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Construction safety is a matter of great concern for practitioners and researchers
worldwide. Even after risk assessments have been conducted and adequate controls
have been implemented, workers are still subject to safety hazards in construction
work environments. The need for personal protective equipment (PPE) is important
in this context. Automatic and real-time detection of the non-compliance of workers
in using PPE is an important concern. Developments in the field of computer vision
and data analytics, especially using deep learning algorithms have the potential to
address this challenge in construction. This study developed a framework to sense in
real-time, the safety compliance of construction workers with respect to PPE, which is
intended to be integrated into the safety workflow of an organization. The study makes
use of the Convolutional Neural Networks model, which was developed by applying
transfer learning to a base version of the YOLOv3 deep learning network. Taking into
account the presence of hardhat and safety jackets, the model predicts compliance
in four categories such as NOT SAFE, SAFE, NoHardHat, and NoJacket. A data set
of 2,509 images was collected from video recordings from several construction sites
and this web-based collection was used to train the model. The model reported an
F1 score of 0.96 with an average precision and recall rate at 96% on the test data
set. Once a non “SAFE” category is detected by the model, an alarm and a time-
stamped report are also incorporated to enable a real-time integration and adoption
on the construction sites. Overall, the study provides evidence on the feasibility and
utility of computer vision-based techniques in automating the safety-related compliance
processes at construction sites.

Keywords: construction safety, personal protective equipment, deep learning, object recognition, convolutional
neural networks, computer vision

INTRODUCTION

Historically, the construction sector has suffered from very high accident rates compared to other
sectors (Somavia, 2005). The safety of construction workers has been a primary cause of concern
for project managers for a long time. In India, the construction sector employs around 10 million
people, next only to the agriculture sector (CIDC, 2014), and the track record of construction
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workers’ safety is alarming. India has one of the highest
accident rates in the world, with 15.8 incidents per 1,000
workers/year (Patel and Jha, 2014). Even though construction
site safety is regarded as an area of paramount importance,
the lack of adequate mechanisms for data gathering and
monitoring construction safety complicates this problem further
(Mahalingam and Levitt, 2007). Achieving safe environments for
workers poses a huge challenge to this sector globally, as well as
in an Indian scenario.

High injury rates in the construction sector are often
attributed to the inherently dangerous nature of this industry,
even though this assumption has been contested strongly
by researchers (Levitt and Samelson, 1993; Hinze, 1997;
Mahalingam and Levitt, 2007). Studies have shown that adopting
proactive measures has reduced accident rates in countries such
as the United States and Japan to a great extent (Rowlinson,
2004). Such measures include incorporating worker safety
from the design stage throughout the life-cycle of the project
(Gambatese and Hinze, 1999). Providing construction workers
with personal protective equipment (PPE) is one such crucial
measure. PPE, which includes but is not limited to hard
hats, shoes, vests, harnesses is often the last line of defense
against accidents.

Despite its effectiveness, worker compliance and use of PPE
is not always guaranteed (Cavazza and Serpe, 2009) and a
number of research studies have listed non-usage as a significant
factor that adversely affects construction safety (Tam et al.,
2004; Chi et al., 2005; Choudhry and Fang, 2008; de Oliveira
et al., 2018b). Thus, efficient monitoring mechanisms to identify
unsafe working conditions – including the absence of PPE for
workers – is a crucial part of construction safety management
(Toole, 2002). Monitoring for safety compliance is an important
area of research, as mechanisms and processes complete the
feedback cycle to construction managers, enabling them to
understand the efficacy of the safety policies and processes
implemented on a construction site (Hinze and Wiegand, 1992;
Gambatese and Hinze, 1999). Such mechanisms can provide
valuable data that can then be analyzed to characterize worker
behavior (Mohamed, 2002) and understand the safety climate
and culture on a construction site (Levitt and Samelson, 1993;
Teo et al., 2005). However, implementing such monitoring
mechanisms involving human agents, are not fail-safe and there
are numerous challenges associated with accuracy, timeliness,
and transparency (Seo et al., 2015). In response to this,
automated ways of monitoring and detecting unsafe conditions
are increasingly attracting the attention of researchers. Reliable
and real-time automated systems that monitor safety can
be of great benefit to this area (Cheng and Teizer, 2013).
Advances in the fields of machine learning and computer vision-
based techniques mean there is a renewed research interest in
automated ways of detection and early warning systems for
construction safety.

Recent advances in the field of computer vision and machine
intelligence offer efficient ways to tackle the challenge of accurate
safety monitoring in construction sites. Application of advances
in Artificial Intelligence and Machine Learning to construction
safety is gathering pace (Wang et al., 2019; Yu et al., 2019).

However, although very promising, research in these areas is
still in nascent phases. This study adds and complements this
research by making use of deep learning enabled computer vision
based techniques, to build a framework for PPE compliance
detection and monitoring.

Thus, the objective of this study is to develop a scalable
computer vision based deep learning framework to detect
PPE compliance. The study achieved this objective using
the context of hard hats and safety jacket detection on
the construction site. Similarly, the related sub-objectives of
this study were to demonstrate the functioning of the Deep
Learning based CV algorithm to detect hard-hats and safety
jacket compliance on site. The study will also demonstrate
the use of transfer learning as a means to extend the
trained CV algorithm to incorporate new classes depending
on the objective of safety monitoring on the site. The
model so trained and developed demonstrated robustness
in terms of detecting compliance in various contexts and
performed quasi-real-time detection on video streams from
construction sites. To achieve this objective, the study utilizes
convolutional-neural networks – a class of deep learning
computer vision algorithms that process the data, develop, train,
and validate the model.

RESEARCH BACKGROUND

Computer Vision in Construction
Management
Research in construction management has benefitted
immensely from parallel developments in the field of
computer science, especially those related to information
management and processing. Paradigms such as Building
Information Modelling (BIM), which aim at providing a
seamless information management model for the construction
process, have changed the way construction is managed
across the world. Similarly, recent advances in interfacing
technologies such as Augmented Reality (AR) and Virtual
Reality (VR) when combined with BIM offer the promise of
accurate visualization as well as virtualization of construction
management processes. These advances in the field of
machine learning offer potential avenues to effectively analyze
information, particularly when used in conjunction with
BIM, to provide timely business intelligence to managers.
Such methods usually rely on accurate and large amounts
of data to produce any meaningful intelligence. This need
translates to the use of various sensors (e.g., Radio Frequency
IDs or RFID technologies) that gather data. While there
is a need to gather different kinds of data from the field,
video feeds and images offer rich visual data records of
activity on-site, and computer vision-based techniques
help understand such visual data. In essence, computer
vision (CV) aims to solve the problem of understanding
the information from visual data points, for example,
an image or video sequence from the perspective of a
human eye (Szeliski, 2010). Research and application of
vision-based techniques in construction management have
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closely followed advances in the field of computer vision
and deep learning.

Early attempts to process vision inputs in construction
management used algorithms such as Structure from Motion
(Golparvar-Fard et al., 2009b, 2012) to identify the progress
of construction work on sites. Early research endeavored to
use techniques of image processing to identify relief features of
architecture from sparse images, using view dependent texture
mapping and model based stereo (Debevec et al., 1996; Lee
et al., 2012). Similarily, vision based techniques in combination
with information paradigms such as BIM are being adopted to
automate monitoring mechanisms in construction management
research in the areas of progress monitoring, productivity
measurement, object identification, and activity tracking of
workers and equipment on-site (Wang et al., 2019). Augmented
reality models (Golparvar-Fard et al., 2009a,b), time-lapsed
photographs (Son and Kim, 2010), and 4D-CAD based models
(Kim et al., 2013) were used for monitoring progress on
construction sites. These studies used image processing based
techniques used color and depth cues to monitor progress
(Golparvar-Fard et al., 2009b; Kim et al., 2013). Attempts were
also made to capture 3D data about the site using ranging
sensors such as laser scans (Bosche et al., 2009). Further, IFC-
based BIM models were used and updated to monitor progress
(Golparvar-Fard et al., 2012). Creation and updating BIM models
using CV techniques also received attention. Attempts were made
to integrate BIM with sensors to build navigation systems for
equipment on sites (Yang et al., 2012). Finally, Laser scanned
point clouds combined with images (stereovision) were also used
to automatically generate BIM models of existing buildings (Tang
et al., 2010; Lee et al., 2012). Therefore several such studies
have shown the efficiency and accuracy that is achievable in
CV based studies.

CV in Construction Safety Management
A fundamental step in construction safety-related research using
CV is to identify objects on a construction site. These objects
usually refer to workers, equipment, obstacles, or any other item
of interest to safety researchers. To enable this, a large amount
of reliable visual data is necessary. Other studies in the past have
included the collection of data using site videos (Teizer and Vela,
2009; Park et al., 2011; Wang et al., 2019), surveillance video
feeds (Yang et al., 2012) stereo cameras (Harville and Li, 2004;
Park et al., 2011), point clouds from LIDAR (Light Detection and
Ranging) (Chi et al., 2009) depth sensors (like Kinect, etc.) (Han
et al., 2012; Ray and Teizer, 2012) to identify and track objects like
workers and equipment on site. As the data becomes available,
the CV based algorithms should accurately identify the objects
in a given image or video frame. Early research in this area was
directed at extracting the right features from a visual data point
to identify relevant objects on a construction site. Consequently,
studies concentrated on sets of features to distinguish certain
classes of objects from one another. However, studies using
classic computer vision techniques have some key limitations.
The first limitation involves in-context identification. Context
identification would involve recognizing what is happening
on a construction site (e.g., working at heights, tower crane
movement, equipment used, and safety barrier provision) (Seo

et al., 2015; de Oliveira et al., 2019a). Classic computer vision
techniques fell short on performance, particularly in identifying
objects situated in different contexts. The use of feature extraction
in these studies usually adopted trained machine learning
classifier algorithms – multiclass classifiers (Han et al., 2012) or
large margin classifiers like Support Vector Machines (Harville
and Li, 2004) to classify and detect objects and activities based
on certain sets of identified features. However, having the
right set of features to detect an object can be challenging.
Furthermore, the training of object detection algorithms requires
it to process massive amounts of data. A way of addressing
the large data requirements of construction safety management
research is to employ deep learning advances in the field of
computer vision.

Recent advances in this field aim at utilizing the availability
of processing power to process large datasets and use deep
learning frameworks to meet various sensing related challenges
on construction sites. While several studies attempted to use
vision in the areas of progress monitoring, few studies have
concentrated on domains of worker safety and posture. In terms
of construction safety, recent studies make use of a combination
of vision-based techniques for various objectives of safety. To
ensure safety, research has tried to detect the dynamic workspaces
of workers on foot on construction sites (Luo et al., 2019).
They also attempted to use vision based techniques to detect the
likelihood of falls from a height resulting from safety hazards
(Fang Q. et al., 2018).

Studies have also made use of IoT based technologies and
RFID to detect whether people comply with instructions to
wear hard hats on construction sites (Zhang et al., 2019).
Mneymneh et al. (2019) utilized an aggregate channel-feature
based object detector to identify hard hats in a construction
site. In addition, platforms such as Cognitive Platform for
Hazard Control (CVP-HC) aim to bring together knowledge
engineering with a vision based cognitive systems to detect
unsafe activities and improve decision making processes in
workplaces (de Oliveira et al., 2019b). Overall, these studies have
advanced knowledge of the applicability of CV techniques in
construction management. The use of deep learning techniques
using CV based algorithms proved beneficial in construction
safety related research.

Recent developments in this field have also identified the
use of deep learning CV algorithms such as Convolutional
Neural Networks (CNN) as particularly beneficial (de Oliveira
et al., 2018b; Fang W. et al., 2018; Wang et al., 2019). The
detection of objects such as hard hats and safety jackets is a
major step forward in monitoring the process of encouraging
workers to automatically comply with PPE. This detection raises
classification problems in the domain of machine learning and
artificial intelligence. A classification problem is described as a
function f : Rn

→
{

1, . . . , k
}

, where the algorithm classifies
into k classes/categories. The classification problem is at the core
of the Convolutional Neural Networks (CNNs), which aim to
learn to recognize images as a way of detecting and classifying
particular objects in images. CNNs were first introduced around
1989. Earlier applications of CNN involved face recognition
(Lawrence et al., 1997) and digit recognition (Niu and Suen,
2012). Convolutional neural networks are large and deep neural
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networks with several convolutional and fully connected layers
followed by a classifier layer. CNNs have proved very efficient
in processing large image databases for supervised learning
(Krizhevsky et al., 2012). The success of CNNs can be attributed
to the availability of larger datasets, increased computational
power, and improved regularization techniques (Zeiler and
Fergus, 2013). CNNs are especially useful in detecting PPE and
crucial in safety related research (de Oliveira et al., 2018a).
Researchers have tried and tested various Neural Network
Architectures and faster R-CNN, as well as Single Shot Detection
(SSD) algorithms, have been used to detect PPE (de Oliveira
et al., 2018a). Faster R-CNN was also used to detect workers and
equipment on construction sites to predict collision probabilities
(Wang et al., 2019). Such studies have given the effectiveness
of using deep learning algorithms and knowledge-based systems
to move toward real-time, automated, and intelligent safety and
hazard detection platforms.

The search for a suitable architecture of the deep learning
algorithm is ongoing. Research is still exploring the ability to
perform incremental training on already trained algorithms to
add new functionalities, often referred to as transfer learning.
This ability will help in scaling the algorithms for deployment on
construction sites. Furthermore, construction sites in countries
such as India are more labor-intensive and congested. This poses
difficulties for the CV algorithms, as it makes accurate prediction
more difficult because there are occlusions and overlapping
frames of objects in images of construction sites.

This study complements and augments the existing studies
discussed above. We experimented with a robust CNN based
algorithm called YOLO (You only look once), which is
comparable to Faster R-CNN and SSD algorithms. Since YOLO
has a faster prediction rate, it is a good potential candidate
for real-time prediction of safety hazards on construction sites.
Transfer learning was tested on an already trained YOLO model
to customize it to construction safety. The PPE detection was
restricted to a hard hat and safety jacket as these are the
most commonly used PPE on construction sites in India. The
algorithm was validated on video feeds from Indian construction
sites to understand the applicability of such techniques in
an Indian scenario. The next section introduces the YOLO
algorithm in brief.

YOLO
A cutting-edge algorithm that utilizes the principles of CNN, the
You only look once (YOLO) algorithm is an object detection
system targeted for real-time processing (Redmon et al., 2016).
YOLO divides the input image into an S × S grid. Each grid
cell predicts only one object and a fixed number of boundary
boxes. For each grid cell, it predicts B boundary boxes and each
box has one box confidence score. Then, it detects one single
object, regardless of the number of boxes B. Finally, it predicts C
conditional class probabilities (one per class for the likeliness of
the object class). Each boundary box contains 5 elements: (x, y, w,
h) and a box confidence score. The confidence score reflects how
likely the box is to contain an object, objectness in terms of YOLO
authors, and how accurate the boundary box is. We normalized
the bounding box width w and height h by the image width and
height. x and y are offsets to the corresponding cell. Hence, x, y,

FIGURE 1 | Research methods used for the study.

w, and h are between 0 and 1. The class confidence score for each
prediction box is computed as:

class confidence score = box confidence score×

conditional class probability (1)

YOLOv2 and YOLOv3 were an improvement over YOLO which
introduced batch normalization, high-resolution classifiers,
convolutions with anchor boxes, multi-scale training, and
joint classification and detection. YOLOv3 uses softmax based
prediction and enables multi-label classification. It utilizes a
53-lkayer Darknet-53 architecture as a feature extractor from
images. YOLOv3 is an advanced CNN architecture whose mean
AP (Accuracy precision) metric is comparable to other similar
architectures like Faster R-CNN, SSD513, RetinaNet, and DSSD
(Redmon and Farhadi, 2018), but offers a faster prediction rate
when compared to other algorithms. YOLOv3 has proved to
be effective at detecting multiple workers on construction sites
(Luo et al., 2019). Thus, YOLOv3 was chosen as the base CNN
architecture for the present study.

RESEARCH METHOD

This study chose to implement the model using YOLOv3 network
architecture using keras backend. Keras is a high-level neural
network API written in Python which enables the seamless
implementation of algorithms using the Tensorflow framework,
offering an easy way to implement deep learning algorithms
and quickly experiment with the results. Figure 1 indicates
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the research method for this study, which follows the standard
method for deep learning models. The key processes involved
are setting up the algorithm, dataset preparation, training, and
validation of the models. The following sections describe these
processes in detail.

Environment Setup
The hardware for the system was utilized to test the real-time
processing of the algorithm on the field data. It consisted of an
Intel Core i7-4790@3.60GHz ∗8 CPU and Intel HD Graphics
GPU with a RAM of 8GB 1,600 MHz. The basic environment
consists of python3, pip, OpenCV, Tensorflow, and Keras on
Ubuntu 16.04 operating system. The image annotation is done
using the lableImage-master software tool which is open-source
software available on GitHub. The development was done on a
jupyter notebook and utilized atom text editor. The YOLOv3
model is used for transfer learning in the keras framework.
The final output layer is modified to output 4 classes namely –
NOTSAFE, SAFE, NoJacket, NoHelmet - by changing the filter
sizes. The trained weights of the YOLOv3 are used as an initial set
of weights for the CNN network and the convolutional and fully
connected layers are all opened up for training with the data from
construction sites. In addition to the above, a code to generate
alarms and reports in cases of non-compliance was developed, to
increase the utility of the algorithm on construction sites.

Data Set Preparation
The important part of training the machine learning algorithm
was the collection and preparation of data to aid the validation
of the model. The preparation of the dataset is the most time-
consuming and critical component as it enabled efficient training
and accurate detection by the algorithm. Data is collected by both
manual collection and image scraping online. Firstly, for manual
collection, data was collected from multiple construction sites
where the videos of ongoing works are recorded. The frames from
the videos are later extracted as images. The image capturing was
done at an interval of 3 s and a total of 260 images were collected.
The purpose of this data is to have a close approximation of
the CCTV video data used by the algorithm to predict non-
compliance in real-time. Secondly, images are scraped from
the internet using web-crawlers developed in python using
the google_images-download library to gather 2,000 images.
The images were then manually checked for relevance to the
study. This filtering involved discarding images with watermarks,
synthetically generated images, and images not on construction
sites. However, a few of the images with backgrounds different
from the usual construction sites were retained to induce variety
into the training data. After this process, 1500 images were
selected for the dataset. The dataset consisted of examples of all
four different classes. Data augmentation was performed on 1,760
images that were collected through standard augmentations such
as flipping, rotating 30 degrees right, and 30 degrees left. The final
data set had a total of 2,509 images and 4,132 data points for the
study. Once the dataset was collected, the data was labeled using
labelImg-master, a graphical image annotation tool. The images
were labeled according to the four cases NOTSAFE, NoHardhat,

NoJacket, and SAFE with bounding boxes. Annotations were
saved as XML files.

The final data set had a total of 2,509 images and 4,132 data
points. We adopted a train-validation-test set with a random split
of 90:8:2 for training. The training set consisted of 2,217 images,
238 images in the validation set and the test set had a total of
54 images. The class-wise separation of each data set is shown in
Table 1. We ensured that there was adequate representation of all
four classifications in each of the datasets. The generated datasets
had annotations in the XML file for the four classifications for
each image. The XML files were finally collated into a text file to
a code readable format for training and validation purposes.

Training
The training was done in three stages. The first stage has an
epoch of 500 before and after unfreezing all layers. Later ones had
50 epochs each before and after unfreezing all layers. The final
model from previous training was used as the initial model for
subsequent training. The first model for training was made by
combining the cfg file and weights file of yolov3. An h5 model file
was generated, which had 252 layers. The model layers include 23
adding layers, 72 batch normalization layers, 75 2D convolutional
layers, 72 leaky relu layers, five 2D zero padding layers, two each
concatenate and up-sampling layers, and a YOLO loss layer. The
data after all epochs before unfreezing all layers and three epochs
after unfreezing all layers in training was stored as a new model.
Tensorboard callbacks were added to the code for visualization
of training loss. For better training, reducing the learning rate
of a change in validation loss was not less than 0.1, considering
the last three epochs were incorporated in the code. To avoid
overfitting, early stopping of a change in validation loss is nil
for the last ten epochs used. During training, only the last ten
layers were trainable for the first part, and in the second part, all
layers were trainable. The batch size for the first stage of training
is 8 and 4 for the first and second parts. The later stages had
batch sizes of 4 and 2 for the first and second parts, respectively.
Adam optimizer, with an initial learning rate of 0.001, was used
for training. As early stoppage was used, with the first training
stopped after 509 epochs, the second one after 92 epochs, and the
last one after 70 epochs.

The training progress of a network was monitored using any
of the two parameters, namely loss, and accuracy. In this model,
a new loss function named YOLO loss was used to monitor the
training. After the first stage the loss was 21.88, after the second
it came to 12.87 and the final loss is 12.06. The loss versus the
number of epochs curve is as shown in Figure 2.

TABLE 1 | Data point distribution among train-validation-test datasets.

Train set Validation set Test set

Number of images 2217 238 54

Data points per class NOTSAFE 882 96 19

NoHardhat 779 72 17

NoJacket 970 112 23

SAFE 1040 115 27
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FIGURE 2 | Training loss vs. Epoch number.

RESULTS

The final loss of the network was 12.06 after the three stages
of training. A confusion matrix was created for validation and
testing the dataset, and the accuracy of the model was calculated
as the number of true predictions over the total number of
predictions. Furthermore, an entirely new dataset with a variety
of contexts and backgrounds was created using video footage of
people wearing PPE. The trained model was then tested both
on the image as well as video files to assess the performance
of the algorithm.

Performance on Image Datasets
Each image was processed at speeds of between 2 images per
second and 1 image per second, irrespective of the number of
the classes/bounding boxes detected in the image. A confusion
matrix was used to understand the performance of the trained
model, in which human interpretations and model predictions
were counted and marked on a table. Accuracy and the F1
score were the parameters used to assess the model performance.
For this, True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) values of each class were
counted and tabulated. The accuracy of the model was the
sum of TP over the Total number of data points. Precision
was: given a class prediction from the classifier model; how
likely is to be correct; and calculated as TP over the sum of
TP and FP. The recall was: given a class; will the classifier
model detect it; and calculated as TP over the sum of TP
and FN. The F1 score was the harmonic mean of precision
and recall and was calculated as two times the product of
precision and recall over the sum of precision and recall.

TABLE 2 | Confusion matrix for the validation set.

Human

Notsafe NoHardhat NoJacket Safe

MODEL NOTSAFE 85 0 1 0

NoHartdhat 0 75 0 2

NoJacket 5 0 105 2

SAFE 0 0 4 96

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score = 2 ×
Precision × Recall
Precision+ Recall

(4)

Validation Dataset
Table 2 shows the confusion matrix, as predicted by the trained
model, after processing the images in the validation data set.

The outputs showed an overall accuracy of 96.27%. The cells
marked in green are the ones with the maximum number of
detections. As can be seen, the maximum number of results
match, indicating that the model was predicting well on the
validation data set. The classification report, which includes TP,
TN, FP, and FN of each class, precision, recall, and F1 score of the
model on the validation of the data set, is indicated by Table 3.
The accuracy of the model is 96.27%, with average precision and

Frontiers in Built Environment | www.frontiersin.org 6 September 2020 | Volume 6 | Article 136

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles


fbuil-06-00136 September 22, 2020 Time: 19:47 # 7

Delhi et al. Detection of PPE Using CV Sensing

TABLE 3 | Classification report for the validation set.

TP TN FP FN Precision Recall F1 score

NOTSAFE 85 284 1 5 0.99 0.94 0.97

NoHardhat 75 298 2 0 0.97 1.00 0.99

NoJacket 105 258 7 5 0.94 0.95 0.95

SAFE 96 271 4 4 0.96 0.96 0.96

Average 0.96 0.96 0.96

TABLE 4 | Confusion matrix for the test set.

Human

Notsafe NoHardhat NoJacket Safe

MODEL NOTSAFE 19 0 1 0

NoHartdhat 0 17 0 0

NoJacket 0 0 21 1

SAFE 0 0 1 26

TABLE 5 | Classification report for the test dataset.

TP TN FP FN Precision Recall F1 score

NOTSAFE 19 66 1 0 0.95 1.00 0.97

NoHardhat 17 69 0 0 1.00 1.00 1.00

NoJacket 21 62 1 2 0.95 0.91 0.93

SAFE 26 58 1 1 0.96 0.96 0.96

Average 0.97 0.97 0.97

recall both 0.96 and an F1 score of 0.96. These results suggest
that the model was predicting with an accuracy of 96% on the
validation data set.

Test Dataset
Table 4 shows a confusion matrix, which was made after
processing the images in the validation data set. The outputs
showed an overall accuracy of 96.51%.

The classification report includes TP, TN, FP, and FN of each
class, precision, recall, and F1 score of the model on the test data
set, shown in Table 5.

The accuracy of the model is 96.51%, average precision and
recall are both 0.97 and the F1 score is 0.97. These results indicate
that the model was predicting with an accuracy of 96% on the test
data set. This result in the validation data set was also obtained for
the test set, meaning that the model was performing consistently
and predicting images with an accuracy of overall 96%. The
sample output predictions are demonstrated in Figure 3.

Prediction on Novel Datasets
Computing the performance of the model to analyze a novel
data set, gives insights into the real-world performance of
the model. The new data set was designed to be a set of
images that use different kinds of safety jackets or hardhats,
other than those that the model was trained to recognize.
A data set that was completely new to the model, that
matched the PPE characteristics of the test data set, was
developed by manual collection and image scraping. The

FIGURE 3 | Frames of video output, demonstrating change of classification.

detection model is run on the novel data set and results
are obtained and the confusion matrix was made, as shown
in Table 6.

The classification report includes TP, TN, FP, and FN of
each class, precision, recall, and the F1 score of the model
on the test data set is shown in Table 7. The accuracy of
the model was 96.92%, average precision was 0.98, the recall
was 0.95, and the F1 score was also 0.96. Taking this into
account, the model was predicting with an accuracy of 96%
on the novel data set. The accuracy of the present model
can be compared to models that were developed earlier using
R-CNN and SSD algorithms in earlier studies (de Oliveira et al.,
2018a, 2020). The detection rate is also comparable to earlier
models developed for equipment detection using a faster R-CNN
network (Wang et al., 2019).

Performance of the Video File
To test the robustness of the trained model, the model
was used to predict a video file generated from CCTV
video footage in mp4 format. The processing was done
at a rate of 2 frames per second. This reduced speed
is due to the limited computational resources of the
system. The predicted model performed well in detecting
a person through frames. Furthermore, the algorithm
successfully classified the person as unsafe when there
was a change in the PPE they were wearing, for example
when they removed a hard hat or jacket. Similarly,
an unsafe person was reclassified as SAFE when PPE
compliance was found. This dynamic is demonstrated in
Figure 4.

TABLE 6 | Confusion matrix for the novel dataset.

Human

Notsafe NoHardhat NoJacket Safe

MODEL NOTSAFE 14 0 0 0

NoHartdhat 0 8 0 0

NoJacket 0 0 21 0

SAFE 0 2 0 20
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FIGURE 4 | Sample demonstration of the prediction of the developed model.

TABLE 7 | Classification report for the novel dataset.

TP TN FP FN Precision Recall F1 score

NOTSAFE 14 51 0 0 1.00 1.00 1.00

NoHardhat 8 55 0 2 1.00 0.80 0.89

NoJacket 21 44 0 0 1.00 1.00 1.00

SAFE 20 43 2 0 0.91 1.00 0.95

Average 0.98 0.95 0.96

Thus, the developed and trained CNN model based on
the YOLOv3 network structure performed well in terms of
precision and recall with regards to the detection of PPE worn
by construction workers.

CONCLUSION AND FUTURE RESEARCH

This study used deep learning-based computer vision
algorithms in the automated detection of the key processes
that sustain construction safety and on-site management.
Using YOLOv3, a state of art object detection algorithm,
this study demonstrates how safety compliance can
be automatically detected by using a trained model to
examine data from sites. The study demonstrated the
deployment of such algorithms on construction sites to
aid near real-time detection of safety violations. Systems
such as this could be used to deploy similarly trained
algorithms to process CCTV video footage from construction
sites, generating a dashboard for real-time monitoring.
The model developed in this study could be used in
frameworks for regularly reporting non-compliance with
safety regulations.

This study demonstrated the usefulness of deep learning-
based CV frameworks in the accurate monitoring of
safety on construction sites. Furthermore, a small module
could also be added to this framework to generate a
regular report with screenshots of instances of non-
compliance. These could be automated and sent out as
daily/regular reports, enabling construction managers
to escalate and address non-compliance and ensure
on-site safety. The study also demonstrated the use

of transfer learning in trained algorithms as a way to
customize them to particular contexts. Techniques such
as this are important in ensuring the scalability and
application of the framework, enabling it to incorporate
new functionalities such as detecting new classes of
PPE, for example, should a job require new or more
specialist equipment.

There are some limitations to this study concerning
the algorithm, which would benefit from a faster frame
rate to enable real-time prediction. The frame rate for
processing the video images is about 2 fps which could
be improved further by fine-tuning the hyperparameters
of the algorithm. Moreover, the capacity for prediction
suffers from the usual problems of occlusion and some
color mismatching (especially for hard hats) which could be
refined by using larger datasets in the future. The study
also used supervised machine learning techniques, and future
research would benefit from a combination of supervised
and unsupervised techniques to generate more intelligent
systems. The development of this business intelligence is
an ongoing effort. The present models form one piece of
larger frameworks, which could be evolved to completely
automate safety monitoring without manual interventions. Such
frameworks might use sensing technologies beyond vision
to create an ability to understand the safety conditions
in a more comprehensive manner. Future applications and
technologies might make use of techniques such as the
Internet of Things (IoT) and other big data to completely
automate responses to hazards. These research directions
present exciting opportunities for enhancing safety in the
construction industry. This study has presented a cutting edge
deep learning-based computer vision algorithm with substantial
implications and applications that opens up possibilities for
incorporating machine intelligence that can automatically predict
and monitor safety.
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