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Railway track geometry deterioration indicates degradation in the underlying track
structures. Monitoring and predicting this behavior are important as is investigating the
root causes contributing to the deterioration. Without knowing the causes, assigned
remediation might not result in a long-lasting correction. However, there is little
research regarding the pragmatic aspects of investigating the root causes of track
geometry deterioration utilizing real-world data sources. For this purpose, a new
method was explored. After reviewing methodologies, the chosen approach was an
association rule data mining method: General Unary Hypotheses Automaton (GUHA).
The initial data used in data mining comprise data from asset management and
multiple measurement systems, including a track geometry measurement vehicle, a
track stiffness measurement device, ground penetrating radar, and lidar. The results
of the GUHA data mining are hypotheses based on the initial data and can be used
to indicate the most common and uncommon types of structures regarding their track
geometry deterioration behavior and the attributes governing the behavior of a certain
structure type. Therefore, the GUHA method was found to be a suitable method
for investigating the root causes of track geometry deterioration from comprehensive
railway track structure data.

Keywords: association rules, condition monitoring, data mining, railway track, track geometry deterioration

INTRODUCTION

Railway track structures endure harsh conditions and countless damaging loading cycles in their life
cycle. During this life cycle, which usually lasts many decades, the structures degrade and require
intermediate maintenance. However, the need for maintenance is not generally homogeneous along
the length of a track section: Some areas require much more frequent maintenance than others. If
the heterogeneous nature of degradation is not accounted for, dangerous conditions regarding train
safety can occur. Furthermore, if the uniform maintenance for the whole track section is assigned
according to the needs of the weakest parts of the track, plenty of unnecessary maintenance will be
conducted, and money will be wasted. Therefore, the condition of the whole track section needs
to be monitored.

The condition monitoring of track structures is widely conducted using track geometry
measurement vehicles that measure deviations of track geometry using onboard measurement
systems (Esveld, 2001). The deviations indicated by the measurement systems indicate wear or
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movement in the track structures. These measurement systems
continue to be developed, and new technologies are applied,
for example, conducting measurements from in-service vehicles
(Weston et al., 2015).

The track geometry measurements require detailed analyses to
ensure train safety, and they are traditionally done by comparing
the measurement results to limit values set by the track owner.
Many different techniques can be used in this type of results
analysis as described by Berawi et al. (2010).

Analyzing the condition of track geometry using more
sophisticated methods has been a popular branch of science
as is evident from the number of different approaches for
track deterioration modeling (Higgins and Liu, 2018). Especially,
track geometry deterioration modeling has been popular. Track
geometry deterioration is the process of uneven settling of track
structures, which is observed by obtaining increasing deviations
in track geometry, when new measurements are conducted and
time progresses. If this process is modeled with great detail,
either with a deterministic or a stochastic model, the required
maintenance can be planned in advance, which leads to better use
of the track availability and reduced maintenance costs.

Track geometry deterioration modeling is a worthwhile
exercise as it has been proven to reduce costs in asset management
(Andrews et al., 2014). However, deterioration modeling is
solving only half the problem. Another important aspect to
consider is investigating the root causes of track geometry
deterioration. These root causes are here defined as the track
structure features associated with increased track geometry
deterioration rates, for example, insufficient drainage or subgrade
deformation issues. Fixing these types of problems for the long
term might require maintenance activities that are different from
routine maintenance.

The most common maintenance activity for correcting track
geometry deviations is tamping. Tamping is the process of lifting
the rails and ties while compacting the ballast under the ties being
lifted. Tamping can level the track geometry to provide a smooth
running surface for trains. However, the effects of tamping
are not permanent (Audley and Andrews, 2013). Furthermore,
tamping does not increase the resilience of structures per se, but
only provides temporary correction of geometry. Deteriorated or
defective track structures continue to cause the track geometry
to rapidly deteriorate to the state before tamping. Therefore, to
attain a more lasting effect, the root causes for track geometry
deterioration must be investigated to assign suitable remediation.

This aspect of investigating root causes for track geometry
deterioration has been researched far less than track geometry
deterioration modeling. Guler et al. (2011) used neural networks
to predict track geometry deterioration based on certain track
asset data. Sadeghi and Askarinejad (2009, 2012) have provided
stochastic approaches to analyzing the effects of track structure
conditions and track components to track geometry.

Although these studies have modeled the effects of different
components and conditions, they do not strictly assess the root
causes of track geometry deviations. For example, the severity of
some features is assessed in these studies, but the commonness of
a problem type is not. To advance the investigation of the root
causes of track geometry deterioration, new methods have to be

tested and applied. For this purpose, a method is explored: first,
by searching a promising method by type, and second, by testing
the chosen method using actual railway track structure data.

Choosing a method for investigating the root causes of track
geometry deterioration can be taken in steps. First, it must
be decided whether to create a deterministic model or use
a stochastic approach. Using a deterministic model requires
many experimental values and knowledge of the chain of events
leading to deteriorated track geometry. Although many track
settlement models are available (Dahlberg, 2001), their use for
this purpose may not be suited as these models rely greatly on
detailed descriptions of different loading and support conditions.
This information is practically impossible to provide for all the
different types of structures on a track section.

Stochastic models, on the other hand, can utilize already
available data, and inarguably, there is a great volume of data
recorded from track structures that can be utilized. This data, in
the case of Finland, includes the track geometry measurement
history; ground penetrating radar (GPR) measurements that
can provide a continuous thickness and moisture index for
different structure layers; laser scanning (lidar) results to
indicate embankment shape, from which drainage depth can be
assessed; track asset data, such as bridges, turnouts, and culverts;
and continuous track deflection measurements conducted as
demonstrated by Luomala et al. (2017).

Therefore, the next step should be to select one stochastic
approach, from which there are many to choose. Considering
the complexity of the multivariate heterogeneous initial data, the
search should be pointed to data mining methods that can digest
this type of data.

Data mining can be understood in many ways and
terms. Terms, such as machine learning and deep learning,
are associated with the subject and are sometimes used
interchangeably. Even though there is no single conclusive
definition of data mining, one well-established way to define it
is to use the terminology provided by Fayyad et al. (1996). In
this terminology, data mining is a step in a larger process that
is knowledge discovery from data (KDD). KDD begins with raw
data, and after many steps in preprocessing the data and applying
data mining methods and expert judgment, knowledge can be
retrieved as the result. In this process, data mining is the step
in which data analysis and discovery algorithms are applied to
produce patterns or models from the data (Fayyad et al., 1996).

Data mining is in itself a whole branch of science, from which
there are many methods to choose. As previously mentioned,
the terminology in the field is not irrefutable, but some
generalizations can be made. Data mining can be divided into two
categories with different primary goals: predictive or descriptive
methods (Fayyad et al., 1996). The predictive or supervised
methods, in other terminology (Tsui et al., 2006), focus on
learning past behavior and predicting future observations based
on a given input. Descriptive or unsupervised methods, in other
terminology (Tsui et al., 2006), find patterns or relationships
within the provided data, thus giving new insight about the data
that could not be observed with human effort. Most methods
do not belong to one category absolutely but generally exhibit
stronger ties to one than the other (Fayyad et al., 1996).
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Of these two methodologies, descriptive data mining is the
more fitting choice because finding root causes of track geometry
deterioration is closely related to finding novel patterns and
relationships from data and presenting them to the end user.
Descriptive data mining methods can be classified to include
clustering, summarization, association rules, and sequence
discovery (Dunham, 2003) of which clustering and association
rules provide the best descriptions of the relationships between
different data sources, whereas summarization and sequence
discovery are more useful in cases such as text mining or
customer purchase tracking, respectively.

Clustering is organizing the data into groups that represent
data points that are more similar to data inside the cluster than
outside it (Jain et al., 1999). Association rules provide insight on
which data sources are most associated with other data sources
with a specified confidence, often using Boolean logic (Agrawal
et al., 1993). Of these two tasks, association rules better fit the
purpose of this research.

To enhance current practices regarding track geometry
deterioration analysis, the ability to investigate the root causes
of track geometry deterioration using the association rule
data mining algorithm General Unary Hypotheses Automaton
(GUHA) was tested. The choice of the method was based on
the reviewed methodologies and tasks. GUHA provides a way
to assess the relationship of different input data attributes. In
practical terms, using GUHA, associations between available
railway track structure data sources and developments in track
geometry can be investigated.

MATERIALS AND METHODS

Initial Data
The initial data used in the data mining presented in section
“Results from Applying GUHA to Railway Track Structure Data”
concern the Luumäki–Imatra track section located in Eastern
Finland. The track section was initially built in the 1960s and
was renewed at the beginning of the 21st century. The track
section is a 65-km-long electrified single-track line, which has
both passenger and cargo traffic. A major renewal is being
planned on the track section in question because faster and
heavier trains are required to increase the line’s efficiency. The
condition of the track section varies: Some sections of the track
exhibit problematic structures, whereas others have required little
maintenance during their life cycle.

The initial data available from the structures of this track
section were conformed into a single matrix (CSV spreadsheet),
in which a row of data depicts a 1-m-long section of track that is
described by the columns representing the features of the track
structure. The initial data matrix contained 65,142 rows and 25
columns. Of the 25 columns, 24 contained attributes used in data
mining, and one column contained location information in the
form of track meters. This was used only for locating interesting
occurrences, not for data mining. Figure 1 presents a snapshot of
the initial data, and Table 1 elaborates the attributes of the data.

The initial data were essentially either ratio or nominal data
depending on the data origin. Ratio data, in this context, refers

to data having a true zero, order, and quantifiable differences
between data points. Nominal data, in this context, refers to
categorical or binary data in which no ordering, direction, or
distances for the data points are present.

The attribute for track geometry deterioration rate is further
elaborated in section “Track Geometry Deterioration Rate”.
Track deflection was measured using a continuous track
deflection measurement device presented by Luomala et al.
(2017). Two attributes were created from the track deflection
measurements: deflection level (mean) and variations (variance)
in deflection. Furthermore, track deflection measurements
provided geometry cant data, which were used to identify track
geometry elements such as curves and straights.

GPR measurements provided the structural layer moisture
indices and layer boundaries, using which layer thicknesses
were calculated. The structural layer thicknesses were calculated
for ballast, subballast, and embankment. Furthermore, an
attribute for the whole structure thickness, a combination of the
aforementioned, was provided. GPR measurements also revealed
bedrock depths in places where the bedrock level was shallow.

As a peculiarity, Finnish track structures are relatively
thick compared with structures in warmer regions. The lowest
allowable new track structure thickness using frost-resistant
materials varies between 2.0 and 2.6 m, depending on the
region. If the required track structure thickness is not met or
if frost heave problems are observed on old track sections,
frost insulation boards can be installed in the track substructure
to reduce frost penetration. These frost insulation boards are
extruded polystyrene boards that can withstand high pressure.
Before the 2000s, some expanded polystyrene (EPS) boards
were installed in track structures, but these did not endure
well, and the use of EPS boards in track structures has
since been banned.

As presented in Table 1, ditch depth was calculated from
the laser scanning point clouds. Soil maps and historical data
were used to assess the frost susceptibility of the subgrade.
Asset data included binary and categorical attributes for frost
insulation boards, stations, level crossings, bridges, culverts,
turnouts, cuttings, and wayside signaling equipment. Some of
the asset data were retrieved from the railway asset management
data warehouse, and some of the data were created using
the video feed of the track section combined with the GPR
interpretations and laser point clouds. Accordingly, track assets
could be accurately located.

The used initial data exhibited missing values. However, due
to the GUHA method’s ability to handle them and their small
quantity, the missing values were left in the data. Some missing
data were intentionally left blank and was handled in the software
as an attribute category. For example, an empty value for a bridge
implies the non-existence of a bridge. The actual missing values
included ballast thickness on bridges without a ballast layer and
ballast moisture in some turnouts where GPR measurements
were distorted by the frog.

Track Geometry Deterioration Rate
The process for calculating the track geometry deterioration rate
is not unambiguously defined throughout literature. Therefore,
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FIGURE 1 | Snapshot of the initial data.

TABLE 1 | Attributes used in data mining.

Data origin Data attribute Data type Data preprocessing

Track geometry car Track geometry deterioration
rate

Ratio Annual 20 m SD growth

Continuous track deflection measurement Track deflection mean Ratio 20-m mean

Continuous track deflection measurement Track deflection variance Ratio 20-m variance

Continuous track deflection measurement Geometry elements straight
and curve

Binary Calculation of cant indicating a curve

GPR Structural layer moisture indices Ratio Signal attenuation calculations

GPR Structural layer thicknesses Ratio Signal rebound calculations

Continuous laser scanning point cloud Ditch depth Ratio Minimum value from 4 to 8 m
perpendicular to the track centerline in
a 20-m distance

Soil maps Subgrade frost susceptibility
assessment

Categorical Subjective classification

Photos and visual assessment of data Foundation type Categorical Subjective classification

Asset data and visual assessment of data Asset data Categorical and
binary

Subjective classification

Tamping records Tamping history Categorical Subjective classification

it is pertinent to fully elaborate how the calculations have been
conducted, especially as the track geometry deterioration rate is
used as the predominant measure of durability.

The track geometry measurement data were produced using
a track recording vehicle, Plasser and Theurer EM 120 (Ttr1

51), which uses relative measurements from three bogies
to determine track geometry deviations. The measurement
data contained biannual measurements from 2008 to 2018.
Longitudinal geometry deviations were used in calculating the
deterioration rate because the longitudinal geometry is mostly
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affected by the movements in the structures below the track rather
than only by the rails or sleepers themselves.

Different chord lengths and parameters were tested calculating
the track geometry deterioration rate. A 20-m running standard
deviation (SD) calculated from longitudinal deviations (LD)
was chosen as it best described the original longitudinal
geometry deviation signal. The SD values obtained from
the consecutive measurements were used to calculate the
annual increase or decrease in track geometry deterioration.
The mean of the increased annual values was used to
describe the track geometry deterioration rate. If the SD
values significantly decreased from 1 year to another, the
reduction was ignored in the track geometry deterioration
rate because a large reduction in the deviation implied
tamping or other maintenance and repair actions. The track
geometry deterioration rate was calculated for each point in
the track section in 1-m intervals to be in conformity with the
other initial data.

The average deterioration rate for the Luumäki–Imatra track
section was 0.103 mm/a. Track geometry deterioration rate was
lower than average on 70% of the track section, meaning that
problematic areas were not as common as non-problematic areas
but exhibited much higher deterioration rates than the non-
problematic areas. This result was expected because problematic
areas are not generally long sections of the track.

Figure 2 presents an example of the track geometry
deterioration rate of two cross-sections in which the y-axis
represents 20 m SD values of LD. The deterioration behavior
of the two cross-sections is very different. The cross-section at
track kilometer 260 + 390 is at the edge of a section having
frost insulation boards. The cross-section at track kilometer
260 + 360 is approximately 20 m away from the section having
frost insulation boards.

The track geometry deterioration rate for cross-section
260 + 390 was 0.35 mm/a, whereas the corresponding value
for cross-section 260 + 360 was 0.05 mm/a. Tamping can be
observed to have taken place before the 2012 and 2016 winter
measurements. Surprisingly, the 2012 tamping has increased
deviations at cross-section 260 + 360, which might be due to
uneven ballast settlement after tamping. However, the effect
is nearly negligible because the deviations at cross-section
260 + 360 do not tend to grow, and the 2016 tamping has
restored the deviations to their original level. In the spring of
2011, the track geometry was measured both in April and May.
These measurements produced different results at cross-section
260 + 390. Winter of 2010–2011 was especially cold in Finland,
and the measurements indicate the time before frost thaw and
after frost thaw as deviations have significantly increased between
the two measurements.

The calculated track geometry deterioration rate was
visualized and compared with other available data. The
deterioration indicates the condition of a track structure.
Known problem areas, such as bridge transitions (Li and
Davis, 2005) and stiffness variations (Dahlberg, 2010), could
be detected based on the deterioration rate. In addition,
tamping and frost heave problems could be observed
from the track geometry history as large reductions or

fluctuation in the deviations. The track geometry deterioration
rate was generally used as the succedent attribute in
GUHA data mining.

GUHA Method
The GUHA method was initially developed in the 1960s and
1970s, and its background was elaborated by Hájek and Havránek
(1978). An up-to-date and comprehensive presentation of the
method can be found in Jan Rauch’s Observational Calculi and
Association Rules (2013). The GUHA method is considered a
descriptive data mining method. Hence, it is not used to make
deductions or predictions, but to describe and present input data
in new ways to users by producing hypotheses.

The GUHA method is based on logic formalism: the
statements about data are either true (data support a statement)
or false (data do not support the statement). The user provides
general questions about the data. Typical data can produce
millions of statements, among which only a few are true and
interesting to the user. True statements, referred to as hypotheses,
are considered to be answers to the user’s questions.

Data mining was conducted using the LISp-Miner program,
an application of the GUHA method (Rauch, 2013). The practical
aspects of using LISp-Miner have been elaborated by Berka
(2016). The GUHA method and its application, LISp-Miner,
have considerably evolved since their discovery and are still
being further developed (Novák et al., 2008; Hájek et al., 2010;
Piché et al., 2014).

Figure 3 presents the generic process for using the GUHA
method and the LISp-Miner program. This process begins
with collecting and formatting data into an initial data matrix
that is suitable for data mining. In the initial data, rows
contain observations, and columns contain attributes (also
called predicates), meaning the properties the observations
have. In GUHA data mining, the key is to set relevant
questions, called analytical questions, related to the data. These
questions can be translated into the GUHA language. Then,
GUHA data mining produces various hypotheses based on
the input data. The hypotheses are automatically generated
according to boundary conditions that are selected by the
user. The hypotheses can vary from trivial to interesting in a
single data mining task. The user can choose the meaningful
ones and further explore them by assessing their contingency
tables and associated predicates. After analyzing the results,
the user can subjectively translate the numeric results into
comprehensible human language.

The boundary conditions of the predicates assigned by the
user include antecedents, succedents, conditions, and quantifiers,
which adjust the preconditions and consequences of data mining.
Adjusting these boundary conditions influences the types and
number of results produced. The user should intend to achieve
a limited number of results to reveal the strongest correlations
within the data.

Antecedents, succedents, and conditions are attributes from
the initial data. Any attribute can be set as an antecedent,
succedent, or a condition, and any number or combination
of attributes can be chosen. Furthermore, the assessment of
attribute categories can be adjusted by choosing the coefficient
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FIGURE 2 | LD 20-m SD of two cross-sections.

FIGURE 3 | Principle of the data mining process using LISp-Miner.

type and length. This process adjusts how many attribute
categories are regarded in one category and how the combined
categories are comprised.

The results (hypotheses) in the LISp-Miner program are
presented to the user as contingency tables (Table 2). Based
on the contents of the contingency tables and hypotheses, the
user can assess the meaning and importance of the hypotheses
and also subjectively examine the initial data and determine the

rows from the data that support a hypothesis and those that
oppose a hypothesis.

In Table 2, n is the number of initial data matrix rows regarded
in a contingency table (n = a+ b+ c+ d), when a is the number
of objects satisfying both ϕ and ψ; b is the number of objects
satisfying ϕ, but not ψ; c is the number of objects not satisfying
ϕ, but satisfying ψ; and d is the number of objects not satisfying
ϕ nor ψ (Turunen, 2018).
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Ten data mining modules have been implemented into
the LISp-Miner software, two of which were applied in the
investigation of root causes for track geometry deterioration.
In the 4ft-Miner module, several quantifiers can be used to
evaluate the contingency table antecedent’s (ϕ) relationship
to its succedents (ψ) when condition (γ) is satisfied. In the
AC4ft-Miner (action miner) module, two contingency tables
are assessed and compared when some attributes remain stable
and others change (called flexible attributes) between the tables
(Berka, 2016). Pairs of rules specific for each quantifier are
available to test the contingency tables’ data.

GUHA quantifiers have an intuitive meaning, for example,
“often implies,” “almost equivalent,” and “above average.”
Association rules based on quantifiers founded implication (also
called p-implication or PIM) and above-average dependence
were applied in both modules used. Founded implication assesses
the commonness of the relationship p between contingency table
parameters a and b. This can be expressed by,

a
a+ b

≥ p and a ≥ Base (Rauch, 2013). (1)

By adjusting p, the user can choose to inquire hypotheses for
which the antecedents and succedents are fulfilled in 0 < p ≤ 1
of cases (Rauch, 2013). For example, the query may involve
asking in which cases the antecedent ϕ and succedent ψ are
simultaneously fulfilled in more than 90% of cases. In other
words, the association between ϕ and ψ is supported by the data
if at least 90% of the cases in which ϕ is satisfied also ψ is satisfied.

The association rule based on the above-average quantifier
tests how much more common succedent ψ is among the
antecedents ϕ in relation to all the instances of ψ in the whole
data set. This is defined more explicitly by

a
a+ b

≥ (1+ p)
a+ c

a+ b+ c+ d
and a ≥ Base (Rauch, 2013).(2)

when p > 0. Now, by adjusting p, the user can choose how
many more times above-average dependence must appear for the
hypothesis to be accepted. For example, by choosing p = 1, the

TABLE 2 | Contingency table satisfying condition γ (Berka, 2016; Turunen, 2018).

γ ψ ¬ψ 6

ϕ a b a + b = r

¬ϕ c d c + d = s

6 a + c = k b + d = l n

software will search the cases in which ψ appears two times more
often in relation to ϕ than ψ appears in the whole data.

Frequencies related to quantifiers are also implemented into
the modules. These regulate the Base value: the number of
occurrences in different contingency table slots. For example, a
quantifier for the contingency table parameter a ≥ Base = 1000
can be given. Then, LISp-Miner will not present any hypotheses
for which fewer than 1000 cases have fulfilled the antecedents,
succedents, and conditions regardless of other chosen quantifiers.

Examples of how analytical questions are formed to GUHA
questions and how hypotheses found by LISp-Miner procedures
are interpreted into comprehensible language can be found in the
next section.

RESULTS FROM APPLYING GUHA TO
RAILWAY TRACK STRUCTURE DATA

In this section, the application of the GUHA method to railway
data is demonstrated by conducting three different exemplary
GUHA data mining tasks. The demonstrations show how the
software is used and the types of results that can be obtained.
This section only presents the data mining queries and their
results. The results’ domain knowledge interpretations and the
possible broader implications to railway domain applications are
presented in the discussion.

In the demonstrations, analytical questions about the
development of the track structure condition are formed and
translated to GUHA language in LISp-Miner, and answers
(hypotheses) to the questions are presented. The analytical
questions were inquired using the data concerning the Luumäki–
Imatra track section. The technical information concerning the
queries and their results is composed into Table 3.

Analytical Question 1: What kind of track structure attributes
are associated with a certain type of track geometry deterioration
rate with more than four times above-average dependence?

The first query was conducted using 4ft-Miner module.
Base parameter for contingency table parameter a ≥ 2000
and quantifier over four times above-average dependence were
applied. All attributes except for the track geometry deterioration
rate could be chosen for antecedents, but the program was
limited to choose 2–5 attributes. The only succedent was the track
geometry deterioration rate, for which 1–4 sequential classes
could be chosen by the program. No conditions were applied.

The query concerning analytical question 1 resulted in
112,059,584 verifications (contingency tables), of which 163 were
in accordance with the preconditions (antecedents, succedents,
conditions, and quantifiers). These hypotheses were displayed

TABLE 3 | Technical information of queries.

Query Module Quantifier Base quantifier Verifications Number of hypotheses

1 4ft AAD ≥ 4 a ≥ 2000 112,059,584 163

2 4ft PIM ≥ 0.9 a ≥ 5000 111,967 50

3 AC4ft State before PIM ≥ 0.7 State before a ≥ 1000 2070 40

State after PIM ≤ 0.4 State after a ≥ 300
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TABLE 4 | Contingency table for analytical question 1 and 2 hypotheses.

Hypothesis 1 Hypothesis 2

Succedent ¬Succedent Succedent ¬Succedent

Antecedent 2106 1338 5350 415

¬Antecedent 5247 56,451 28,948 9,441

TABLE 5 | Attributes for analytical question 1 hypothesis.

Antecedent Class

Liner or station Line

Culvert No

Bridge No

Substructure moisture index >50 (%)

Frost insulation board Yes

Succedent Class

Track geometry deterioration rate >0.20 mm/a

to the user. One of the 163 hypotheses is presented below. Its
contingency table is presented in Table 4, and attributes are
presented in Table 5.

Hypothesis that is one answer to analytical question 1
(statement supported by the data): When the track section is
located on a line section that contains no bridges or culverts, its
substructure exhibits a high moisture index, and a frost insulation
board is installed in the track structure, the highest class of track
geometry deterioration rate is observed 4.4 times more often
than on average.

No conditions were set for the analytical question 1
query, so the whole track section, composed of 65,142
(=2106 + 1338 + 5247 + 56,451) rows of data, is presented in
the hypothesis and contingency table.

Analytical Question 2: What kind of track structure attributes
have the highest correlation to some types of track geometry
deterioration rate on a line section without track structure
discontinuity or frost insulation boards?

Analytical question 2 query was also conducted using the 4ft-
Miner module. Base parameter a ≥ 5000 and founded quantifier
PIM must be over 90% (p≥ 0.9) were used. Antecedents included
all track structure attributes aside from the track geometry
deterioration rate, discontinuity attributes, stations, and frost
insulation boards. The succedent included the track geometry
deterioration rate, from which the program could choose 1–4
sequential classes. Sections with signaling equipment, stations,
culverts, bridges, level crossings, turnouts, and frost insulation
boards were excluded using conditions.

Analytical question 2 query resulted in 111,967 verifications,
of which 50 were in accordance with the preconditions. One of
the 50 hypotheses is presented below. Its contingency table is
presented in Table 4, and attributes are presented in Table 6.

Analytical question 2 hypothesis (statement supported by the
data): A lower than average track geometry deterioration rate is
observed on 93% of the track structures that are founded on an
embankment, exhibit 300- to 500-mm-thick ballast layers, exhibit

a low structure moisture index, are located on straights, and have
low track deflection variance.

Because conditions were used to exclude certain types of track,
only 44,154 (=5350 + 415 + 28,948 + 9441) rows are now
presented in the contingency table, meaning that 20,988 rows
contained discontinuities, stations, or frost insulation boards and
were not included in the data mining task.

Analytical Question 3: If some track structure attributes are
stable, how does a change in the attribute for frost insulation
boards affect a certain type of track geometry deterioration rate
on a line section without track structure discontinuities?

The third analytical question was conducted using the 4ft-
Action Miner (AC4ft). Base parameter a ≥ 1000 for the before
state and a ≥ 300 for the after state were used. Founded
implication p ≥ 0.7 for the before state and p ≤ 0.4 for the
after state were applied. Antecedents’ stable part included all
track structure attributes except for frost insulation boards,
track geometry deterioration rate, stations, and discontinuities.
Antecedent attribute part included frost insulation boards. The
succedent stable part was the track geometry deterioration rate
from which the program could choose 2–4 sequential classes. In
the conditions, signaling equipment, stations, culverts, bridges,
level crossings, and turnouts were excluded.

Analytical question 3 query resulted in 2070 verifications,
which led to 40 results. One of the 40 results is presented
below. Its two adjacent contingency tables are presented in
Table 7, and attributes are presented in Table 8. There were
47,881 rows of data that met the conditions and were examined
in the hypothesis.

Analytical question 3 hypothesis (statement supported by the
data): When the track moisture index is very high and the number
of tamping times is low, a high track geometry deterioration rate
is observed on 79% of the structures where a frost insulation

TABLE 6 | Attributes for analytical question 2 hypothesis.

Antecedent Class

Foundation type Embankment

Ballast thickness 300–500 mm

Structure moisture index 10–40 (%)

Straight or curve Straight

Track deflection variance <0.01 mm

Succedent Class

Track geometry deterioration rate <0.10 mm/a

Condition Class

Signaling equipment No

Straight or curve Straight

Foundation type Embankment

Culvert No

Bridge No

Level crossing No

Turnout No

Frost insulation board No
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TABLE 7 | Contingency tables for analytical question 3 hypothesis.

Frost insulation board No frost insulation board

Succedent ¬Succedent Succedent ¬ Succedent

Antecedent 2014 533 371 2216

¬Antecedent 4996 40,338 6639 38,655

TABLE 8 | Attributes for analytical question 3 hypothesis.

Antecedent Class

Structure moisture index >50 (%)

Number of tampings 1–2

Frost insulation board Flexible attribute

Succedent Class

Track geometry deterioration rate >0.14 mm/a

Condition Class

Signaling equipment No

Straight or curve Straight

Foundation type Embankment

Culvert No

Bridge No

Level crossing No

Turnout No

board has been installed and on 14% of track sections where no
frost insulation board has been installed.

DISCUSSION

Case Track Section Data Mining
The hypothesis for analytical question 1 presented the
combination of parameters that were more commonly associated
with high track geometry deterioration rates, meaning that the
track section is abnormal as regards track geometry deterioration,
and the hypothesis attributes should be investigated further.

The attributes of the hypothesis include common attributes,
such as line sections instead of stations and the exclusion of
bridges and culverts. These do not create a distinct attribute
combination as the vast majority of the track section shares
these attribute types. The other two antecedents are far more
infrequent in the data: high substructure moisture index and
frost insulation boards. However, these two attribute values
are connected due to the GPR measurement technique. Frost
insulation boards increase the GPR moisture index of the
substructure layer because they cause the GPR signal to deflect
and give high readings that would normally indicate the
appearance of moisture. Therefore, it is reasonable to deduct
that the frost insulation boards are playing a major role in this
hypothesis. Based on this information, the areas located on line
sections in which frost insulation has been installed should be
further investigated. Such investigations have been reported in
Sauni et al. (2020).

The analytical question 1 hypothesis has good confidence as
more than 2 km of track support the statement, and about 1.3 km
of track oppose it. If the same hypothesis were to be created for
the rest of the track section, only around 5.2 km of track would
support it, and more than 56 km oppose it. Considering these
lengths, the behavior of the track section in accordance with the
hypothesis antecedents is unusual to say the least.

The hypothesis for analytical question 2 demonstrated the
highest correlation to a particular type of track geometry
deterioration rate. The result implied that almost all cases (93%)
of track sections in accordance with the antecedents exhibit only
low track geometry deterioration rates. This correlation does
not deviate from the average correlation (75%) of the rest of
the track section as much as the correlations in hypothesis for
analytical question 1. Nevertheless, this hypothesis showed that
the correlation is particularly strong as more than 5 km of track
satisfying the antecedents behaves almost uniformly.

The antecedents of the hypothesis for analytical question 2
exhibit properties traditionally associated with good structures
such as low moisture and low deflection variance. The results
are intuitive and demonstrate that the presumptions regarding
the properties presented in the antecedents are justified.
Furthermore, when all the hypotheses for analytical question 2
were examined, it was apparent that all hypotheses’ succedents
were related to low track geometry deterioration rates. This
may be the result of opting out track discontinuities and frost
insulation boards from the antecedents.

A difference could be observed between the types of
hypotheses obtained from analytical questions 1 and 2. Analytical
question 1 produced results concerning abnormal behavior of
track structures, whereas analytical question 2 produced results
concerning typical behavior.

The third analytical question provided a comparison of
two populations that differed by one antecedent class: frost
insulation boards. According to one produced hypothesis, the
existence of a frost insulation board divides track sections
consisting of track built on embankment without discontinuities.
On these structures with frost insulation boards, high track
geometry deterioration rates are observed on 79% of structures.
When only the attribute for frost insulation boards is changed
to no frost insulation board, the commonness of high track
geometry is practically converse at 14%. This result highlights
the major effect of frost insulation boards on the track geometry
deterioration rate.

Prospective of GUHA in Railway Track
Structure Condition Monitoring
In this section, the use of the tested LISp-Miner GUHA data
mining modules and quantifiers is discussed in a broader context
regarding railway track structure condition monitoring.

Stochastic analysis of railway track structures inherently leads
to handling heterogeneous data that originate from multiple
sources. The requirement for an analysis method and software
to handle this type of data is met using LISp-Miner, as text,
numerals, binary, and categorical data can all be used as they are.
Furthermore, missing data and outliers can be handled within
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the LISp-Miner software when creating attribute categories.
Thus, the GUHA method and LISp-Miner software provide an
adequate basis for track structure data analysis.

From the heterogeneous track structure data, the GUHA
method could be used to ask questions related to correlations
between variables and their combinations. Three different types
of questions were asked, for which different module-quantifier
combinations were used.

The 4ft-Miner module with the PIM quantifier can be
used to inquire about the most common types of attribute
combinations. For the investigation of the causes of track
geometry deterioration, these questions help in understanding
the most common types of track structure behavior. This helps
in identifying structures, i.e., the combination of attributes that
generally exhibit only a certain type of behavior.

The 4ft-Miner module with the above-average quantifier
can be used practically for the contrary of purpose as 4ft-Miner
with PIM. The above-average quantifier provides extraordinary
correlations between variable combinations when compared with
other variables’ correlations. In the context of investigating the
causes of track geometry deterioration, this approach can be
used to detect abnormal behavior of some structure types. This
information is of value in detecting the peculiar structure types
that exhibit problematic behavior.

The AC4ft-Miner module with the PIM quantifier approach
investigates the effects of changing one or some of the attribute
classes in a hypothesis. In practice, this method can reveal which
attributes have the dominant effect on a certain type of structure’s
behavior. This feature can be used to individually detect the
attributes contributing to geometry deterioration rate.

The encountered limitations of the GUHA method were the
dependence on initial data and the amount of effort required for
result analysis. The dependence on initial data stems from the
descriptive nature of the method. If the input data do not entail
the features affecting the behavior of the structure, the method
cannot produce results that exhibit such features. The initial data
available for the case track section were vast. However, such data
sets are not readily available for all track sections. To ensure
reliable and interesting results, the method should be used only
if extensive data are available.

The other encountered limitation was the difficulty to
communicate the results to people not familiar with GUHA. The
contingency tables and attributes can be subjectively translated
into comprehensible language, which aids communication.
However, some of the translated hypotheses can be difficult to
fully comprehend as they might contain many variables and
details. To counter the difficulties, visualizing the results should
be further researched.

CONCLUSION

Successful condition monitoring of track geometry requires
not only measurements and maintenance responses to
deviations but also investigations into the root causes for
its deterioration. For the investigations, an approach with
flexible data handling and good generalization ability is

required. Thus, stochastic models were examined instead
of deterministic models as the latter requires much too
specific input information, which is not usually available in
asset management.

From the stochastic models, an association rule data
mining method, GUHA, was selected to be tested. The
method is a descriptive data mining method, meaning that
it describes the input data and presents it to the user in an
informative way. The GUHA method is applied in software,
LISp-Miner, which can handle multivariate heterogeneous
data and produces hypotheses that are statements generated
from the input data.

The use of the GUHA method was tested on actual track
structure data from the Finnish state rail network. Three GUHA
module-and-quantifier combinations were examined. The results
from the data mining were used to generalize the types of domain
information that can be investigated using the GUHA method.
Three following applications for approaches were identified:

• 4ft-Miner and PIM quantifier identifies the structure
types (attribute combinations) that correlate strongly to
a certain track geometry deterioration rate.
• 4ft-Miner and above-average quantifier identifies the

structure types that exhibit behavior, which differs from
the typical behavior of structures.
• AC4ft-Miner module and PIM quantifier identify the

structure attributes affecting the behavior of structures
when changed.

Using the information obtained from these approaches, the
causes of track geometry deterioration can be investigated
from asset data. The method points out the structure types
correlating to certain behavior and identifies the attributes
governing the behavior. The main limitation of the method
is the dependence to the input data. If a feature is not
depicted in the initial data, it cannot be present in the
results either. The GUHA method and LISp-Miner contain
many more approaches in addition to the three tested
ones. Exploring the applicability of these in the future
would be valuable.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MS was responsible for gathering and processing the initial data
and conducting the data mining. HL and PK were responsible
for organizing the research and participated in the analysis
of the data mining results. ET supervised the data mining
process. All authors contributed to the article and approved the
submitted version.

Frontiers in Built Environment | www.frontiersin.org 10 August 2020 | Volume 6 | Article 122

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles


fbuil-06-00122 August 3, 2020 Time: 11:36 # 11

Sauni et al. Investigating Causes of Geometry Deterioration

FUNDING

This research was funded by the Finnish Transport
Infrastructure Agency (Väylä) and the Tampere University
Foundation sr.

ACKNOWLEDGMENTS

The authors would like to thank our funder, the Finnish
Transport Infrastructure Agency (Väylä), and the valued
cooperation between Tampere University and Väylä.

REFERENCES
Agrawal, R., Imielinski, T., and Swami, A. (1993). “Mining association rules

between sets of items in large databases. SIGMOD ’93,” in Proceedings of
the 1993 ACM SIGMOD International Conference on Management of Data,
New York, NY: ACM, 207–2016.

Andrews, J. D., Prescott, D., and De Rozieres, F. (2014). A stochastic model for
railway track asset management. Reliab. Eng. Syst. Saf. 130, 76–84. doi: 10.1016/
j.ress.2014.04.021

Audley, M., and Andrews, J. D. (2013). The effects of tamping on railway track
geometry degradation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 227,
376–391. doi: 10.1177/0954409713480439

Berawi, A. R. B., Delgado, R., Calçada, R., and Vale, C. (2010). Evaluating track
geometrical quality through different methodologies. IJTech 1, 38–47. doi: 10.
14716/ijtech.v1i1.35

Berka, P. (2016). Practical aspects of data mining using LISp-miner. Comput.
Inform. 35, 528–554.

Dahlberg, T. (2001). Some railroad settlement models–a critical review. Proc.
IMechE. Part FJ Rail and Rapid Transit. 215, 289–300. doi: 10.1243/
0954409011531585

Dahlberg, T. (2010). Railway track stiffness variations – consequences and
countermeasures. Int. J. Civil Eng. 8, 1–12.

Dunham, M. (2003). Basic Data Mining Tasks. Data Mining Introductory and
Advanced Topics. New Jersey: Prentice Hall, 5–9.

Esveld, C. (2001). Modern Railway Track, 2nd Edn. Zaltbommel: MRT-Prod.
Fayyad, U., Piatetsky-Shapiro, G., and Padhraic, S. (1996). From data mining to

knowledge discovery in databases. AI Magazine 17, 37–54.
Guler, H., Evren, G., and Jovanovic, S. (2011). Modelling railway track geometry

deterioration. Proc. Inst. Civ. Eng. Transp. 162, 65–75. doi: 10.1680/tran.2011.
164.2.65

Hájek, P., and Havránek, T. (1978). Mechanizing Hypothesis Formation:
Mathematical Foundations for a General Theory, 1st Edn. Berlin: Springer.
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