, genetic algorithms require many
iterations to converge. As the number of design variables
increases, a gradient-based optimization algorithm becomes
more attractive, while requiring careful treatment of the objective
function and constraints. For the particular case of block quay
walls, such a numerical optimization has been applied by
Shafieefar andMirjalili (2013) and Shafieefar andMirjalili (2014),
using a gradient-based sequential quadratic programming
algorithm. This algorithm is particularly suited to cope with
the large design freedom, varying the number, size and position
of the blocks.

The typical loads for block quay walls include the weight
of the blocks, the lateral earth pressures on the blocks, water
pressures, surcharge loading, and loading by mooring ships. As
design requirements, sufficient safety against sliding, overturning
or loss of bearing capacity of the foundation soil are imposed.
In addition, seismic loads are to be considered in seismic prone
areas (Richards Jr. and Elms, 1979). A classical quasi-static
seismic design commonly used in practice is based on the use of
seismic earth pressure coefficients obtained from a Mononobe-
Okabe analysis. Such a quasi-static analysis represents a strong
simplification, and a lot of research is devoted to provide
improvements, such as Newmark’s sliding block method (Li
et al., 2010; Caltabiano et al., 2012; Pain et al., 2017) or the
use of dedicated models to account for the behavior of the
interfaces between the blocks under complex loading scenarios,
such as torsional effects (Casapulla and Maione, 2018; Casapulla
et al., 2019). In the present paper, however, seismic loads are
not considered.

Apart from these essential ULS stability requirements,
the design of block walls also includes considerations on
constructability: the block wall should be stable at every stage
of the construction of the wall, and engineering a construction
sequence forms an integral part of the design. Block walls
are typically gradually backfilled a couple of times during
construction for logistical reasons. The number of backfill
operations and the corresponding stacking sequence hence
provides additional design freedom, where the stability of the
freestanding stack of blocks is considered as an additional
constructability constraint. Other constructability constraints
include e.g. a maximum block weight, governed by the cost and
availability of construction cranes.

This paper develops a gradient-based shape optimization
algorithm for block walls, aiming at reducing the material
use while accounting for realistic boundary conditions, load
cases, and construction constraints. The width, height, and
position of the blocks are adjusted in order to obtain an
optimal layout. Accounting for ULS envisages sufficient safety
against failure mechanisms such as sliding, overturning, or
loss of bearing capacity of the foundation soil. Additional
construction constraints include the maximum weight of the
blocks and the stability of the block wall during construction.
This constructability constrained optimization represents a
first step toward a holistic design approach to quay walls
(de Gijt, 2015), aiming at an optimal technical and economical
design, and considering the total lifecycle costs that include the
costs of engineering, construction, maintenance, demolition and
environmental impacts.

This paper is organized as follows. In section 2, the design
requirements are outlined by means of an example block wall,
for which the different elements of the analysis are explained in
detail. In section 3, the shape optimization problem is defined
for a wall consisting of rectangular blocks, where a two-block
wall allows to visualize the optimization process. Furthermore,
the results of an optimization of a realistic wall with more blocks
are discussed. Since chamfered blocks are commonly used in
practice and allow for more design freedom, section 4 extends
the optimization problem to such chamfered blocks, and the
optimization results are compared with the case of rectangular
blocks. Section 5 summarizes the main findings of the paper.

2. BLOCK WALL DESIGN

2.1. Problem Outline
In order to demonstrate the design principles of a block wall,
a simple layout with four rectangular blocks is considered, as
shown on Figure 1. The base of the wall is located at z =

−6m, and every block i = 1, . . . , nblock, nblock = 4 has a
height ti = 2m so that the total wall height Htot = 8m.
Furthermore, the water level wl = −0.5m on the left side is
lower than the water level wr = 0m on the right side, resulting
in an unfavorable water pressure on the wall. In the following
sections, the material properties of the blocks, the backfill, and
the foundation soil are listed. The forces acting on the structure
are subsequently discussed, such as variable loads, effective
soil pressures, and water pressures. This allows to check ULS
requirements, including sliding failure, overturning, and loss of
bearing capacity of the soil. Global ULS requirements apply for
the block wall as a whole, whereas internal ULS requirements
consider sliding and overturning for each block separately.

2.1.1. Material Properties
The concrete blocks are considered to be rigid and have a
unit weight γc = 24 kN/m3. The blocks have a compressive
strength fcu = 45 MPa, which limits the stresses at the interface
between the blocks. The foundation soil is characterized by an
internal friction angle φ = 28◦, a cohesion c = 83 kPa, and
dry and saturated unit weights γdry = 20 kN/m3 and γsat =

22 kN/m3, respectively. These soil properties are representative
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FIGURE 1 | Geometry of a block wall consisting of four rectangular blocks.

TABLE 1 | Loadcases for the example wall.

LC1 LC2 LC3 LC4

q0 [kN/m/m] −10 −10 −10 −10

qz [kN/m/m] −10 0 −10 0

Qx [kN/m] −100 −100 −100 −100

Qz [kN/m] 0 0 −100 −100

for rocky soils. The backfill is characterized by an internal friction
angle φ = 40◦, a zero cohesion c = 0 kPa, and dry and
wet unit weights γdry = 20 kN/m3 and γsat = 22 kN/m3,
respectively. Furthermore, the strength of the soil-block interface
is characterized by an interface friction angle δ = 2/3φ.

2.1.2. Variable Loads and Load Combinations
The variable loads include the point loads Qx and Qz , distributed
vertical loads qz on top of the wall, and surcharge loading q0
next to the wall (Figure 1). Four load cases (LCs) are considered,
denoted as LC1 to LC4, as listed in Table 1. Sliding failure of the
wall dominates LC2, in absence of the vertically distributed load
and vertical point load on top of the wall. Overturning of the wall
governs LC4, whereas the loss of load bearing capacity of the soil
is dominant for LC3, with all loads considered. A negativeQx and
q0 are always unfavorable, and are considered in every LC.

2.1.3. Soil Pressures
The backfill generates soil stresses that represent the predominant
loading on the block wall. Since the block wall has a denticulated
back, the calculation of soil pressures is more complex than
for straight retaining walls such as diaphragm walls. The soil
pressures on block walls are computed by considering a vertical
fictitious back plane (Figure 1), as described in the British
Standard (BSi, 2015). In a manual design calculation, the
fictitious back plane is determined on the basis of engineering
judgement, roughly following the back of the block wall. In
order to compute soil stresses in a gradient-based optimization

TABLE 2 | Active soil pressure coefficient Ka at each block of the example wall for

global equilibrium, including the angle α of the fictitious back plane and the angle

of friction δ of each block.

Block 1 2 3 4

α 0◦ 18.44◦ 18.44◦ 18.44◦

δ 2/3φ φ φ φ

Ka 0.20 0.41 0.41 0.41

scheme, an automated calculation is required. Therefore, the
convex hull of the ensemble of blocks is considered as the
fictitious back plane, since its sound mathematical definition
allows for an algorithmic treatment. The fictitious back planes
for the example block wall, computed from the convex hull, are
shown in Figure 2. A different fictitious back plane is considered
for the equilibrium of each block.

On the fictitious back plane, the coefficient of active soil
pressure is computed using the method of Müller-Breslau (1906),
assuming a straight slip surface of the failure wedge behind
the wall:

Ka =
cos2(φ − α)

cos2 α cos(α + δ)
(

1+
√

sin(φ+δ) sin(φ−β)
cos(α+δ) cos(α−β)

)2
(1)

where α is the slope of the fictitious back plane, β the slope of
the ground surface (considered zero in this paper), and δ is the
wall friction. The active soil pressure coefficients are listed for
each block in Table 2.

While the wall can have a small embedment depth in which
(stabilizing) passive soil pressures could be generated, these
passive soil pressures are neglected since the soil near the front
of the block wall is often eroded or stirred as a result of the
construction work.

2.1.4. Weight of the Enclosed Soil
Apart from the weight of the blocks, the weight of the soil
above protruding blocks (Figure 3) provides a stabilizing effect
on the sliding and overturning failure mechanisms. The net
weight of this enclosed soil is accounted for in order to avoid
overconservative designs. Furthermore, buoyancy results in a
weight difference of the soil above and below the water table.

2.1.5. Water Pressures
The water pressure acting on the example wall is shown in
Figure 4, where a distinction is made between the water pressure
acting on the block wall as a whole (for global equilibrium)
and the water pressure acting on individual blocks (for internal
equilibrium). The water pressure is linearly interpolated along
the bottom and top surfaces, accounting for water flow through
the permeable joints.

2.2. Global ULS Requirements
The global ULS requirements include sliding and overturning of
the block wall, as well as loss of bearing capacity of the soil. The
definition of the corresponding safety factors for each of these
failure mechanisms is discussed next.
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FIGURE 2 | Convex hull as the fictitious plane for the equilibrium of (A) block 1, (B) block 2, (C) block 3, and (D) block 4.

FIGURE 3 | Enclosed soil (hatched) for a number of wall layouts, where the dot indicates the block for which equilibrium is considered.

FIGURE 4 | Resulting water pressure (A) on the entire wall, when considering global equilibium, and (B) on block 1 when considering internal equilibrium.

The global safety factor of the sliding failure mechanism is
defined as:

SFsliding = fcg
Vres

Hres
(2)

where Vres and Hres are the resulting vertical and horizontal
forces, respectively, and fcg = 0.6 is the Coulomb friction
coefficient between the bottom block and the foundation.

The global safety factor for overturning:

SFoverturning =
Mstab

−Mdestab
(3)

accounts for the resulting stabilizing moments Mstab and the
resulting destabilizing moments Mdestab around the toe of the
block wall.

The foundation has a width B, corresponding to the width of
the first block. The resulting vertical force Vres and horizontal
forceHres acting on the foundation are calculated from the sliding
equilibrium. In order to compute the eccentricity of the force
on the foundation, the moment relative to the center of the

foundation Mcenter is required. The moment around the toe of
the wallM′ = Mstab +Mdestab. The moment around the center of
the foundationMcenter is computed as:

Mcenter = M′ − Vres
B

2
(4)

The eccentricity e of the load is computed as:

e =
Mcenter

Vres
(5)

The effective foundation width equals B′ = B − 2e and the
pressure on the foundation qeff is calculated as:

qeff =
Vres

B′
(6)

The bearing capacity qult is computed using Terzaghi’s equation
(Tomlinson and Boorman, 2001):

qult = sc dc ic Nc c+ sq dq iq Nq q+ sγ dγ iγ Nγ γ ′ B
′

2
(7)

Frontiers in Built Environment | www.frontiersin.org 4 June 2020 | Volume 6 | Article 75

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Francois et al. Optimal Block Quay Wall Design

where Nc, Nq, and Nγ are bearing capacity coefficients,
represented by non-linear functions of the angle of internal
friction φ. In the present paper, the equations of Meyerhof are
applied (Tomlinson and Boorman, 2001):

Nq = exp(π tanφ) tan2 (
π

4
+

φ

2
) (8)

Nγ = a exp(b φ) (9)

Nc = (Nq − 1) cotφ (10)

The parameters a and b are 0.1054 and 9.6, respectively, for a
rough foundation. The depth factors dc, dq and dγ are equal to 1
because a surface foundation is considered. The form factors sc,
sq, and sγ are also equal to 1 for the plane strain case at hand. The
slope factors ic, iq, and iγ take into account the angle at which the
resulting loads occur, and are calculated as:

iq =

(

1−
Hres

Vres + B′c cotφ

)2

(11)

iγ =

(

1−
Hres

Vres + B′c cotφ

)3

(12)

ic = iq −
(1− iq)

Nc tanφ
(13)

where q is equal to the surcharge next to the foundation. The
effective width B′, the horizontal and vertical resulting forcesHres

and Vres are already known. φ and c correspond to the internal
friction angle and the cohesion of the foundation soil and the
effective bulk weight equals γ ′ = γsat−γw below the groundwater
level and γ ′ = γdry − γw above the groundwater level. Applying
Terzaghi’s formula to the example block wall, the second term in
Equation (7) is omitted because there is no effective vertical stress
q′ on the foundation.

The global safety factor for the bearing capacity of the soil is
defined as follows:

SFbearing capacity =
qult

qeff
(14)

The safety factors for the example block wall for all four load
cases are shown in Table 3. It should be noted that sliding is
the most critical failure mechanism. For sliding, LC2 is critical
since there are no vertical loads on top of the quay wall.
Overturning is critical for LC2 and LC4. The bearing capacity
controls LC3, since all vertical loads are present. The vertical
point load at the top of the wall has a major influence on the
foundation pressure qeff for two reasons: (a) the eccentricity of
the load considerably reduces the effective width Beff, and (b) the
additional vertical forces cause higher stresses on the foundation.
The increase in foundation pressure qeff is the main reason for
the reduction of the safety factor for bearing capacity rather than
the decreasing slope factors ic, iq, and iγ , as a consequence of the
large eccentricity of the external load.

2.3. Internal ULS Requirements
The eccentricity of inter-block forces must be restricted so that
a minimum contact area is subjected to pressure, avoiding

decompression (loss of contact stresses) on one side of the contact
surface, at the same time preventing excessive compressive
stresses on the (small) remaining contact area. The compression
ratio Ccompression,k is the ratio between the compressed part A′

k
and the total contact surface Ak between two blocks:

Ccompression,k =
A′
k

Ak
(15)

The index k refers to the upper block and varies from 2 to nblock.
In addition, the maximum contact stress σmax,k between the
blocks is also restricted. The compression ratio and themaximum
contact stress depend on the eccentricity ek of the vertical force
Vk on the contact surface k. If ek/Bk < 1/6, the vertical contact
force is located in the central core (middle third) of the contact
surface, and decompression does not occur, i.e., Ccompression,k =

1. Correspondingly, the maximum contact stress equals:

σmax,k =
Vk

Bk
(1+ 6

ek

Bk
) (16)

If ek/Bk > 1/6, the vertical force is located outside the central
core, resulting in decompression. The compression ratio is then
calculated as:

Ccompression,k = 1.5− 3
ek

Bk
(17)

in which case the maximum contact stress σmax,k equals:

σmax,k =
4

3

Vk

Bk

1

1− 2 ek
Bk

(18)

where Bk is the width of the contact surface. The eccentricity ek
of the vertical force is calculated as ek =

Mcenter,k

Vk
. The maximum

contact stress of σmax,k is compared to the ultimate compressive
strength of the blocks fcu by means of the ratio of Fσmax,k:

Fσmax,k =
σmax,k

fcu
(19)

The safety factors for the internal ULS requirements are shown
in Table 3 for each load combination. It should be noted that the
safety factors for sliding and overturning of block 1 are equal
to those of the global equilibrium (Table 3). Furthermore, the
upper block 4 is the most sensitive to sliding due to a large
horizontal point force on the top of the wall. Therefore, in
practice, the upper block is typically casted continuously in-situ
as a capping beam in order to distribute the forces over larger
portions of the block wall. The overturning failure mechanism
is critical for block 2. Decompression does not occur and the
maximum stresses are limited. Therefore, concrete C35/45 with
a compressive strength fcu = 45 MPa is more than sufficient to
resist the resulting stresses.

2.4. Constraints on Protrusion
Blocks that excessively protrude above the underlying block
are prone to break under their own weight or may overturn
during construction. Therefore, two conditions are imposed for
all but the first block (k = 2, . . . , nblock). The first condition
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TABLE 3 | Factors of safety for the global and internal ULS requirements for the

example block wall.

Block LC Global 1 2 3 4

Sliding LC1 2.95 2.95 2.46 2.41 1.92

LC2 2.81 2.81 2.24 2.12 1.59

LC3 3.20 3.20 2.84 2.88 2.46

LC4 3.05 3.05 2.61 2.60 2.13

Overturning LC1 3.98 3.98 2.53 3.28 5.17

LC2 3.84 3.86 2.29 2.87 4.30

LC3 3.98 3.98 2.53 3.28 5.17

LC4 3.84 3.86 2.29 2.87 4.30

Decompression LC1 N/A N/A 1 1.00 1.00

LC2 N/A N/A 0.96 1.00 1.00

LC3 N/A N/A 0.90 1.00 1.00

LC4 N/A N/A 0.82 0.91 1.00

Bearing capacity LC1 10.08 N/A N/A N/A N/A

LC2 10.54 N/A N/A N/A N/A

LC3 8.51 N/A N/A N/A N/A

LC4 8.83 N/A N/A N/A N/A

prevents breakage: blocks may not protrude over a distance more
than their height. This rule is also referred to as the 45◦ rule
because cracks in concrete are considered at an angle of 45◦. The
condition can be expressed with a safety factor SFprotrusion1,k:

SFprotrusion1,k =
tk

Uk
(20)

where tk is the thickness and Uk is the protrusion length of the
considered block. The safety factor is calculated for protrusions
at the front as well as at the back of the quay wall. For the
example block wall under consideration, only protrusion at the
back is relevant.

The second condition prevents the blocks from overturning
during construction. The center of gravity of block k is enforced
to be located within the contact surface with the supporting block
k− 1. The corresponding safety factor SFprotrusion2,k is defined as:

SFprotrusion2,k =
2lk

Lk
(21)

where lk is the width of the supporting and Lk is the width of
the block.

2.5. Construction Constraints
The above safety factors guarantee sufficient safety with respect
to ULS failure mechanisms. However, the global and internal
ULS requirements assume that the block wall is supported by the
backfill. For logistical and financial reasons, the block wall is only
backfilled once or a couple of times during construction. As a
result, the stability of the freestanding stack of blocks has to be
guaranteed during the construction of the wall. If a number of
blocks is stacked, overturning of the stack should be avoided. The

TABLE 4 | Safety factors for the constructability of the example block wall in a

single stage.

Check SFconstructability

1 2.41

2 2.61

3 2.63

4 2.00

5 1.87

6 1.81

most unfavorable situation occurs when the backfill is completed
after stacking of the entire block wall.

In order to account for constructability, safety factors are
defined to allow to stack a number of blocks in each building
stage without the need for gradual backfilling. If two blocks
have been stacked, the center of gravity of the stack must
be within the contact surface with the lower block, if three
blocks have been stacked, the center of gravity of the stack
must meet these conditions, and so on. In the following,
we consider nstage construction stages where nblocki represents
the number of blocks placed in stage i = 1 . . . nstage, and
consider stability of the freestanding stacks of blocks. The safety
factors SF constructability,m,n for the constructability of stage m are
expressed as follows:

SF constructability,m,n =
Lfic,k,n + 2zk,n

Lfic,k,n
(22)

where zk,n is the center of gravity of the group of blocks of the
considered check n. Lfic,k,n is the fictitious length of the group
of blocks of which the center of gravity zk,n is calculated. This
fictitious length is obtained by dividing the area of the group of
blocks under consideration by the total height of the group. The
index n varies from 1 to (nBlockinStage,m × (nBlockinStage,m − 1)).
The checks are performed for overturning to both sides. For the
4-block example, this corresponds to the six safety factors listed
in Table 4.

3. OPTIMIZATION USING RECTANGULAR
BLOCKS

3.1. Optimization Problem
The geometry of a block wall with rectangular blocks is uniquely
defined by the number of blocks nblock in the wall, the width
Li and height ti, and the x-coordinate of the bottom left corner
of each block xi. Therefore, the complete quay wall layout is
described by the vector of design variables x:

x = {L; t;T] = [L1 L2 L3 ... Ln; x2 x3 ... xn−1; t1 t2 t3 ... tn−1}
T

(23)
where x1 and xn are fixed at x1 = 0 and xn = 0. In addition, the
height of the highest block tn = Htot −

∑n−1
k=1 tk is not a design

variable since the total heightHtot of the wall is fixed a priori. As a
result, the number of design variables equals nvar = 3nBlocks − 3.

The total cost of a block wall depends on many factors
including logistic considerations, location of the construction
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site, and availability of equipment and is therefore difficult to
objectively determine. Therefore, the total volume of concrete is
considered as the objective function f0 to be minimized.

Most of the constraints to which the design has to
comply correspond to the ULS safety of the block wall.
The safety factors SFsliding,k, SFoverturning,k, and SFbearing capacity
are restricted in order to provide sufficient stability of the
block wall, both considering global and local equilibrium.
Furthermore, the compression ratio Ccompression,k is constrained,
limiting the stress Fσmax,k. In addition, cantilever equilibrium
correspond to the factors SFprotrusion1,k and SFprotrusion2,k and the
construction constraints in correspondence to the safety factor
SFconstructability,m,n should apply.

Furthermore, a weight limit Mmax per block is imposed. This
limit is case specific and corresponds to the maximum capacity
of the cranes available at the construction site. Furthermore, the
contact area between the different blocks must have a minimum
width Bmin in order to prevent local stress concentrations and
failure. Theminimumwidth of the contact surface is a constraint,
in addition to the sliding constraint: sliding is only verified based
on the ratio of forces and does not take into account the size of
the contact surface. Finally, the relative weight difference between
blocks is limited, avoiding large variations in block weight and
reducing overall construction costs.

The various constraints are collected in the vector f:

f =
{

f1; f2; f3; f4; f5; f6; f7; f8; f9; f10; f11
}T

(24)

where

f1,k(x) = SFsliding,req − SFsliding,k(x) ≤ 0 (25a)

f2,k(x) = SFoverturning,req − SFoverturning,k(x) ≤ 0 (25b)

f3(x) = SFbearing capacity,req − SFbearing capacity(x) ≤ 0 (25c)

f4,k(x) = Ccompression,req − Ccompression,k(x) ≤ 0 (25d)

f5,k(x) = SFprotrusion1,req − SFprotrusion1,k(x) ≤ 0 (25e)

f6,k(x) = SFprotrusion2,req − SFprotrusion2,k(x) ≤ 0 (25f)

f7,m,n(x) = SFconstructability,req − SFconstructability,m,n(x) ≤ 0

(25g)

f8,k(x) = Fσmax,k(x)− Fσmax,max ≤ 0 (25h)

f9,k(x) = Mz,k(x)−Mmax ≤ 0 (25i)

f10,k(x) = Bmin − Bk ≤ 0 (25j)

f11,vw(x) = Fweight −Mz,v/Mz,w ≤ 0 (25k)

3.2. Optimization Algorithm
An appropriate algorithm is selected for the solution of the
constrained optimization problem. Since the number of blocks
in a block wall is rarely larger than about 15, and the forward
calculation takes very little computation time, the sensitivities can
easily be determined numerically by means of finite differences.
Therefore, a gradient-based optimization algorithm is preferred.
In this paper, the active set method, as implemented in the
Matlab function fmincon, is employed. The active set method

turned out to be the most performant algorithm provided by
the fmincon function. The active set method typically works
well for highly constrained problems, as in the present case.
The following convergence requirements have been considered:
iterations are performed until a step tolerance 1f0 = 10−8

of the objective function is reached. A design is considered
feasible if the constraints max(f ) is less than the assumed value
10−4, and the maximum number of iterations of the search
algorithm is set to 70. The gradients of both the objective
function as well as the constraints are computed using a finite
difference approach.

3.3. Optimization of a Two-Block Wall
The optimization algorithm is first applied to a block wall
consisting of 2 blocks, only considering the lengths L1 and L2
of the blocks as design variables. The objective function and
the constraints can thus be visualized using a contour plot in
(L1,L2)-space. This visual representation allows to check whether
the search algorithm actually converges to the desired optimum.
For various start values of the algorithm, the same optimum is
found. In the optimum (L = {4.9615m, 6.6154m}T), all design
requirements are met.

Figure 5 shows a contour plot of the objective function and all
constraints. For sliding failure, LC2 is controlling the design. For
the overturning failure mechanism, LC2 and LC4 are controlling.
LC1 or LC4 control the loss of bearing capacity as well as the
decompression, depending on the value of the design variables
L1 and L2. This example demonstrates the importance of taking
all load cases into account.

The constraints for sliding, overturning, and maximum
weight of block 2 are linear or constant and only depend
on L2. Similarly, the protrusion, construction, and weight
regularization constraints are linear in L1 and L2. However, the
constraints on sliding and overturning of block 1 depend on
both L1 and L2 in non-linear way. This can be explained as
follows: at a value of L1 = 7.7m for the sliding failure and
L1 = 5 m for overturning, the weight of block 2 is not required
for stabilizing block 1. As a result, the constraint does not depend
on L2. However, if L1 becomes smaller, the constraints require an
increasing length L2 of block 2 to provide sufficient safety against
sliding and overturning of block 1.

The contour lines of the constraints on decompression and
bearing capacity are non-linear, due to the different conditions
in calculating those safety factors. It should be noted that L2
should not be less than 3.5m to comply with the decompression
requirements. If the length is greater than L2, the length L1
must also be greater for the same reason. The bearing capacity
requirement imposes a minimum length L1 = 5 m. From length
L2 = 4.5m, an increasing L2 involves increasing L1 in order to
resist the extra weight of block 2.

At the bisector of the contour plot in Figure 5, a discontinuity
occurs in constraints of the (a) sliding failure of block 1, (b)
tilting of block 1, (c) loss of bearing capacity of the wall and (d)
decompression of the contact area between block 1 and block 2.
These discontinuities occur when L1 = L2, and the friction angle
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FIGURE 5 | Contour plot of the objective function for the 2-block wall as a function of the design variables L1 and L2. The constraints, the feasible domain, and the

optimum are also indicated.

on the fictitious back plane is replaced by an interface friction
angle δ.

3.4. Optimization of a Wall With 12 Blocks
The algorithm is also used to optimize the design of a wall with 12
blocks and a retaining height of 30 m. The base level is located at
z = −28 m. The soil properties, the water levels, the forces on the
wall and at ground level, the load cases, the concrete strength and
the friction coefficients are the same as for the example block wall.

The design variables are described in Equation (23), where
the x-coordinates of the left corner of the lowest and highest
block are fixed to 0. The thickness of the highest block is
fixed in order to obtain a retaining height of 30 m. The
resulting number of design variables is 33. To be realistic, the
blocks are limited to a maximum weight of 80 tons. Since
the blocks are typically 2 m long, the weight limit is set
at 40 tons/m. For the lower block, however, the weight is
increased to 80 tons/m in order to have a sufficient bearing
capacity. The factor Fweight is equal to 0.5 and the minimum
width of the contact surface between the blocks Bmin is
fixed at 4 m. The design variables are box constrained: the
block width varies between 1 and 15 m, the x-coordinate
between 0 and 5 m and the heights of the blocks range
from 0.5 to 4 m. The height of the lower block, however, is
limited to a minimum of 2 m because that block must be
sufficiently thick so it will not break and provide sufficient
load-bearing capacity.

The outcome of the active-set optimization algorithm strongly
depends on the initial values of the design variables. Different
initial values can lead to convergence to (sub)optimal solutions.
Therefore, series of 100 simulations are performed with random
initial values and the five best designs are retained. If the total
volume of the five best designs are very close to each other, it
is assumed that the optimum has been found. The initial values
are randomly selected but (1) must meet the box constraints, (2)
must have a positive initial value for the height of the upper block
and (3) the contact surface between blocks must have a minimal
width of 1 m.

Six different building scenarios for the wall are considered.
The first scenario simulates the design of a 12-block wall in a
single stage. Scenario 2 to 6 simulate series in which construction
takes place in 2 stages of 6 blocks, 3 stages of 4 blocks, 4 stages
of 3 blocks, 6 stages of 2 blocks, and 12 stages of a single block,
respectively. The optimization problem has 33 design variables
and 531 constraints (at maximum, when nStage = nblock).
Simulation times vary between 20 and 40 s on a regular PC. Since
the optimization problem is non-convex, a series of 100 designs
is obtained from random starting values, and the best designs are
retained. Computing 100 designs takes 1 h. The total volume
and wall layout of the best designs of the hundred simulations
is shown in Figure 6.

Figure 6 also shows how the volume evolves with the number
of construction stages, ranging from 170.0 m3/m for a single
stage to 153.9 m3/m for construction in 12 stages. Additional

Frontiers in Built Environment | www.frontiersin.org 8 June 2020 | Volume 6 | Article 75

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Francois et al. Optimal Block Quay Wall Design

FIGURE 6 | Optimal designs for the rectangular and chamfered block wall,

including the resulting wall volume. The gradual backfill stages are indicated

with dashed lines.

construction stages allow to further reduce the volume of the
design. The results can be used to perform a cost-benefit analysis
to determine an optimal number of construction stages: if
replenishment of the backfill is relatively inexpensive, then a
choice for 3, 4, or 6 construction stages is an excellent choice.
If the cost of additional construction stages is larger than
the reduced material cost, then building in 1 or 2 stages is
recommended. A maximum of approximately 15.2 m3/m of
concrete can be saved by building in 6 stages compared to
building in 1 stage. The difference between building in 3 or 6
stages is small.

In the optimized designs, as shown in Figure 6, a relief
platform can be observed at the level of blocks 8, 9 or 10. The

FIGURE 7 | Parameterization of a chamfered block.

relief platform is located at a position low enough to allow the
stabilizing action of the superimposed mass of soil and high
enough so that it is beneficial for the internal equilibrium of 8
to 10 of the 12 blocks. In the case of series 1, the platform is at
a lower position near block 5. The reason for this is that with a
higher platform, as in series 4, the structure is not stable during
the construction of the wall in 1 stage. Therefore, the platform
is located at a lower position. The blocks above that location
are almost all large blocks that keep themselves in balance and
provide the counterweight to balance the earth pressures. Series
2 is of an intermediate form, with a platform at the height of block
8. At the front of the quay wall, an arch shape can be seen in each
case. The arch at the front can be explained by the effect of force
around the toe of the wall: the more the blocks are located to the
rear, the greater the lever arm of their weight and therefore the
greater the stabilizing moment that prevents tilting.

4. OPTIMIZATION USING CHAMFERED
BLOCKS

4.1. Optimization Problem
In practice, the corners of the rectangular blocks are commonly
chamfered, so that a smooth face is obtained. This section
investigates to what extent the use of chamfered blocks can
further optimize the design. Chamfered blocks are characterized
by the lengths of the blocks L, the x-coordinates of the bottom
left corner of the blocks x and the heights of the blocks t. The
chamfers, considered at an angle of 45◦ as shown in Figure 7,
are 4 additional parameters, where the height of the chamfers is
expressed as a percentage (d1i to d4i) of the block height. The
vectors d1, d2, d3, and d4 are added to the set of design variables:

x = {L; t;T; d1; d2; d3; d4}

= {L1, L2, L3, ..., Ln; x2, x3, ..., xn−1; t1, t2, t3, ..., tn−1; ...

..., d12, d13, ..., d1n; d21, d22, ..., d2n−1; d31, d32, ..., d3n−1;

d42, d43, ..., d4n
}T

(26)

The chamfers d1 and d4 of the lowest block and d2 and
d3 of the highest block are not considered, in accordance to
actual engineering practice. The number of design variables nvar
increases to 7× nblock − 7 with respect to that of the rectangular
block wall.
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FIGURE 8 | (A) A chamfer underneath a jump is (B) avoided by imposing constraints f15 and f17.

Additional constraints f12 to f20 are considered for the
chamfered case:

f =
{

f1; ...; f11; f12; f13; f14; f15; f16; f17; f18; f19; f20
}

(27)

where:

f12,k(x) = d1ktk + d4ktk − Lk ≤ 0 (28a)

f13,k(x) = d2ktk + d3ktk − Lk ≤ 0 (28b)

f14(x) = (d2nblock + d3nblock)tnblock − Lnblock + Bmin ≤ 0
(28c)

f15,k = d1kUH1,k − Fcond ≤ 0 (28d)

f16,k = d2kUH2,k − Fcond ≤ 0 (28e)

f17,k = d3kUH3,k − Fcond ≤ 0 (28f)

f18,k = d4kUH4,k − Fcond ≤ 0 (28g)

f19,k = d1kd2k − Fcond ≤ 0 (28h)

f20,k = d3kd4k − Fcond ≤ 0 (28i)

The constraints f12 and f13 impose that the two lower and
the two upper chamfers of a block do not exceed the block
length. The constraint f14 ensures that the width of the top of
the quay wall always remains greater than the minimum width
Bmin, considered 4 m in this paper. The conditional constraints
f15 to f18 have been introduced to avoid chamfers as shown in
Figure 8A, since such a situation is never considered in practice
where a layout as shown in Figure 8B is commonly preferred.
Figure 8A shows that both parameters UH1 and UH2, and the
bevel d12 of the upper block are positive and therefore the
limitation is not met. For all previous conditional constraints, a
term Fcond has been added to improve the convergence of the
algorithm. The term Fcond takes a small value and allows the
constraints to be violated in a controlled way, where the tolerance
is determined by trial-and-error.

Constraint f19 imposes that either bevel d1 or bevel d2 of a
particular block must be equal to zero and limitation f20 that
either bevel d3k or bevel d4k of a particular block k must be
equal to zero. This corresponds to a bevel either at the top or at
the bottom corner. Correspondingly, the blocks can only take a
trapezoidal shape, avoiding octagonal shapes.

4.2. Optimization of a Wall With 12 Blocks
In this section, a block wall consisting of 12 chamfered blocks
is optimized. Apart from the chamfering, all input parameters

and algorithmic parameters correspond to the 12 rectangular
block case. Box constraints are also applied, where the length
of the blocks varies between 1 and 15 m, the x-coordinate varies
between 0 and 5 m and the height of the blocks varies from 0.5
to 4 m. The thickness of the lower block is limited to at least 2
m. The parameters relating to the chamfers may vary from 0 to a
maximum of 70% in order to avoid sharp, fragile corners.

A series of 50 designs is simulated using random start values
and the best designs are retained. The initial values meet the
same conditions as specified in section 3. In addition, the initial
values must meet the following condition to prevent chamfers
from exceeding the length of that side:

max([d1t + d4t − L]; [d2t + d3t − L]; [d1t + d2t − t];

[d3t + d4t − t]) < 0 (29)

Per series, 50 simulations have been conducted. Each series
contains different construction constraints, i.e., building the wall
in 2 stages of 6 blocks, 3 stages of 4 blocks, 4 stages of 3 blocks, 6
stages of 2 blocks, and 12 stages of a single block, respectively. The
factor Fcond has been determined by trial-and-error to 0.025 for
series 1 and series 3, and to 0.010 for series 2. The time to optimize
the design is about 2 min, which is significantly longer than that
for rectangular block walls. The results of different series are
summarized in Figure 6.

The resulting designs are smooth at the front and the back. In
each design there is a platform, which has also been observed in
the design of block walls from rectangular blocks, that exploits
the stabilizing effect of the soil. The resulting designs herein
obtained are similar to the block walls that are being designed
in practice.

The volume of the block walls does not differ much with
respect to the number of construction stages nStage. Building
in 2 stages is the most advantageous in terms of volume. The
additional constraints, ensure that the construction constraints
are only active to a limited extent and therefore have little
influence on the total quay wall volume. The construction
constraints therefore are less important in the general shape of
the wall, in contrast to what was observed for the rectangular
block walls.

5. CONCLUSION

In this paper, an automated design procedure for block quay
walls taking into account construction constraints has been
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proposed in the framework of gradient-based optimization.
Block walls consisting of rectangular or chamfered blocks
have been considered, accounting for the various ULS and
construction constraints encountered in engineering practice,
aiming at minimal material use while maintaining a target factor
of safety.

The design checks for a block quay wall have been explained
in detail. This includes global ULS requirements that apply
to the block wall as a whole, and internal ULS requirements
that consider sliding and overturning of separate blocks.
During construction, the stability of the block wall has to
be guaranteed during all construction stages, which imposes
additional construction constraints.

Block walls consisting of rectangular blocks and chamfered
blocks have been optimized. The resulting designs obtained with
the automated design procedure satisfy all design requirements,

and have a realistic layout. The importance of the construction
constraints has been demonstrated, as well as the corresponding
additional volume of concrete in the wall. A number of typologies
are identified, which depend on the construction constraints. In

addition, the optimization of a block wall with chamfered blocks,
as used in practice, results in very realistic designs, and allows for
a fully automated design and optimization of the block walls. As
such, the use of the proposed automated design procedure allows
for a strong reduction of the engineering time, typically spent to
manually optimize the design.
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