
ORIGINAL RESEARCH
published: 25 September 2020
doi: 10.3389/fbuil.2020.558034

Frontiers in Built Environment | www.frontiersin.org 1 September 2020 | Volume 6 | Article 558034

Edited by:

Farrokh Jazizadeh,

Virginia Tech, United States

Reviewed by:

Joaquín Ordieres Meré,

Polytechnic University of Madrid,

Spain

Clayton Miller,

National University of Singapore,

Singapore

David Irwin,

University of Massachusetts Amherst,

United States

*Correspondence:

Gabe Fierro

gtfierro@cs.berkeley.edu

Specialty section:

This article was submitted to

Structural Sensing,

a section of the journal

Frontiers in Built Environment

Received: 01 May 2020

Accepted: 12 August 2020

Published: 25 September 2020

Citation:

Fierro G, Koh J, Nagare S, Zang X,

Agarwal Y, Gupta RK and Culler DE

(2020) Formalizing Tag-Based

Metadata With the Brick Ontology.

Front. Built Environ. 6:558034.

doi: 10.3389/fbuil.2020.558034

Formalizing Tag-Based Metadata
With the Brick Ontology

Gabe Fierro 1*, Jason Koh 2, Shreyas Nagare 3, Xiaolin Zang 3, Yuvraj Agarwal 3,

Rajesh K. Gupta 2 and David E. Culler 1

1Computer Science, University of California, Berkeley, Berkeley, CA, United States, 2Computer Science, University of

California, San Diego, San Diego, CA, United States, 3Computer Science, Carnegie Mellon University, Pittsburgh, PA,

United States

Current efforts establishing semantic metadata standards for the built environment span

academia, industry and standards bodies. For these standards to be effective, they

must be clearly defined and easily extensible, encourage consistency in their usage, and

integrate cleanly with existing industrial standards, such as BACnet. There is a natural

tension between informal tag-based systems that rely upon idiom and convention for

meaning, and formal ontologies amenable to automated tooling. We present a qualitative

analysis of Project Haystack, a popular tagging system for building metadata, and identify

a family of inherent interpretability and consistency issues in the tagging model that stem

from its lack of a formal definition. To address these issues, we present the design and

implementation of the Brick+ ontology, a drop-in replacement for Brick with clear formal

semantics that enables the inference of a valid Brick model from an informal Haystack

model, and demonstrate this inference across five Haystack models.

Keywords: smart buildings, building management, metadata, ontologies, OWL, RDF, Brick, Project Haystack

1. INTRODUCTION

Smart buildings have long been a target of efforts aiming to reduce energy consumption, improve
occupant comfort, and increase operational efficiency. Although a substantial body of work
advances the state-of-the-art—including automated control (Piette et al., 2009; Sturzenegger et al.,
2012; Capozzoli et al., 2017), modeling (Privara et al., 2013) and analysis (Schein et al., 2006; Jahn
et al., 2011)—such approaches do not see widespread use due to the prohibitive cost of configuring
their instantiation to each building. A major factor in this cost is due to lack of interoperability
standards; without such standards, the rollout of energy efficiency measures involves customizing
implementations to the one-off combinations of hardware and software configurations that are
unique to each building. Limited deployment of energy efficiency applications constrains the
ability to evaluate potential savings (Mims et al., 2017). Recent studies by the US Department of
Energy (Hardin et al., 2015; OSTI, 2016) have established that a lack of interoperability standards for
buildings reduces the cost-effectiveness and scalability of energy efficiency techniques and analyses.

Semantic metadata standards present a promising path to enabling interoperability by offering
uniform descriptions of building resources to application developers and building operators.
Today, semantic metadata standardization efforts for buildings span academia (Balaji et al., 2016),
industry (Roth, 2014; Project Haystack, 2018) and standards bodies (Rasmussen et al., 2017;
American Society of Heating, Refrigerating and Air-Conditioning Engineers). As applications
developed for the built environment have become increasingly data-focused, recent metadata
standard efforts have shifted from supporting the initial construction and commissioning phases
of operation to enabling robust descriptions of the provenance and context of collected data.

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2020.558034
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2020.558034&domain=pdf&date_stamp=2020-09-25
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gtfierro@cs.berkeley.edu
https://doi.org/10.3389/fbuil.2020.558034
https://www.frontiersin.org/articles/10.3389/fbuil.2020.558034/full

Fierro et al. Formalizing Tag-Based Metadata

1.1. Brick and Haystack Metadata Systems
Emerging data-oriented metadata standards differ in their
support for consistent and extensible use. De-facto industrial
metadata practices have embraced unstructured vendor- and
building-specific idioms intended for human consumption rather
than programmatic manipulation. Several standardization efforts
have arisen to address the ad-hoc nature of building metadata.
Of these, Brick (Balaji et al., 2016) and (Project Haystack,
2018) have seen adoption and investment from academic and
industrial sources, and are involved in the ASHRAE 223P effort to
standardize semantic tagging for building data (American Society
of Heating, Refrigerating and Air-Conditioning Engineers).

Project Haystack is a commonly-used open building metadata
standard that replaces unstructured labels with semi-structured
sets of tags1. However, the informal and ad-hoc composition of
these tags precludes consistent usage; this leaves interpretation of
tags up to the tacit knowledge of domain experts.

Brick is a recently introduced metadata standard designed for
completeness (describing all of the relevant concepts required for
applications), expressiveness (capturing the explicit and implicit
relationships required for applications) and usability (fulfilling
the needs of domain experts and application developers).
Although evaluations of Brick demonstrate its ability to robustly
capture a wide variety of application requirements, the story
of how Brick integrates with existing tooling and industrial
practices, such as Haystack, has been less clear.

Put simply, Brick and Haystack serve different goals. Brick is
designed for the complete and consistent modeling of concepts
required for developing portable software that can be deployed at
scale. Haystack is designed for building managers and engineers
who need familiar idioms for developing and using software
designed to function on a small number of buildings. However,
these informal practices are not sufficient for the large-scale
standardization of consistent semantic metadata necessary for
the widespread deployment of energy efficiency applications.
Consistent metadata requires a set of rules formalizing how
metadata can be defined, structured, composed, and extended.

In this paper, we present the design and implementation
of Brick+, a drop-in replacement for the Brick ontology with
clear formal semantics designed for the sensible composition
of concepts required for portable building applications. The
key design principle of Brick+ is the choice to model concepts
in terms of the formal composition of their properties. This is
more expressive than the original Brick class hierarchy which
captures specialization, but not behavior. Brick+ enables the
inference of properties beyond what can be captured by tag-
based metadata schemes or the original Brick schema, including
modeling the behavior of equipment and points and formalizing
Haystack models.

Ultimately, the formal representation of metadata enables
a greater degree of consistency and consistency on behalf of
the model, while enabling a family of supporting tooling that
facilitate the production of Brick+ models from existing tag-
based metadata, the systematic validation of those models, and
the migration of existing Brick models to the proposed Brick+.

1Referred to as “Haystack” in the rest of the paper.

1.2. Overview
Section 3 presents an analysis of the systemic interpretability
and consistency issues endemic to the Haystack metadata system,
motivating the need for formal rules for composition. This is one
of the first systematic evaluations of Project Haystack’s approach
to metadata: how it impacts consistency and to what extent it
enables or inhibits semantic interoperability. Section 4 presents
the design of Brick+, a drop-in replacement for Brick with clear
formal semantics. Brick+ defines a class lattice that structures
the composition of concepts. This lattice enables Brick+ to
define inference from Haystack’s informal tags to formal Brick
classes. Section 5 presents the implementation of Brick+ using
the OWL-DL ontology language and defines the process by
which a Brick model can be inferred from a set of tagged
Haystack entities. Section 8 evaluates the Brick+ ontology and
inference methodology by observing the accuracy of classifying
entities from five Haystack models to Brick+, and examining the
additional properties that can be inferred by Brick+ over 104
existing Brick models. Section 9 summarizes ongoing and future
efforts to integrate the Brick and Haystack metadata standards
and concludes.

Since publication of Fierro et al. (2019), Brick+ has been
adopted into the release of Brick v1.1. This paper extends (Fierro
et al., 2019) with:

1. A deeper discussion of the challenges in formalizing metadata
tags, and how the implementation of Brick+ resolves these
issues (section 5.2)

2. The design and implementation of a tool for validating usage
of the Brick ontology using SHACL, and techniques for
defining templates and idioms that assist in Brick usability
(section 6)

3. The design and implementation of a tool for migrating Brick
models from older versions of the Brick ontology to newer
versions (section 7)

The production and evaluation of the above Brick+ tooling
validates the choice of a formalized semantic metadata model.
Not only is the tooling straightforward to construct given
the Python-based implementation and formal construction, it
also presents an opportunity to unify the Brick and Haystack
metadata standards beyond a fragile “house of sticks” constructed
from idiom and convention.

2. BACKGROUND

We define a set of concepts for later use, provide an overview of
the Brick andHaystackmetadatamodels, and discuss how Brick+
fits into the existing body of literature.

2.1. Definitions
We refer to the following terms throughout the paper:

• A tag is an atomic fact or attribute; tags may or may not be
associated with a value.

• A tag set is an unordered collection of tags associated with
an entity.

• A valid tag set is a tag set with a clear, real-world definition.
• An entity is an abstraction of a physical, logical or virtual item.

Frontiers in Built Environment | www.frontiersin.org 2 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

• A class is a category of entities defined by a particular shared
purpose and properties.

In Brick and Brick+, classes are organized by the subclass and
superclass relationships between classes. This approach organizes
classes naturally in terms of more specific or more general
concepts. For example, the class of “sensors” is more general
than the class of “temperature sensors” (sensors that measure the
temperature property of some substance) and the class of “air
sensors” (sensors that measure properties of air), which are both
more general than the class of “air temperature sensors” (sensors
that measure the temperature property of air). In Brick, Air
Temperature Sensor is the class of all entities that measure
the temperature of air.

2.2. Haystack
Haystack defines entities as a set of value tags (representing
key-value pairs) and marker tags (singular annotations). Value
tags define attributes of entities such as name, timezone, units,
and data type. Ref tags are a special kind of value tag that
refer to other Haystack entities. These hint at relationships,
but are entirely generic; the relationship is understood by
convention. Haystack provides a dictionary of defined tags on
its website (Project Haystack, 2018). The set of marker tags for
an entity constitute the “tag set” for that entity and construe the
concept of which the entity is an example (its “type”).

2.3. Brick
The Brick ontology has two components: an extensible class
hierarchy representing the physical and logical entities in
buildings, and a minimal set of relationships that capture the
connections between entities. A Brick model of a building is
a labeled, directed graph in which the nodes are entities and
the edges are relationships. Brick is defined using the Resource
Description Framework (RDF) data model (Lassila and Swick,
1999), which represents graph-based knowledge as tuples of
(subject, predicate, object) termed triples. A triple
states that a subject entity has a relationship (predicate) to an
object entity. Line 2 of Figure 2 is a triple for which the subject
is :sensor1, the predicate (relationship) is a, and the object is
brick:Temperature_Sensor.

Brick and Brick+ are both defined with the RDFS (Guha and
Brickley, 2014) and OWL (Bechhofer et al., 2004) knowledge
representation languages. These languages allow the expression
of rules and constraints for authoring ontologies, which can be
interpreted by a semantic reasoner such as HermiT (Glimm et al.,
2014) to materialize inferred triples from a set of input triples.
Brick+’s use of a semantic reasoner is covered in section 5.

2.4. Prior Metadata Construction Efforts
Several other works conduct inference and classification to
extract structure from unstructured building metadata, including
leveraging semi-supervised learning approaches to learn parsing
rules for unstructured labels (Bhattacharya et al., 2015b; Koh
et al., 2018), classifying sensors by examining historical timeseries
data (Gao et al., 2015; Hong et al., 2015), or by combining
timeseries analysis with label clustering (Balaji et al., 2015).
These efforts are largely complementary to Brick+. Brick+ defines

formal methods for inference-based classification of tagged
entities, but requires external support for extracting tagged
entities from unstructured metadata.

Beyond the building domain, there is a family of
work (Passant, 2007; Passant and Laublet, 2008) using ontologies
to provide structure to tag-based folksonomies (Mathes, 2004).
The approaches developed in these works, along with work on
formal concept analysis (Wille, 2009) and concept lattices (Wille,
1992), form the theoretical basis for Brick+.

2.5. Relation to Building Information
Modeling
Building information modeling (BIM) relates to the data
exchanged for the design, construction and commissioning of a
building. BIM models contain extensive lists of building assets
in addition to 3D geometry, and there is active research into
extending the use of BIM for operation and maintenance (Yang
and Zhang, 2006; Tang et al., 2020). However, BIM models
lack direct representation of the contextual metadata described
by Brick and Haystack (Bhattacharya et al., 2015a; Lange
et al., 2018). For example, a BIM model can represent a fan
and describe its physical properties such as the shape of the
blades, but does not explicitly label whether the fan is installed
on the supply or return side of an HVAC system. Deriving
that information requires traversing the complex objects and
relationships that describe the ducts, connectors and other
components of the HVAC system (Dong et al., 2007), which
is difficult to do in an automated manner. Despite these
difficulties in retrieving the contextual metadata required to
run data-driven applications, BIM is largely complementary to
Brick and Haystack. Recent work in representing BIM models
using an OWL-based ontology (Pauwels and Terkaj, 2016)
will enable well-defined mappings between the Brick+ and
ifcOWL ontologies.

3. SYSTEMIC TAG ISSUES IN HAYSTACK

Although Haystack models have seen increasing adoption, the
design of the Haystack data model has several intrinsic issues
that limit its consistency and interpretability. Here, we present
one of the first analyses of the Haystack data model and how its
tag-based implementation impacts consistency, interpretability
and interoperability.

3.1. Lack of Formal Class Hierarchy
A well-formed class hierarchy organizes concepts by their
specificity. This is essential for the creation of consistentmetadata
models because it facilitates automated discovery of classes by
way of traversing the hierarchy for more general or more specific
concepts. In the process of identifying an appropriate class for
an entity, a user can browse the hierarchy from the most general
classes (equipment, location, sensor, setpoint, substance) to the
specific class whose definition best describes the entity.

A well-formed class hierarchy is extensible. Users can
create new, more specific classes that subclass existing, but
more general, superclasses. Even in the absence of a textual
definition for this new class, the subclass relationship provides

Frontiers in Built Environment | www.frontiersin.org 3 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

an immediate contextual scoping for how the class is meant to
be used.

Haystack lacks an explicit class hierarchy, and the informal
construction of Haystack complicates the automated generation
of one. Recall that the type of each entity in a Haystack model is
defined by a set of tags. We can formalize this as:

Definition 3.1. The set of tags for a class or entity x is given by
T(x). The definition of a class C is any entity that has the tags
defined by T(C). An entity e is a member of classC if T(e) ⊇ T(C)

This definition embeds the key assumption of tag-based
metadata: smaller tag sets convey more generic concepts. As
an example, the pseudo-class identified by the Haystack tags
discharge air temp setpoint is a subclass of the class
identified by the tags air temp setpoint. However, the use
of tag sets to specify the subclass relationship is insufficient for
a well-formed class hierarchy because it is possible to construct
two class definitions Ci and Cj such that T(Ci) ⊇ T(Cj) but the
definition of Ci is not semantically more specific than Cj.

Consider the counter example of two concepts: Air Flow
Setpoint (the desired cubic feet per minute of air flow)
and Max Air Flow Setpoint (the maximum allowed air
flow setpoint). In Haystack, Air Flow Setpoint would be
identified by the air, flow, and sp tags, and Max Air Flow
Setpoint would be identified by the air, flow, sp and
max tags. Although suggested by the set-based relationship,
Air Flow Setpoint is not a superclass of Max Air Flow
Setpoint: the former is a setpoint, but the latter is actually
a parameter governing the selection of setpoints and therefore
belongs to a distinct subhierarchy.

As a result, the rules for defining valid tagsets for subclass
relationships must be defined in terms of which tags can be
added to a given tag set to produce a valid subclass relationship.
Defining a concept requires knowing which tags cannot be added;
without a clear set of rules for validation, a user may use the max
and min tags to indicate the upper/lower bounds of deadband-
based control, which is inconsistent with the intended usage of
these tags.

3.2. Balancing Composability and
Consistency
One of the primary benefits of an tag-based metadata scheme
is composability. A dictionary of tags provides the vocabulary
from which users can draw the terms they need to communicate
some concept. Composing sets of tags together allows for
communication of increasingly complex concepts, and adding
new tags to the dictionary exponentially increases the number of
describable concepts.

However, increased composability comes at the cost of lower
consistency: a clear, unambiguous, one-to-one mapping between
a set of tags and a concept. Without rules defining composability,
consistent interpretation of a tag set is dependent upon idiom,
convention and other “common knowledge” of the community
using the tags. As a result, the set of tags used by one individual
to describe an entity may have multiple meanings or no meaning
at all to other individuals. In other words, the intended meaning
of a tag becomes more ambiguous the more contexts in which it

is used. For example, using the tags heat, oil and equip on
an entity does not state if the equipment heats using oil or if oil is
what is being heated.

To mitigate this effect, Haystack defines “compound” tags.
These are concatenations of existing tags into new atomic tags
with specific semantics distinct from that of its constituents.
For example, the hotWaterHeat compound tag is defined
specifically as indicating that an air handler unit has heating
capability using hot water. This trades composability—
which tags can be used together—with consistency—an
unambiguous definition for a set of tags. Haystack calls these
“semantic conflicts”:

Another consideration is semantic conflicts. Many of the primary
entity tags carry very specific semantics. For example the site
tag by its presence means the data models a geographic site. So we
cannot reuse the site tag to mean something associated with a
site; which is why use the camel case tag siteMeter to mean
the main meter associated with a site (Project Haystack, 2019a).

The most common types of semantic conflicts concern process
tags and substance tags. We explore how ambiguities arise for
these two family of tags; section 4 demonstrates how Brick
handles these issues.

Process Tags. For a metadata scheme to consistently describe
a process, it must decompose a process into entities and capture
how each entity relates to the process: does the entity monitor or
control the process? Does it transport a substance or provide a
means for two substances to interact?

It is difficult for a limited dictionary of tags to capture
unambiguously the family of concepts involved. Consider the
case of an air handling unit that heats air by passing it around
a coil of hot water. With a limited dictionary of tags, most of
the entities (equipment and points) involved will be tagged with
hot, heat, air and/or water. However, a flat set of tags does
not permit any differentiation between concepts that share the
same tags.

Table 1 categorizes the intended usage of each Haystack
tag containing the word “heat” (including “reheat”) or “cool.”
Without this table or the Haystack documentation in hand, it is
difficult to discern when to use a compound tag or several tags
together: chilled+waterCooled, chilledWaterCool
or chilled+water+cool? Furthermore, there is no formal,
programmatically accessible form of the documentation that
would allow this to be done in an automated fashion.

Substance Tags. What constitutes sufficient and consistent
descriptions of substances (such as water and air) depends
upon the breadth of intended use. Existing building metadata
systems do not model substances directly; instead, they describe
equipment and points in terms of what substances they
manipulate, measure or utilize. Thus, an effective metadata
scheme for substances must capture at least the nature of the
relationship between substances, equipment and points.

Flat tag structures lack the expressive power to make these
distinctions unambiguous. To reduce ambiguity, Haystack
uses substance tags only on points and uses compound tags
for equipment. For example hot water valve cmd and

Frontiers in Built Environment | www.frontiersin.org 4 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

TABLE 1 | An enumeration of the intended use and context of tags relating to heating and cooling, as given by the Haystack documentation.

Tag D
e
s
c
.
e
q
u
i
p

D
e
s
c
.
p
o
i
n
t

D
e
s
c
.
m
e
c
h
a
n
is
m

F
o
r
A
H
U

F
o
r
V
A
V

F
o
r
C
o
il

F
o
r
V
a
lv
e

F
o
r
C
h
il
le
r

F
o
r
B
o
il
e
r

h
e
a
tin

g

heat × × × ×

heating ×

hotWaterHeat × × ×

gasHeat × × ×

elecHeat × × ×

steamHeat × × ×

perimeterHeat × ×

re
h
e
a
tin

g

reheat × ×

reheating × ×

hotWaterReheat × × ×

elecReheat × × ×

c
o
o
lin
g

cool × × × ×

cooling ×

coolOnly × ×

dxCool × × ×

chilledWaterCool × × ×

waterCooled × ×

airCooled × ×

Note the differences in diction across compound tags, and how some compound tags could be assembled from more atomic tags. Some tags are used both for equipment and for

points when equipment is modeled as a single point (such as VFDs, Fans, Coils).

chilled water entering temp sensor use the
water substance tag, but an air handler unit with a water-based
chiller would use chilledWaterCool. This means that
substance tags cannot be used to identify which points and
equipment relate to a given substance. Furthermore, to perform
such a query, a user would need to know the entire family
of tags that relate to that substance. In the case of “water”,
this list is water, waterCooled, waterMeterLoad,
chilledWaterCool, chilledWaterPlant,
hotWaterHeat, hotWaterPlant and hotWaterReheat,
not to mention any user-defined tags.

3.3. Lack of Composition Rules
Haystack sacrifices composability of tags for more consistent
interpretability, such as through the use of compound tags.
Without a set of rules for how tags can be composed, there is
no programmatic or automated mechanism to enforce or inform
consistent usage of the tag dictionary. Haystack contains a small
set of explicit rules, but largely relies upon idiom and human
interpretation for consistency.

Extending Tag Sets. In order to encourage consistent usage,
metadata schemes need rules for generating new concepts and
generalizing existing concepts. Rules for generating new concepts
allow these concepts to be qualified by their relation to existing
classes. Rules for generalizing existing concepts allow users (and

programs) to reason about the behavior of a group of concepts.
Formal mechanisms for generalization and specialization aid the
discoverability, interpretability and extensibility of a metadata
scheme. Unfamiliar concepts can be understood or referenced
by their behavior or superclasses, and new concepts can be
added seamlessly.

Concepts in Haystack can be extended through annotation
with additional tags; e.g., temp sensor refines the concept of
sensor. However, tags cannot be freely combined (Figure 1).
One mechanism for defining valid tag sets parameterizes existing
tag sets with a choice from a set of mutually exclusive tags.
Haystack explicitly defines several of these. Two examples
from many:

1. The heating method for an AHU, given by one of gasHeat,
hotWaterHeat, steamHeat or gasHeat.

2. The family of water meters recognized by Haystack
can be differentiated by the tags domestic,
chilled, condenser, hot, makeup, blowdown,
and condensate.

Haystack also has many implicit rules for defining valid
extensions to tag sets. Application of these rules largely depends
upon domain knowledge—for example an entity will likely not
have two distinct substance tags such as air and water—as
well as informal idioms conveyed through documentation. An

Frontiers in Built Environment | www.frontiersin.org 5 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 1 | The set of valid (blue + solid outline) and invalid (red + dashed outline) tagsets for a set of four tags. The class hierarchy is established from top to bottom;

subclass relationships are indicated by arrows.

example of the latter is the convention that points (sensors,
setpoints and commands) will have a “what” tag (e.g., air),
a “measurement” tag (e.g., flow) and a “where” tag (e.g.,
discharge). However, this is not a hard and fast rule, and
many of the tag sets in Haystack’s documentation break with
this convention. Consequently, there is no clear notion of how
concepts can be meaningfully extended or generalized, which
limits the extensibility of Haystack.

Modeling Choices. The lack of formal structures for
constructing tag sets means that enforcement of consistency—
choosing the same set of tags to represent the same concept—
relies upon the conventions of industrial practice and the idioms
of the Haystack community. As a result, there is substantial
variation in how the same concept is modeled.

One prominent example in Haystack is the choice of
whether to model pumps and fans as equipment or as points.
Although pumps and fans are equipment, in many BMS they
are represented by only a single point (usually the speed or
power level). Haystack’s documentation encourages simplifying
the representation of such equipment under such circumstances:

Pumpsmay optionally be defined as either anequip or apoint.
If the pump is a VFD then it is recommended to make it an
equip level entity. However if the pump is modeled [in the BMS]
a simple on/off point as a component within a large piece of
equipment such as a boiler then it is modeled as just a point
(Project Haystack, 2019b).

Complex predicates such as these complicate the querying of a
Haystack model. In particular, exploratory queries have to take
the family of modeling choices into account: to list all of the
pumps in a Haystack model, it is not sufficient to only look for
entities with the pump and equip tag.

3.4. Impact on Consistency
These issues with tag-based metadata inhibit extensibility and
consistency at scale. Most Haystack models are designed to be
used by small teams familiar with the site or sites at hand, so
it is enough for these models to be self-consistent. As long as
there is agreement on how to tag a given concept, the informality
of the model is not as detrimental; most tag sets in Haystack
make intuitive sense to domain experts. However, the lack of
formalization—specifically, a lack of a formal class hierarchy
and rules for composability and extensibility—presents issues
for adoption as an industrial standard and basis for automated
analysis and reasoning.

In the next sections, we show that the tradeoff between
composability and consistency is tied to the choice to use tags
for annotation as well as definition. With an explicit and formal
class hierarchy it is possible to design a system that exhibits the
composability of simple tags, while retaining the consistency and
extensibility of an ontology.

4. DESIGN OF BRICK+

Although Brick (Balaji et al., 2016) establishes a formal class
hierarchy and a set of descriptive relationships, it lacks the
structure for inference of classes from tags and exhibits a number
of design issues that impede this development. This motivates
the design of Brick+, a drop-in replacement ontology for Brick
that extends the hierarchy of described concepts to include fine-
grained semantic properties and defines an explicit mapping
from Brick concepts to sets of tags. Together, these enable the
programmatic interpretation of tag sets, therefore eliminating
the consistency and interpretability issues inherent to a tags-
only design (section 3). In conjunction with the structured
implementation (section 5), the formal design of Brick+ also

Frontiers in Built Environment | www.frontiersin.org 6 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

enables a suite of supporting tooling for the validation (section
6), migration (section 7), and construction (section 5.3) of Brick+
metadata models.

4.1. Limitations of Brick
The design and implementation of Brick has several issues which
inhibit formalizing the relationship between classes and tags.

No formal equivalence between tag sets and classes. Brick
models a class hierarchy using a special construction called a
TagSet. A TagSet has a definition, a set of related tags, and a name
composed of each of the tags concatenated together. The Brick
ontology defines which tags are used with which TagSets, but fails
to capture bidirectional equivalency between the two definitions.
Brick can retrieve the tags associated with a TagSet, but given a
set of tags, Brick cannot infer the set of possible TagSets.

No modeling of function or behavior. The Brick class
hierarchy relates different TagSets only by a “subclass”
relationship; there is no semantic information to distinguish
classes in terms of their behavior. The simple association of
tags to TagSets also does not offer any semantic information.
Enhancing the class definitions with more semantic information
would increase the usability of Brick and the discoverability
of concepts.

Inconsistent modeling and implementation. The
implementation of the Brick ontology consists of a set of
Turtle2 files containing the ontology statements. These files are
generated by a Python script that transforms an CSV-based
specification into the Turtle syntax for RDF. This process is
brittle, error-prone and difficult to test and extend.

4.2. Overview of Brick+
Brick+ has three components: a class lattice defining the family
of equipment, points, locations, substances and quantities in
buildings; a set of expressive relationships defining how entities
behave and how they are connected, contained, used and located;
and a family of tags defining the atomic attributes and aspects
of entities.

The implementation of Brick+ relies upon the use of a
semantic reasoner, piece of software that materializes the set
of facts deduced through the application of the logical rules
contained within an ontology. An important implementation
factor is the language used to define the ontology: more
expressive languages can significantly increase the runtime
complexity of the reasoning process (decreasing the utility
of the system in an applied context), whereas less expressive
languages may not be able define the necessary rules. The formal
specification of Brick+ uses the OWLDL language to define rules
for the operation and usage of Brick+ and to achieve the desired
runtime properties.

4.3. Brick+ Class Lattice
Brick+ organizes all concepts into a class structure rooted in a
small number of high-level concepts. Brick defines this structure
as a tree-based hierarchy; Brick+ refines this structure into a
lattice. Both the lattice and the hierarchy are defined in terms

2https://www.w3.org/TR/turtle/

of a “subclass” relationship (section 2), but differ in how they
define relationships between concepts. A class hierarchy captures
how concepts can be specialized, but does not encode how these
concepts behave and relate to one another. In contrast, a lattice
captures how concepts can be composed from sets of properties.
This offers greater flexibility in the definition of concepts in
Brick+ and facilitates the tag decomposition and mapping to
Haystack detailed in section 5.

Brick+ has six primary concepts. Point is the root class for
all points of telemetry and actuation. There are six immediate
subclasses of Point categorized by the high-level semantics of
how each point behaves:

• Sensor points are outputs of transducers recording the state
of the physical world, e.g., Air Temperature Sensor

• Setpoints points are control points used to guide the
operation of a feedback-driven control system, e.g., Air
Flow Setpoint

• Command points are control points that directly affect the state
of equipment, e.g., Fan Speed Command

• Status points report the current logical status of equipment,
e.g., Damper Position Status

• Alarm points are high-priority indicators conveying non-
nominal behavior, e.g., Water Loss Alarm

• Parameter points are configuration settings used to guide
the operation of equipment and control systems, e.g., Max
Air Flow Setpoint.

Brick+ refines the design of the Brick ontology to differentiate
between parameters and setpoints. This avoids conflating the
concepts of the minimum and maximum setpoints used in
deadband control (such as to configure a thermostat to maintain
a temperature within that band) and the minimum and
maximum allowed values for a setpoint (for example to place a
lower bound on permitted air flow setpoints).

Equipment is the root class for the lattice of mechanical
equipment used in a building. The Brick+ equipment lattice
covers equipment for HVAC, lighting, electrical and water
subsystems. Brick+ extends the modeling of equipment in Brick
to include how classes of equipment relate to substances and
processes in the building.

Location is the root class for the lattice of spatial elements
of a building. The lattice includes physical elements such as
floors, rooms, hallways and buildings as well as logically-defined
physical extents such as HVAC, lighting and fire zones.

Substance is the root class for the lattice of physical
concepts that are measured, monitored, controlled and
manipulated by building subsystems. Examples of physical
substances are air, water and natural gas. These can be further
subclassed by their usage within the building, for example
“mixed air” is a subclass of “air” that refers to the combination of
outside and return air in an air handler unit.

Quantity is the root class for the lattice of quantifiable
properties of substances and equipment. Examples of physical
properties include temperature, conductivity, voltage, luminance,
and pressure. Subclassing quantities enables differentiation
between types of quantities, such as between Dry Bulb
Temperature and Wet Bulb Temperature.

Frontiers in Built Environment | www.frontiersin.org 7 September 2020 | Volume 6 | Article 558034

https://www.w3.org/TR/turtle/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

TABLE 2 | List of high-level relationships supported by Brick+.

Relationship Definition Domain Range Inverse Transitive?

hasLocation Subject is physically located in the object entity * Location isLocationOf yes

feeds
Subject conveys some media to the object entity in some

sequential process

Equipment Equipment
isFedBy no

Equipment Location

hasPoint
Subject has a monitoring, sensing or control point given by

the object entity

Equipment Point
isPointOf no

Location Point

hasPart
Subject is composed – logically or physically – in part by the

object entity

Equipment Equipment
isPartOf yes

Location Location

measures
Subject measures a quantity or substance given by the object

entity

Sensor Substance no

Sensor Quantity no

regulates
Subject informs or performs the regulation of the substance

given by the object entity

Setpoint Substance
no

Equipment Substance

hasOutputSubstance Subject produces or exports the object entity as a product of its internal process Equipment Substance no

hasInputSubstance Subject receives the object entity to conduct its internal process Equipment Substance no

Tag is a root class for the flat namespace of atomic tags
supported by Brick+. The majority of these tags are drawn
from the Haystack tag dictionary, and are instances of the
Tag class.

4.4. Brick+ Relationships
Relationships express how entities and concepts can be composed
with one another; this is key to the consistent and extensible
usage of Brick+. For entities—the “things” in a building—
composition encapsulates functional relationships such as
monitoring, controlling, manipulation, sequencing within a
process, and physical and logical encapsulation. Concepts
are identified by classes and are organized into a lattice
by relationships.

As in Brick, relationships in Brick+ exist between a subject
(the entity possessing the relationship’s indicated property) and
an object (the entity that is the target of the property). Brick+
defines a set of constraints for each relationship to ensure
correct and consistent usage between subject and object entities,
without constraining the application of the relationship to yet
unknown scenarios.

All Brick relationships have at least one domain or range
constraint determining the allowed classes for the subject or
object. Domain constraints limit the class of entities that can be
the subject of a relationship; range constraints limit the class of
entities that can be the object of a relationship. Brick defines
domains and ranges of relationships in terms of classes from the
lattice. Brick+ supports these definitions (enumerated in Table 2)
and extends them such that domains and ranges can be defined
in terms of the properties of the subject and object, rather than
which sublattice they belong to. This allows the definition ofmore
fine-grained sub-relationships with additional semantics.

For example, as in Table 2, the feeds relationship indicates
the passage of some substance between two pieces of equipment
or between an equipment and a location. If the subject
of the feeds relationship has the property that it outputs
air, then the feeds relationship can be specialized to the
feedsAir sub-relationship.

4.5. Brick+ Tags
Brick+ addresses the consistency and interpretability issues of
tag-based metadata by explicitly binding Brick classes to sets
of tags. In Brick, classes are human-interpretable because they
have clear textual definitions; in Brick+, classes are additionally
programmatically-interpretable because they are identified by
their position in the class lattice and by the set of properties that
define their behavior. Clear definitions promote consistent usage.

Binding classes to tag sets effectively bounds the family of
possible tag sets to those that have clear definitions. This removes
the burden of definition, validation and interpretation from the tag
structure by outsourcing it to the class lattice, which permits the
inference of Brick+ classes from unstructured Haystack tags.

Although Brick also defines tags, Brick+ advances the
implementation in several ways. Firstly, Brick+ removes the
need for tags to be lexically contained within the name of
the class (the “TagSet” construct in Brick). This decoupling
allows the definition of classes beyond what can be assembled
through concatenation of tags, or classes that do not have a
straightforward tag decomposition; for example, a Rooftop Unit
equipment in Haystack has the rtu tag.

Secondly, Brick+ encodes tags so they can be inferred from a
Brick+ class and vice versa, even if a given entity’s definition is
given only by one or the other. Figure 2 illustrates three different
methods for instantiating an Air Temperature Sensor
demonstrating the flexibility of the Brick+ implementation. The
classification of an entity can be performed explicitly using the
a or rdf:type predicate in conjunction with a Brick class,
implicitly through annotating an entity with the set of tags
equivalent to a Brick class, descriptively by annotating an entity
with its behavioral properties, or through a combination of these.

Figure 4 illustrates how tags, classes and properties
define the lattice for some subclasses of the Sensor class.
Figure 3 shows the implementation of the Supply Air
Temperature Sensor class: line 2 defines how Supply
Air Temperature Sensor figs into the Brick class
lattice. Lines 4-17 defines the Supply Air Temperature
Sensor class as equivalent to entities that have the sensor,

Frontiers in Built Environment | www.frontiersin.org 8 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 2 | Five equivalent methods of declaring sensor1 to be an instance of the Brick Air Temperature Sensor class.

FIGURE 3 | OWL DL-compatible definition of the Brick Supply Air Temperature Sensor class showing the explicit class structure, tag equivalence, and the

use of substance and quantity classes to model behavior.

temperature, air and supply tags. Lines 18-25 define the
Supply Air Temperature Sensor class as equivalent
of entities that measure the Temperature property of the
Supply Air substance.

4.6. Brick+ Substances and Quantities
Brick+ defines a lattice of substances and quantities that
can be used to describe the functionality of equipment and
points. This permits inference of more fine-grained semantic
information from existing Brick models and allows equipment
and points to be classified by their behavior rather than by
explicit classification.

The Brick+ substance class lattice is based upon the hierarchy
developed by Project Haystack. It classifies substances by phase
of matter (Gas, Liquid, Solid) and supports substances
qualified by their usage within a process:Air is a subclass ofGas,
and Outside Air and Mixed Air are subclasses of Air.
This construction can be extended to include new substances and
subclasses of those substances as used in different processes.

A key principle of the Brick+ implementation is every
property associated with a class must be inferrable from instances
of that class. Properties associated with classes include the
set of tags that are equivalent to the class (indicated by the
hasTag relationship) and the behavioral annotations of the class
(indicated by relationships like measures).

Frontiers in Built Environment | www.frontiersin.org 9 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 4 | Portion of Brick+ class lattice illustrating the equivalence between tags and classes. Edges indicate which properties are added to each concept (class) to

produce a new class. Reverse edges (not pictured) are the subclass relationships.

5. BRICK+ IMPLEMENTATION

Recall that the Brick+ class lattice models concepts by their
behavior and related tags as well as by explicit subclass
relationships. The lattice is defined by a family of relationships
which are supported by a set of constraints that ensure correct
and consistent usage between subject and object entities without
constraining the application of the relationship to yet unknown
scenarios. This enables Brick+ to define a formal mapping from
Haystack’s informal tags to formal Brick classes.

To facilitate the development, testing and debugging of
Brick+, we created a Python framework that interprets a
structured and extensible abstract ontology specification into a
Turtle-based implementation. The framework is open source and
available online3. The implementation of the inference engine
described in §5 and the validation tool described in §6 are
published as part of the open source brickschema Python
package4. Themigration tool described in §7 is distributed as part
of the Brick+ source code, and is also open source.

This section presents an overview of the implementation of
the Brick+ ontology with a focus on the implementation of
substances and the inference procedure for converting Haystack
tags to Brick classes.

5.1. Substance Implementation
The inferred properties concerning substances are more complex
to account for the differences in usage. Because substances
are classes, it is possible to associate instances of substances
with Brick entities. This association helps applications model
how entities behave in relation to the same substance instance.
For example, a Mixed Air Temperature Sensor and a
Mixed Air Damper could be related through their respective
measurement and regulation of the same instance of Mixed
Air. However, if a shared instance is not given in the definition
of the Brick model, an OWL DL reasoner cannot infer the

3https://github.com/BrickSchema/Brick
4https://brickschema.readthedocs.io/

instantiation of an appropriate substance. Brick+ solves this with
punning (W3C, 2007).

Punning is a mechanism by which a class name can
represent a canonical instance of that class. This allows
an OWL DL reasoner can relate a punned substance to a
property of an equipment or point. Importantly, this does not
prohibit the instantiation of substance instances if and when
a Brick model supplies those. Line 15 of Figure 2 contains
an example of an inferred substance for instances of the
brick:Air_Temperature_Sensor class.

5.2. Formalizing the Tag-Class Equivalence
There are several possible approaches for formalizing the
mapping between tag sets and classes, each with non-obvious
tradeoffs. Fundamentally, the formalization has to grapple with
the same issue captured in Definition 3.1. The use of the subset
relationship between the set of tags describing an entity and
the set of tags defining a class can produce ambiguous or
erroneous results. In fact, the process described in Definition 3.1
is only sufficient if there is no pair of disjoint classes whose
tags are a subset of each other. This implies that under such
semantics the only permitted subset relationships between tag
sets are those that also obey the subclass relationship between the
corresponding classes.

To see why this is the case, consider the following
(informal) definitions:

• All Setpoint classes are disjoint from all Parameter
classes; that is, the set of instances of the Setpoint type is
disjoint with the set of instances of the Parameter type.

• The Air Flow Setpoint class (a subclass of Setpoint)
is defined by the tags air, flow and setpoint.

• The Supply Air Flow Setpoint class (a subclass of
Setpoint) is defined by the tags supply, air, flow and
setpoint.

• The Max Air Flow Setpoint Limit class (a subclass
of Parameter) is defined by the tags max, air, flow,
setpoint and limit.

Frontiers in Built Environment | www.frontiersin.org 10 September 2020 | Volume 6 | Article 558034

https://github.com/BrickSchema/Brick
https://brickschema.readthedocs.io/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

The tags for Air Flow Setpoint are a subset of the
tags of both Supply Air Flow Setpoint and Max
Air Flow Setpoint Limit. The former is permissible
because Supply Air Flow Setpoint is a subclass of
Air Flow Setpoint. However, the subset relationship
incorrectly implies that Max Air Flow Setpoint Limit
is a subclass of Air Flow Setpoint, which is a violation
of the disjoint relationship between their respective parent
classes (Parameter and Setpoint). The primary challenge
in formalizing the mapping between tag sets and classes
is how to overcome this limitation with respect to the
following constraints:

1. Build on the RDF data model and OWL ontology language.

The mapping between tag sets and classes should be expressed
in the RDF data model for compatibility with the existing
entities, annotations and properties already defined in the
Brick+ ontology. Additionally, inferring a class from a set
of tags (and vice versa) should be possible through the
mechanisms in the OWL ontology language, i.e., via a
reasoning engine. This keeps the formalism consistent with
the design of the ontology and the mapping to the space of
tags that Brick+ incorporates and also minimizes the amount
of external machinery required to make use of the developed
mappings.

2. The set of tags mapped to a class should be sensible. There
is a strong usability argument for maintaining a “sensible”
set of tags that maps to each class; a “sensible” set of tags
is defined as a set of tags that “makes sense.” This may
include the descriptive terms in the class name or words
commonly associated with the class concept. Importantly the
interpretability of a “sensible” set of tags does not depend on
the large class structure. As long as the set of tags for every
class is unique, the mapping developed here is sound.

However, developing a “sensible” mapping that can be expressed
in RDF and that is supported by OWL-based inference is a tricky
task. Because the Brick+ formal model is built on the set logic of
OWL, a naive approach to designing a mapping between tags and
classes quickly encounters the tension between tag set overlap
and the disjointness of the class hierarchy described above. It
is tempting to design the tag sets associated with classes in a
manner that sidesteps this issue; for example, one could define the
tags associated with Max Air Flow Setpoint Limit to
bemax,air,flow andlimit (excludingsetpoint) to avoid
the logical violation given by the subsumption of the tags for
Air Flow Setpoint. This is possible due to the perscriptive
nature of the mapping, but it may feel unnatural to users of
Brick+ to avoid the setpoint tag when describing a concept
related to a setpoint, even if the concept itself is not a setpoint.

How, then, can both properties be achieved in the same
design? The current understanding of the authors is that
implementing a sensible mapping is fundamentally incompatible
with a solution expressed entirely in the set logic of OWL.
A full proof of this assertion is beyond the scope of this
paper, but we present the essential intuition in the course of
explaining the design and implementation of the Brick+ tag-class
mapping below.

The tag-class mapping in Brick+ decouples the informal
specification of which tags are associated with which classes from
how this mapping is formalized in the ontology. This allows
the two representations to evolve independently. The Brick+
generation framework incorporates a list of tags for each defined
class. A set of unit tests verifies that there is a unique set of tags
for each class in the Brick+ class hierarchy and raises a warning
to the developer if this is not the case. Invoking the framework
generates Brick+ ontology, including the tag-class mapping. We
discuss each direction of the mapping separately below.

Class to Tag Set Mapping: The Brick+ ontology defines a
hasTag property which associates an entity (an instance of
a class) with a tag. The mapping must enable the population
of the appropriate hasTag properties for each instance of
a Brick+ class. The key construct in the modeling approach
involves the use of OWL Restriction classes (marked by
owl:Restriction); these are an OWL construct which
defines the members of a class as those that possess certain
properties. Brick+ defines a Restriction class for each tag in
the ontology that, by definition, counts its members as those
entities that possess the given tag. The Restriction classes enable
a semantic reasoner to generate a hasTag property with a given
tag for each member of the class. Figure 5 demonstrates this
mechanism: lines 2–4 contain the definition of a Restriction
class for the Temperature tag. Line 7 declares an entity as an
instance of the Restriction class; this allows a semantic reasoner
to produce the association with the tag as captured on line 10.

Brick+ represents the set of tags associated with a class
as the intersection of each of the constituent Restriction
classes. The intersection is realized as a class formed by the
owl:intersectionOf property. Lines 3–11 of Figure 3

contain an example of this construction. By definition, the
intersection class has as its members the set of entities that fulfill
the requirements of each of the constituent tag Restriction classes
— that is, the set of entities that have the required tags. This
construction means that any entities declared to be instances of
this intersection class can, through the application of a semantic
reasoner, have the required tags automatically associated.

The last piece of the implementation involves how to associate
a Brick+ class with the anonymous intersection class that
represents the set of tags (referred to as a tag set class). There are
two available approaches: marking the Brick+ class as a subclass
of the tag set class, or marking the Brick+ class as equivalent to
the tag set class. Marking the tag set class as equivalent (using the
owl:equivalentClass property) is not sufficient because
it captures entities with a superset of the required tags; this is
exactly the logical violation problem described above. Therefore,
we use the other approach. Brick+ encodes a Brick+ class as a
subclass (using the RDFS subClassOf property) of the tag set
class. This means that an entity declared to be a member of a
Brick+ class will inherit membership of each of the Restriction
classes in the tag set class construct; the application of a semantic
reasoner can then populate the required tag associations.

Tag Set to Class Mapping: Encoding the mapping from a
set of tags to a Brick+ class requires reasoning about what tags
an entity does not have in addition to which tags it does have.
This is incompatible with the open world assumption (Reiter,

Frontiers in Built Environment | www.frontiersin.org 11 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 5 | An example of an OWL Restriction class encoding the association with the Temperature tag in Brick.

FIGURE 6 | Original Haystack entity from the Carytown reference model.

1981), which is employed by the underlying set logic of OWL.
Informally, the open world assumption tells us that a statement
may be true regardless of whether or not that statement is
included in a given knowledge base. In the context of tag-class
mapping, the open world assumption means that the absence of
a tag on an instance cannot be interpreted as the instance not
having that tag; that statement may exist elsewhere. A deeper
discussion about the utility of the open world assumption in
the context of buildings — where a knowledge base may indeed
be the authoritative data source — is beyond the scope of this
paper and is the subject of ongoing work. To circumvent this
issue, the tag set to class mapping in Brick+ is accomplished
using a simplified version of the inference procedure described
in section 5.3. The implementation is captured in the external
brickschema Python package5.

5.3. Brick-Haystack Inference Procedure
In order to apply the Brick+ inference to Haystack entities, some
preprocessing is required. Firstly, the engine filters out Haystack
tags that do not contribute to the definition of the entity,
including data historian configuration (hisEnd, hisSize,
hisStart), current readings (curVal) and display names
(disMacro, navName). Figure 6 shows an example of a
“cleaned” Haystack entity containing only the marker and Ref
tags from the Carytown reference model.

5https://brickschema.readthedocs.io/

Next, the engine transforms the Haystack entity into an RDF
representation that can be understood by the inference engine.
The engine translates each of the marker tags into their canonical
Brick form: for example, Haystack’s sp becomes Setpoint,
cmd becomes Command and temp becomes Temperature.
The engine creates a Brick entity identified by the label given by
the Haystack id field, and associates each of the Brick tags with
that entity using the brick:hasTag relationship. Figure 7
contains the output of this stage executed against the entity
in Figure 6.

At this stage, the engine naïvely assumes a one-to-one
mapping between a Haystack entity and a Brick entity. This is
usually valid for equipment entities which possess the equip tag,
but Haystack point entities (with the point tag) may implicitly
refer to equipment that is not modeled elsewhere. Figure 6 is an
example of a Haystack point entity that refers to an outside air
damper that is not explicitly modeled in the Haystack model. The
last stage of the inference engine performs the “splitting” of a
Haystack entity into an equipment and point.

First, the inference engine attempts to classify an entity
as an equipment. The engine temporarily replaces all point-
related tags from an entity – Point, Command, Setpoint,
Sensor – with the Equipment tag, and finds Brick classes
with the smallest tag sets that maximize the intersection with
the entity’s tags. This corresponds to the most generic Brick class.
In our running example, the inference engine would transform
the entity in Figure 7 to the tags Damper, Outside and
Equipment. There are 12 Brick classes with the Damper tag,
but only one class with both the Damper and Outside tags;
thus, the minimal Brick class with the maximal tag intersection
is Outside Air Damper. If the inference engine cannot find
a class with a non-negligable overlap (such as the Equipment
tag), then the entity is not equipment.

Secondly, the inference engine attempts to classify the entity as
a point. In this case, the engine does not remove any tags from the
entity, and finds the Brick classes with the smallest tag sets that
maximize the intersection with the entity’s tags. In our running
example, the minimal class with the maximal tag intersection is
Damper Position Command.

Figure 8 contains the two inferred entities output by this
methodology. In the case where a Haystack entity is split into
an eqiupment and a point, the Brick inference engine associates

Frontiers in Built Environment | www.frontiersin.org 12 September 2020 | Volume 6 | Article 558034

https://brickschema.readthedocs.io/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 7 | Intermediate RDF representation of the Haystack entity; Haystack software-specific tags (e.g., cur, tz) are dropped.

FIGURE 8 | Brick inference engine splits the entity into two components: the explicit point and the implicit outside damper equipment.

the two entities with the brick:isPointOf relationship (line
10 of Figure 8). Additionally, the inference engine translates
Haystack’s Ref tags into Brick relationships using the simple
lookup-table based methodology established in Balaji et al.
(2018). The inference engine applies these stages to each entity
in a Haystack model; the union of the produced entities and
relationships constitutes the inferred Brick model.

6. BRICK+ VALIDATION

While the formal definition of the Brick+ ontology enables the
exact specification of concepts and the relationships between
them, it does not directly provide a means for validating correct
or idiomatic usage within a model. Recall that a Brick+ model
(sometimes referred to as an instance of Brick+) is an RDF
graph that uses the Brick+ ontology to represent and describe the
entities and relationships within a building.

We begin by defining correct and idiomatic usage of the Brick+
ontology and provide examples of where the need for such
validation arises in practice. We then show how we apply the
SHApes Constraint Language to this task by defining “shapes”
that encode correct and idiomatic practices. Finally, we describe
the implementation of the Brick+ validation library and tool.

The implementation and execution of Brick+ validation is
made possible because of the formalization of the underlying
model. In Brick and Haystack, the lack of formal rules means that
there is no specification of what “correct” or “idiomatic” usage
looks like — this must instead be determined through forum
posts and human-readable documentation. Brick+ advances
the state-of-the-art of building metadata by enabling such a
validation process to be performed and in an automatic manner.

6.1. The Role of Validation
We define correct usage of an ontology to mean that the terms
and properties defined in the ontology are used appropriately

within an instance and do not result in any logical violations
of the formal model. For example, consider the set of RDF
statements in Figure 9. Lines 1–6 are a partial implementation
of the Brick+ ontology. Lines 1–3 specify that any subject of
the brick:isPointOf property is implied to be an instance
of the brick:Point class. lines 5–6 state that the set of
instances of brick:Point is disjoint with the set of instances
of brick:Equipment; that is, no entity can be both a Point
and an Equipment.

We now turn to the definition of a violating Brick+ model.
Lines 8 and 9 define two pieces of equipment (we use the
high-level brick:Equipment for illustrative purposes; in
reality these instances would be members of more specific,
descriptive classes within the Brick+ Equipment class lattice).
Line 10 introduces the logical violation: the use of the
brick:isPointOf property implies that building:ahu1
is a member of brick:Point which conflicts with the
statement on line 8 that building:ahu1 is a member of the
disjoint class brick:Equipment. Note that without external
information—such as the domain knowledge that an entity
named “ahu1” is likely an air handling unit and thus an
equipment—it is impossible to tell which statement is erroneous.

Idiomatic usage of an ontology such as Brick+ differs from
correct usage in that idiomatic violations are still logically
valid. Instead, such violations are failures to meet structural
and organizational expectations. The specification of modeling
idioms is essential for normalizing the use of an ontology
to a higher degree than can reasonably be provided by the
ontology definition itself. Because the Brick+ ontology is meant
to generalize to many different kinds of buildings, subsystems,
equipment and organizations thereof, the ontology definition
makes very few statements about what information is required
to be present in a given building instance for it to be considered
valid. Idioms fill this gap by encoding “best practices” of what
should be contained in a given model.

Frontiers in Built Environment | www.frontiersin.org 13 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 9 | An example of a logical violation in an instance of a Brick+ model.

FIGURE 10 | SHACL shapes defining correct usage of the brick:isPointOf and brick:hasPoint relationships.

Modeling idioms are diverse in form because they can fulfill
many roles. For example, modeling idioms may include the
expectation that

• All VAVs in an instance should refer to an upstream AHU and
a downstream HVAC zone.

• All VAVs of a particular make and model should have five
associated monitoring and control points.

• All temperature sensors should be reporting in Celsius.

Because modeling idioms are not tied directly to the formal
definition Brick+, their enforcement is not a requirement for
the usage of Brick+. We expect modeling idioms to be defined,
distributed and applied on a per-project or per-building basis;
in the future, equipment manufacturers may distribute Brick+-
encoded modeling idioms for how their equipment should be
represented in a Brick+ model.

6.2. Brick+ Validation With SHACL
The abstract Brick specification described in section 5 lends
a means to generate constraints enforcing correct and/or
idiomatic usage. These constraints are defined using the SHApes
Constraint Language (SHACL, Knublauch and Kontokostas,
2017), a W3C standard for validating RDF graphs against a set
of conditions or constraints. The SHACL standard comprises a
specification for a shapes graph, an RDF graph containing the
constraint definitions—including but not limited to expected
properties, values and types associated with properties and arity

of properties—and a method for verifying if a target RDF graph
meets those constraints.

A shapes graph contains a collection of shapes. A shape
consists of a list of constraints and a target declaration which
specifies which node or group of nodes the constraints apply
to. SHACL constraints have many forms; rather than review the
full range of possibilities (we refer the reader to Knublauch and
Kontokostas, 2017 for detailed documentation on SHACL), we
concentrate on the two main categories of SHACL shapes used in
Brick+ validation: relationship shapes and class shapes.

Relationship shapes are constraints that validate use of
Brick+ relationships enumerated in Table 2. There is one shape
for each domain and range property defined for each Brick+
relationship. The domain and range properties (denoted by
rdfs:domain and rdfs:range) imply the class of the
subject and object of the relationship, respectively. Validating
against relationship shapes can alert authors of Brick+ models of
potential logical violations (see Figure 9).

Figure 10 contains two relationship shape definitions
for the inverse relationships brick:isPointOf
and brick:hasPoint. The top shape —
bsh:isPointOfDomainShape, lines 1-4 — demonstrates
the typical structure of a shape constraining the class of
a relationship’s subject. The implementation in SHACL is
straightforward: line 2 indicates that the shape targets all nodes
which are subjects of the brick:isPointOf relationship.
The targeted nodes are called the focus nodes in SHACL

Frontiers in Built Environment | www.frontiersin.org 14 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 11 | A SHACL shape encoding the idiom that a VAV must be interposed between an AHU and an HVAC Zone through the use of the brick:feeds property.

FIGURE 12 | A SHACL shape encoding the required parts and points for a theoretical “Model XYZ” variable air volume box.

parlance. Line 4 indicates that the focus node’s class should
be brick:Point.

The bottom shape—bsh:hasPointRangeShape, lines
6–11—demonstrates the typical shape structure for constraining
the type of the object of a relationship. Line 7 indicates
that the shape targets all nodes which are subjects of the
brick:hasPoint relationship. The composite structure on
lines 8–11 states that the objects of the brick:hasPoint
relationship should have the class brick:Point.

Class shapes specify conditions on the properties and
property values for a Brick+ class. Correspondingly, the focus
nodes for a class shape are the set of instances of that class. We
expect that most idiomatic shapes will be class shapes.

Figure 11 contains an example of an idiomatic class shape
that encodes the requirement that all VAVs in a model
instance must refer to a downstream HVAC zone and an
upstream air handling unit. Validating a Brick+ model instance
against this shape involves examining all of the instances of
brick:Variable_Air_Volume_Box and its subclasses to
see if the required properties exist and if the objects of those
properties fulfill the class requirements.

Figure 12 is an example of a shape encoding the expected parts
and points for a theoretical variable air volume box of a particular
make and model. Applying this shape to a Brick+ model
instance can help ensure that all instances of the equipment are
modeled consistently.

Frontiers in Built Environment | www.frontiersin.org 15 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

Unlike the shapes in Figure 10, the shapes in Figures 11, 12
are not required for correct usage of Brick. Instead, adherence
to these shapes might be a commissioning requirement for the
Brick+ model produced for a site.

6.3. Implementation
We now describe howwe have incorporated the SHACL standard
into the development and usage of Brick+.

The abstract specification of Brick+ developed in section
5 allows us to automatically generate relationship shapes for
verifying correct usage of Brick relationships. There are currently
23 relationship shapes distributed with Brick+, but we expect this
number will increase over time as the number of relationships
and properties supported by Brick+ expands. These shapes are
included as part of the Brick+ distribution and are organized
under the abstract RDF namespace https://brickschema.org/
schema/1.1/BrickShape, commonly abbreviated as bsh.

To perform validation of a model instance, we incorporate
the excellent open-source PySHACL library (PySHACL,
2020) into a Brick-specific software module and augment it
with some features specific to Brick+. The module exposes
the validation functionality through a command-line tool,
brick_validate, as well as a Python library. Shapes for
validating correct usage of Brick+ are included in the library so
validation against these shapes is always performed by default,
without any additional configuration.

The primary feature offered by the Brick+ validation software
module is a post-processing step applied to the output of the
underlying PySHACL module. When the PySHACL validation
process is complete, the Brick+ validation software attempts to
find the offending triples and relevant context within the model
instance. The software can then provide suggestions for how to
repair the model to pass validation.

6.4. Evaluation of Validation Tool
To evaluate the efficacy of the validation approach and tools, we
applied the Brick+ validation module to five reference models
from the original Brick release (Balaji et al., 2016). Each of the
models was converted to the Brick+ edition of Brick through the
migration process described in section 7. The validation process
found correctness violations in each graph, including:

• Incorrect type of subject or object as required by the property:
this is one type of error that can be found through the
application of relationship shapes

• Incorrect use of a relationship; for example,
brick:hasLocation is used where brick:hasPart is
more appropriate.

• Using a class declared to be in the Brick+ namespace that is not
actually defined in the official Brick+ release: this may not be a
severe violation because we do expect that ad-hoc extensions to
the Brick+ ontology will take place “in the field,” but it is good
to raise a warning that potentially unsupported classes exist in
a model instance

• Failure to declare a type for an entity: this is an example of a
correctness constraint that does not fall under the relationship
shapes defined above

Validation of Brick model instances has long been a desired
feature, but has been difficult to implement due to the lack
of formalization of the Brick model itself. The introduction of
Brick+ and its abstract specification makes description of correct
and idiomatic usage natural to express as “shapes” within the
SHACL language. The validation of a Brick+ model instance
using these shapes is simple to perform through the Brick+
software library. The Brick+ shapes and the validation process are
captured online at https://brickschema.readthedocs.io/en/latest/
validate.html.

7. BRICK MODEL MIGRATION

As the Brick ontology evolves it becomes increasingly important
to handle the migration of a particular building model from
one version to another. The migration should fulfill the
following properties:

• Complete: The migration should handle the translation of all
classes and relationships from one version of the ontology to
another.

• Semantics-preserving: The migration should preserve the
semantics of the original model when updating it to the new
ontology wherever possible; the extent to which this can be
fulfilled is determined in part by how well the ontology itself
preserves the semantics of the older version.

• Automatic: The migration should minimize the amount of
input and manual translation effort required of the model
developer.

In this section, we present the design, implementation and
evaluation of a tool for migrating Brick model developed against
the prior Brick 1.0.x ontology versions (Balaji et al., 2016, 2018)
to the Brick+ ontology developed in this paper.

While the older versions of Brick have more structure than
Haystack, we can still adopt a similar approach for formalizing
the relationship between Brick concepts and Brick+ concepts.
Both the Brick-migration described in this section and the
Haystack-inference described in section 8 describe how these
non-formal metadata standards can be defined in terms of the
formal Brick+ definition.

7.1. Migration Strategies for Brick
We adopt two strategies for migrating models developed against
Brick to the newer Brick+ ontology: migration of classes and
migration of relationships.

Class migration consists of referring instances of Brick
classes to the most appropriate Brick+ class. Most of the class
names stayed the same between Brick and Brick+, meaning the
migration can be performed through a simple 1-to-1 mapping
of namespaces. Cases where the name of the class changed while
the role and definition stayed the same are handled through the
same mechanism.

For cases where there is not a 1-to-1 mapping between
classes in the two versions, we adopt a parametric approach
to migration. The most common case where 1-to-1 mapping
fails is that of so-called “equipment-flavored” classes. The

Frontiers in Built Environment | www.frontiersin.org 16 September 2020 | Volume 6 | Article 558034

https://brickschema.org/schema/1.1/BrickShape
https://brickschema.org/schema/1.1/BrickShape
https://brickschema.readthedocs.io/en/latest/validate.html
https://brickschema.readthedocs.io/en/latest/validate.html
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

FIGURE 13 | An example of a SPARQL 1.1 UPDATE query migrating a Brick 1.0.3 class to a Brick+ class.

original Brick class structure included many class names—
the majority of them Point classes—that incorporated
the name of equipment. For example, the Brick class
AHU_Zone_Air_Temperature_Sensor represents
the concept of an Zone_Air_Temperature_Sensor
associated with an air handling unit. The existence of this
class raised an issue for practitioners: should they use
the Zone_Air_Temperature_Sensor class with an
brick:isPointOf relationship to an instance of the
Air_Handling_Unit class, or should they simply use the
AHU_Zone_Air_Temperature_Sensor class? Brick+
addresses this issue by eliminating all “equipment-flavored”
classes, preferring the explicit association of points to equipment
through the brick:isPointOf relationship.

In order to preserve the semantics of the “equipment-
flavored” classes, the migration tool must go beyond simply
translating class names and now must add relationships as well.
The migration tool adds the requisite relationships where the
instance of the “equipment-flavored” point class already had a
relationship to an instance of the appropriate equipment class.
When the instance does not have a relationship to an equipment
instance, the migration module can either generate a temporary
placeholder instance of the equipment or raise a flag to the user
to indicate the lack of one.

The change in class structure from a strict hierarchy (Brick) to
a lattice (Brick+) is transparent to the building models and thus
does not need to be addressed by the migration process.

Relationship migration consists of replacing Brick
relationships with the most appropriate Brick+ relationship.
Brick+ preserves the relationships defined in Brick, so the
migration tool only needs to handle the translation of
the namespace. Although Brick+ incorporates some new
relationships, these are either used solely within the definition
of the class lattice (e.g., brick:measures), are not yet
used by Brick instances, or can be added automatically (e.g.,
brick:hasTag); therefore, the migration tool does not need
to handle these new relationships.

7.2. Implementation
The migration tool is implemented in Python and is included as
part of the open source Brick+ distribution6. The tool includes

6https://github.com/BrickSchema/Brick

a set of conversion queries that implement the translation from
one version of Brick to another. A conversion query is phrased
in the SPARQL 1.1 UPDATE language and is generated from an
underlying dictionary of the simple and parametric migrations
described above. Figure 13 contains an example of a conversion
query. Each conversion query is parameterized by the source and
destination version of Brick; the query converts a given term
from the source version of Brick to its migrated form in the
destination version. The conversion queries are incorporated into
the migration algorithm, which consists of the following steps:

1. Accept as input the source model, the source version of Brick,
and the intended output version of Brick.

2. If the migration tool contains a set of conversion queries for
the provided source and destination version, then continue
with the direct translation. Otherwise, perform an indirect
translation (described below).

3. Ingest the source model into a database (such as a triplestore)
that supports the required SPARQL 1.1 queries

4. Execute all of the conversion queries against the triple store
5. Serialize the edited model to the provided output file

The migration tool maintains an RDF graph containing the
details of all available conversions. In the case where a direct
migration is not available, the migration tool runs a shortest-
path algorithm to determine a sequence of intermediate versions
through which the source model can be migrated so as to
arrive at the desired output version. Currently, the shortest-
path algorithm uses the number of intermediate versions as the
distance metric.

7.3. Evaluation of Migration Tool
To evaluate the efficacy and completeness of the migration tool,
we apply it to five of the original Brick referencemodels published
as part of Balaji et al. (2016) to translate them from version 1.0.2
to Brick+.

The results of applying themigration tool to the sourcemodels
are enumerated in Tables 3, 4. The migration tool successfully
converts 98% of the unique classes used in the models and 91%
of the relationships. The unmapped classes—those for which no
conversion query existed—were left as-is: no information was lost
from the original models. These unmapped classes exist where
the model authors defined their own extensions to Brick.

Frontiers in Built Environment | www.frontiersin.org 17 September 2020 | Volume 6 | Article 558034

https://github.com/BrickSchema/Brick
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

TABLE 3 | The completeness of the migration tool against five Brick reference

models in terms of the unique classes and relationships in the source model.

Model name Classes % Translated Relationships % Translated

Soda 34/34 100 7/7 100

GHC 79/80 98.75 8/8 100

Rice 57/57 100 5/5 100

EBU3B 217/217 100 3/3 100

GTC 570/582 97.94 8/9 88.89

TABLE 4 | The completeness of the migration tool against five Brick reference

models in terms of the instances of classes and relationships in the source model.

Model name Classes % Translated Relationships % Translated

Soda 1693/1693 100 2078/2078 100

GHC 9103/9112 99.90 36458/36458 100

Rice 632/632 100 718/718 100

EBU3B 6174/6174 100 8392/8392 100

GTC 1524/1526 99.21 5309/5311 99.99

This evaluation demonstrates that the migration tool is
effective in handling the translation of classes and relationships
between past and current version of Brick. We believe that the
methodology developed here will allow the migration tool to
perform effective migrations of models through future versions
of Brick.

8. HAYSTACK–BRICK+ INFERENCE

To further evaluate how well a formal approach to metadata
enables consistency, we examine how well the Brick+ inference
engine is able to extract and classify entities from a set of five
Haystack models.

8.1. Source Haystack Models
We assemble a set of fiveHaystackmodels, each consisting of a set
of tagged entities. Haystack model 1 is the “Carytown” reference
model published by Project Haystack for a 3000 sq ft building in
Richmond, VA. Haystack models 2 and 3 are sample Haystack
data models with for complex buildings, and thus contain large
numbers of specialized and non-standard tags (Coffey, 2019).
Haystack models 4 and 5 represent two office buildings on
the UC Davis campus. Together, these five Haystack models
represent a diverse family spanning small to large buildings,
differing numbers of custom tags, and different model modelers.

8.2. Haystack Inference Results
Table 5 contains the results of applying the Brick inference
engine to the five Haystack models. When the inference engine
splits Haystack entities into equipment and a point, the number
of inferred Brick entities can exceed the number of original
Haystack entities.

The % Classified Entities column indicates the percentage of
Haystack entities that were successfully classified by the Brick
inference engine; the Unclassified Entities column contains the
number of entities that were not classified. The majority of

TABLE 5 | Results of inferring Brick entities from tagged Haystack entities.

S
it
e
n
a
m
e

H
a
y
s
ta
c
k
e
n
ti
ti
e
s

In
fe
rr
e
d
b
ri
c
k
e
n
ti
ti
e
s

%
c
la
s
s
ifi
e
d
e
n
ti
ti
e
s

U
n
c
la
s
s
ifi
e
d
e
n
ti
ti
e
s

A
v
g
%

c
u
s
to
m

ta
g
s
p
e
r
E
n
ti
ty

U
n
iq
u
e
c
u
s
to
m

ta
g
s

1 22 23 86.4 3 7.4 4

2 147 168 89.8 15 5.0 6

3 149 145 73.8 39 6.6 7

4 2183 1755 86.7 290 17.6 46

5 6474 6236 93.0 451 19.5 41

unclassified entities were such due to the use of non-standard tags
that have no provided definition, and thus were not included in
the Brick tag structure. The lowest-performing Haystack model,
Site 3, represents a data center and contained a number of
specialized lighting, HVAC and data center equipment and points
that are not covered by the existing Haystack tag dictionary.

To understand the impact of informal modeling practices
on interpretability and consistency, we examine the occurrence
of non-standard tags in the five Haystack models; the results
are contained in the Avg % Custom Tags per Entity column
and Unique Custom Tags column, which shows the number
of user-defined tags in each building, showing the same
trend. Models 4 and 5 contain a higher incidence of
custom tags because they contain detailed representations
of HVAC systems, thus requiring additional vocabulary
beyond what is defined in Haystack. The required vocabulary
includes HVAC concepts not yet defined in Haystack (e.g.,
differential for differential pressure) and
functional relationships outside the Haystack’s scope, such as
capturing spatial relationships.

Examination of the Haystack models reveals three patterns of
inconsistent tagging. Firstly, the lexical overlap of tags (detailed
in Table 1) leads to one tag being used incorrectly in place
of another; for example, using heat instead of heating.
Secondly, because there is no notion of a “sufficient” tag set
for a concept, several entities have ambiguous interpretations
due to partial tagging. For example, several entities have the
differential tag, but do not have a tag to clarify the
quantity (e.g., pressure, temperature). Thirdly, the lack of
compositional rules resulted in the ad-hoc creation of site-specific
“compound” tags: models 4 and 5 use a custom spMax tag
instead of the Haystack-defined sp and max tags to differentiate
between setpoints and parameters.

8.3. Brick Inference Results
To complete our evaluation of Brick+, we measure the number
of properties that can be inferred from the entities in existing
Brick models. Because Brick models already have a formal
representation, the inference engine does not need to apply
the cleaning or splitting phases of the inference procedure (§5)

Frontiers in Built Environment | www.frontiersin.org 18 September 2020 | Volume 6 | Article 558034

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

TABLE 6 | Number of inferred properties for all entities across 104 Brick models in

Brick and Brick+.

Ontology Inferred properties

(Total) (Avg per entity)

Brick 122,552 2.94/35.44

Brick+ 201,266 4.79/35.55

and can rely entirely upon the existing features of the OWL
DL reasoner.

We executed the HermiT (Glimm et al., 2014) OWL reasoner
on 104 existing Brick models from the Mortar testbed (Fierro
et al., 2018) using the existing Brick ontology and our
proposed Brick+ ontology, and computed the number of inferred
properties. The results are summarized in Table 6: Brick+ was
able to infer almost 80,000 more properties than Brick over the
42,681 entities contained in the Brick models. Brick+ was able to
infer all the same properties as Brick, but was able to infer tags
and behavioral properties as well.

8.4. Discussion of Inference Results
Our results demonstrate that Brick+ is able to infer 73–93%
of entities in Haystack models that follow a canonical tagging
scheme, and can infer more semantic properties about entities
in Brick models than the previous release of Brick. Recall that
Brick+’s inference engine does not currently infer all possible
classes from a Haystack model; rather, it formalizes a particular
interpretation and organization of Haystack tags applied to
entities. Haystack tags in real-world Haystack models are highly
idiosyncratic, due in part to site-specific invention of tags to
cover concepts and relationships not defined in the Haystack tag
dictionary. This suggests that Brick+’s inference engine will not
be able to fully classify each Haystack entity without additional
automated metadata construction techniques (Bhattacharya
et al., 2015b; Koh et al., 2018). Our results support this
hypothesis: an ontology-based inference engine demonstrates
decent performance against the informal Haystack data model,
but, as expected, custom tags inhibit inference.

9. CONCLUSION

Interoperability for building applications requires metadata
standards that are semantically sound, rich and extensible. Tags

provide an intuitive and informal model, but lack rules for
composition and validation that enable consistent, interpretable
usage. Brick+ constructs a compositional model of metadata
where tags are part of a type systemwith an underlying formalism
based on lattice theory. This enables new algorithmic methods
for checking validity, consistency and compositional correctness
that is necessary for building a new class of scalable and portable
building applications.

This paper presents a qualitative analysis of the popular
Haystack tagging system and demonstrates how its ad-hoc
nature inhibits the consistent description of building systems. To
address these issues, we have introduced Brick+, a refinement
of the Brick ontology with clear formal semantics that permits
the inference of well-defined classes from unstructured tags.
Brick+ helps to bridge the gap between existing ad-hoc,
informal metadata practices and interoperable formal systems;
this establishes a foothold for the continued co-development of
the Brick and Haystack metadata standards.

Brick+ is open-source and is in the process of being adopted as
the authoritative implementation of Brick. The Brick+ ontology,
generation framework, source code of the inference engine, and
the Haystack dataset are all available online at https://github.
com/BrickSchema/Brick.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found at https://
github.com/BrickSchema/brick-examples.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

This research is supported in part by California Energy
Commission EPC-15-057, Department of Energy grant EE-
0007685, NSF grants CNS-1526841 and CSR-1526237, and
the CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA. The opinions expressed belong solely to the
authors, and not necessarily to the authors’ employers or
funding agencies.

REFERENCES

American Society of Heating, Refrigerating and Air-Conditioning Engineers
(2018). ASHRAE’s BACnet Committee, Project Haystack and Brick Schema

Collaborating to Provide Unified Data Semantic Modeling Solution. Available
online at: http://web.archive.org/web/20181223045430/; https://www.ashrae.
org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-
brick-schema-collaborating-to-provide-unified-data-semantic-modeling-
solution

Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong,
D., et al. (2016). “Brick: towards a unified metadata schema for
buildings,” in Proceedings of the ACM International Conference

on Embedded Systems for Energy-Efficient Built Environments

(BuildSys) (Palo Alto, CA: ACM).
Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D.,

et al. (2018). Brick: Metadata schema for portable smart building
applications. Appl. Energy 226, 1273–1292. doi: 10.1016/j.apenergy.2018.
02.091

Balaji, B., Verma, C., Narayanaswamy, B., and Agarwal, Y. (2015). Zodiac:
organizing large deployment of sensors to create reusable applications for
buildings (ACM), 13–22.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L.,
Patel-Schneider, P. F., et al. (2004). OWL Web Ontology Language Reference.
Technical report, W3C. Available online at: http://www.w3.org/TR/owl-ref/

Frontiers in Built Environment | www.frontiersin.org 19 September 2020 | Volume 6 | Article 558034

https://github.com/BrickSchema/Brick
https://github.com/BrickSchema/Brick
https://github.com/BrickSchema/brick-examples
https://github.com/BrickSchema/brick-examples
http://web.archive.org/web/20181223045430/
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://doi.org/10.1016/j.apenergy.2018.02.091
http://www.w3.org/TR/owl-ref/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Fierro et al. Formalizing Tag-Based Metadata

Bhattacharya, A., Ploennigs, J., and Culler, D. (2015a). “Short paper: analyzing
metadata schemas for buildings: the good, the bad, and the ugly,” in Proceedings
of the 2nd ACM International Conference on Embedded Systems for Energy-

Efficient Built Environments (Seoul: ACM), 33–34.
Bhattacharya, A. A., Hong, D., Culler, D., Ortiz, J., Whitehouse, K., and

Wu, E. (2015b). “Automated metadata construction to support portable
building applications,” in Proceedings of the 2nd ACM International

Conference on Embedded Systems for Energy-Efficient Built Environments

(Seoul: ACM), 3–12.
Capozzoli, A., Piscitelli, M. S., Gorrino, A., Ballarini, I., and Corrado, V.

(2017). Data analytics for occupancy pattern learning to reduce the energy
consumption of hvac systems in office buildings. Sustain. Cities Soc. 35,
191–208. doi: 10.1016/j.scs.2017.07.016

Coffey, P. (2019). Project Haystack Example Data Models. Available online at:
http://web.archive.org/web/20190626161742/; https://patrickcoffey.bitbucket.
io/

Dataset (2018). Project Haystack. Available online at: http://project-haystack.org/.
Dong, B., Lam, K., Huang, Y., and Dobbs, G. (2007). “A comparative study

of the IFC and GBXML informational infrastructures for data exchange in
computational design support environments,” in Building Simulation 2007

(Beijing).
Fierro, G., Koh, J., Agarwal, Y., Gupta, R. K., and Culler, D. E. (2019). “Beyond a

house of sticks: formalizing metadata tags with brick,” in Proceedings of the 6th

ACM International Conference on Systems for Energy-Efficient Buildings, Cities,

and Transportation, 125–134.
Fierro, G., Pritoni, M., AbdelBaky, M., Raftery, P., Peffer, T., Thomson, G., et al.

(2018). “Mortar: an open testbed for portable building analytics,” in Proceedings
of the 5th Conference on Systems for Built Environments (Shenzen: ACM),
172–181.

Gao, J., Ploennigs, J., and Berges, M. (2015). “A data-driven meta-data inference
framework for building automation systems,” in Proceedings of the ACM

International Conference on Embedded Systems for Energy-Efficient Built

Environments (BuildSys) (ACM), 23–32.
Glimm, B., Horrocks, I., Motik, B., Stoilos, G., and Wang, Z.

(2014). HermiT: an OWL 2 reasoner. J. Automat. Reason. 53,
245–269. doi: 10.1007/s10817-014-9305-1

Guha, R., and Brickley, D. (2014). RDF Schema 1.1. W3C. Available online at:
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/ (accessed March 15,
2015).

Hardin, D., Stephan, E. G., Wang, W., Corbin, C. D., and Widergren, S. E. (2015).
Buildings Interoperability Landscape. Technical report, Pacific Northwest
National Lab, Richland, WA.

Hong, D., Wang, H., Ortiz, J., and Whitehouse, K. (2015). “The building adapter:
towards quickly applying building analytics at scale,” in Proceedings of the

ACM International Conference on Embedded Systems for Energy-Efficient Built

Environments (BuildSys) (ACM), 123–132.
Jahn, M., Schwartz, T., Simon, J., and Jentsch, M. (2011). “Energypulse: tracking

sustainable behavior in office environments,” in Int. Conf. on Energy-Efficient

Computing and Networking (New York, NY: ACM), 87–96.
Knublauch, H., and Kontokostas, D. (2017). Shapes constraint language (SHACL).

W3C Candid. Recomm. 11.
Koh, J., Balaji, B., Sengupta, D., McAuley, J., Gupta, R., and Agarwal, Y. (2018).

“Scrabble: transferrable semi-automated semantic metadata normalization
using intermediate representation,” in Proceedings of the 5th Conference on

Systems for Built Environments (Shenzen: ACM), 11–20.
Lange, H., Johansen, A., and Kjaergaard, M. B. (2018). “Evaluation of the

opportunities and limitations of using IFC models as source of building
metadata,” in Proceedings of the 5th Conference on Systems for Built

Environments (Shenzen), 21–24.
Lassila, O., and Swick, R. R. (1999). Resource Description Framework (RDF) Model

and Syntax Specification.
Mathes, A. (2004). Folksonomies - Cooperative Classification and Communication

Through Shared Metadata. Available online at: http://adammathes.com/
academic/computer-mediated-communication/folksonomies.html

Mims, N., Schiller, S. R., Stuart, E., Schwartz, L., Kramer, C., and Faesy, R. (2017).
Evaluation of U.S. Building Energy Benchmarking and Transparency Programs:

Attributes, Impacts, and Best Practices. doi: 10.2172/1393621

OSTI (2016). The National Opportunity for Interoperability and Its Benefits for

a Reliable, Robust, and Future Grid Realized Through Buildings. Technical
report.

Passant, A. (2007). “Using ontologies to strengthen folksonomies and enrich
information retrieval in weblogs,” in International Conference on Weblogs and

Social Media (Boulder, CO).
Passant, A., and Laublet, P. (2008).Meaning of a Tag: A Collaborative Approach to

Bridge the Gap Between Tagging and Linked Data. LDOW.
Pauwels, P., and Terkaj, W. (2016). Express to owl for construction industry:

towards a recommendable and usable IFCOWL ontology. Automat. Construct.
63, 100–133. doi: 10.1016/j.autcon.2015.12.003

Piette, M. A., Ghatikar, G., Kiliccote, S., Koch, E., Hennage, D., Palensky, P., and
McParland, C. (2009). Open Automated Demand Response Communications

Specification (version 1.0). Technical report, Ernest Orlando Lawrence Berkeley
National Laboratory, Berkeley, CA.

Privara, S., Cigler, J., Váňa, Z., Oldewurtel, F., Sagerschnig, C., and
Žáčeková, E. (2013). Building modeling as a crucial part for building
predictive control. Energy Buildings 56, 8–22. doi: 10.1016/j.enbuild.2012.
10.024

Project Haystack (2019a). Project Haystack Documentation: DEFs. Available online
at: http://web.archive.org/web/20190629183024/; https://project-haystack.dev/
doc/docHaystack/Defs

Project Haystack (2019b). Project Haystack Documentation: VFDs. Available online
at: http://web.archive.org/web/20190629182856/; https://project-haystack.org/
doc/VFDs

PySHACL (2020). Available online at: https://github.com/RDFLib/pySHACL
(accessed April 01, 2020).

Rasmussen, M. H., Pauwels, P., Hviid, C. A., and Karlshoj, J. (2017). “Proposing a
central AEC ontology that allows for domain specific extensions,” in 2017 Lean

and Computing in Construction Congress (Heraklion).
Reiter, R. (1981). “On closed world data bases,” in Readings in Artificial

Intelligence (Elsevier), 119–140. doi: 10.1016/B978-0-934613-03-3.5
0014-3

Roth, S. (2014). Open Green Building XML Schema: A Building Information

Modeling Solution for our Green World. gbXML Schema (5.12).
Schein, J., Bushby, S. T., Castro, N. S., and House, J. M. (2006). A rule-based

fault detection method for air handling units. Energy Buildings 38, 1485–1492.
doi: 10.1016/j.enbuild.2006.04.014

Sturzenegger, D., Gyalistras, D., Morari, M., and Smith, R. S. (2012). Semi-
automated modular modeling of buildings for model predictive control,
99–106. ACM.

Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., and Gao,
X. (2020). BIM assisted building automation system information
exchange using BACNET and IFC. Automat. Construct. 110:103049.
doi: 10.1016/j.autcon.2019.103049

W3C (2007). Punning.
Wille, R. (1992). Concept lattices and conceptual knowledge systems.

Comput. Math. Appl. 23, 493–515. doi: 10.1016/0898-1221(92)90
120-7

Wille, R. (2009). “Restructuring lattice1 theory: an approach based on hierarchies
of concepts,” in International Conference on Formal Concept Analysis

(Darmstadt: Springer), 314–339.
Yang, Q., and Zhang, Y. (2006). Semantic interoperability in building

design: methods and tools. Comput. Aided Design 38, 1099–1112.
doi: 10.1016/j.cad.2006.06.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Fierro, Koh, Nagare, Zang, Agarwal, Gupta and Culler. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Built Environment | www.frontiersin.org 20 September 2020 | Volume 6 | Article 558034

https://doi.org/10.1016/j.scs.2017.07.016
http://web.archive.org/web/20190626161742/
https://patrickcoffey.bitbucket.io/
https://patrickcoffey.bitbucket.io/
http://project-haystack.org/
https://doi.org/10.1007/s10817-014-9305-1
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://adammathes.com/academic/computer-mediated-communication/folksonomies.html
https://doi.org/10.2172/1393621
https://doi.org/10.1016/j.autcon.2015.12.003
https://doi.org/10.1016/j.enbuild.2012.10.024
http://web.archive.org/web/20190629183024/
https://project-haystack.dev/doc/docHaystack/Defs
https://project-haystack.dev/doc/docHaystack/Defs
http://web.archive.org/web/20190629182856/
https://project-haystack.org/doc/VFDs
https://project-haystack.org/doc/VFDs
https://github.com/RDFLib/pySHACL
https://doi.org/10.1016/B978-0-934613-03-3.50014-3
https://doi.org/10.1016/j.enbuild.2006.04.014
https://doi.org/10.1016/j.autcon.2019.103049
https://doi.org/10.1016/0898-1221(92)90120-7
https://doi.org/10.1016/j.cad.2006.06.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	Formalizing Tag-Based Metadata With the Brick Ontology
	1. Introduction
	1.1. Brick and Haystack Metadata Systems
	1.2. Overview

	2. Background
	2.1. Definitions
	2.2. Haystack
	2.3. Brick
	2.4. Prior Metadata Construction Efforts
	2.5. Relation to Building Information Modeling

	3. Systemic Tag Issues in Haystack
	3.1. Lack of Formal Class Hierarchy
	3.2. Balancing Composability and Consistency
	3.3. Lack of Composition Rules
	3.4. Impact on Consistency

	4. Design of Brick+
	4.1. Limitations of Brick
	4.2. Overview of Brick+
	4.3. Brick+ Class Lattice
	4.4. Brick+ Relationships
	4.5. Brick+ Tags
	4.6. Brick+ Substances and Quantities

	5. Brick+ Implementation
	5.1. Substance Implementation
	5.2. Formalizing the Tag-Class Equivalence
	5.3. Brick-Haystack Inference Procedure

	6. Brick+ Validation
	6.1. The Role of Validation
	6.2. Brick+ Validation With SHACL
	6.3. Implementation
	6.4. Evaluation of Validation Tool

	7. Brick Model Migration
	7.1. Migration Strategies for Brick
	7.2. Implementation
	7.3. Evaluation of Migration Tool

	8. Haystack–Brick+ Inference
	8.1. Source Haystack Models
	8.2. Haystack Inference Results
	8.3. Brick Inference Results
	8.4. Discussion of Inference Results

	9. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

