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Although several methods have been used to capture the motion of workers at
construction sites to improve productivity or safety during construction projects,
collecting data by image analysis and discriminating between motions are time-
consuming processes. Therefore, it is difficult to use such methods to detect the motion
of several workers or over a long time period. The authors applied an accelerometer
to capture motion; this apparatus has been used in the health and medical fields.
A small, light accelerometer and a simple discrimination program allowed the authors
to determine whether a worker was active or inactive based on a threshold of the sum
of the signal amplitude areas. Experimental surveys were conducted at construction
sites: first, for setting plasterboards for two detached house construction projects and,
second, for setting rebar at a large office building site. The findings of this experimental
study are as follows. First, an accelerometer can be used in congested construction
sites, and data can be obtained continuously. Second, this simple identification of
active/inactive workers allows for the measurement of performance and the detection of
problems at construction sites. Third, from the data, the hypothesis regarding workers’
tendencies can be tested, that is, how workers’ skill levels may affect the fluctuation
of activity intensity. Therefore, in future studies, by increasing the data on workers,
researchers could develop methods to improve the performance of workers.
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INTRODUCTION

In recent years, several new technologies have been introduced to improve productivity in building
construction in response to the demands for reduced costs or the severe shortage of workers
globally. For example, the number of workers in the Japanese construction industry decreased from
6.85 million in 1997 to 4.92 million in 2016 (Labour Force Survey, 2018). Generally, construction
productivity reflects the relationship between an output and an input, including costs, time,
and labor. To increase productivity, one effective method is to measure workers’ performance
at construction sites and detect whether their time is being wasted and to identify possibilities
for improving productivity, which will affect the output (quality, value among others) and the
input (time, cost, labor among others). Dixit et al. (2019) listed seven main research areas in
recent construction productivity studies, including measurement techniques. Moreover, to estimate
whether or not new technologies have improved workers’ performance, it is necessary to compare
their performance before and after the application of such tools. Therefore, visual observation or
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other several methods have been applied, and some of them have
successfully detected workers’ motions in detail (Akhavian and
Behzadan, 2016; Zhang et al., 2018). However, in some cases,
it is difficult to apply such techniques widely at construction
sites because they require long periods of data collection and a
large number of workers (i.e., up to several hundreds or even
thousands) and because there are many obstacles particularly in
building construction sites for visual observation. In addition, by
increasing the amount of data, it can become possible to analyze
workers’ activity by deep learning or other methods (Ramasamy
and Roy, 2018). Thus, one alternative consists of developing a
new method to capture the activity at a lower cost and in less time
despite the lower level of accuracy.

Besides improving performance and safety at construction
sites, it is essential to understand the tendency of workers’ activity
at construction sites quantitatively, such as the kinds of building
parts that take more time to install or the differences between
the movement of skilled and unskilled workers. The workers and
managers at construction sites have a great deal of knowledge
and experience regarding worker tendencies. However, few
previous studies have focused on the tendencies of the activity
of workers at construction sites quantitatively because only a
few ways exist to collect large amounts of data on workers at
construction sites with an acceptable level of effort. If we can
identify some tendencies of construction worker activity, we can
propose more acceptable improvements to the performance of
construction workers.

To solve these problems, we decided to use an accelerometer
to detect motion of workers. Small, lightweight accelerometers
have been widely applied in the medical and health fields to
measure exercise intensity and to categorize different types of
movement (Godfrey et al., 2008). If we apply accelerometers
to workers at construction sites, we can collect a large amount
of data on workers more inexpensively in less time. Of
course, the accuracy of data from accelerometers is lower
than that of other previously used methods, such as image
analysis, which aims to discriminate between different actions
specifically (Bai et al., 2012). However, this simple method
allows us to capture changes in the performance of workers
before and after the application of new technology. Moreover,
the tendency of movements can be identified over a long
period of time, allowing us to quantify data gathered from the
movements of many people.

The present study aims to develop a method to attach small
accelerometers to workers at construction sites to capture the
motion of workers easily, as well as to clarify the effectiveness
of this method and to identify problems based on experimental
trials at several construction sites. To this end, first, the authors
compared and examined several accelerometers that can be used
at construction sites in terms of weight, the data recording
method, and accuracy. Moreover, a program for discriminating
between active and inactive workers based on the obtained
acceleration data was developed referring to a previous research
study (Mathie et al., 2003). Finally, at three construction sites with
two detached houses (section” Result 1: Two Construction Sites
With Detached Houses”) and a large-scale office building (Result
2: A Large Office Building Construction Site), the authors attached

accelerometers to several workers to verify the possibility of
acquiring acceleration data using this technique.

REVIEW

Workers’ Motion at Construction Sites
To capture workers’ motions at construction sites, various
methods have been used to improve safety, productivity, quality,
and so forth. Instead of time-consuming recording methods
based on human observation and classification, one typical
method involves measuring workers’ movements by image
analysis or computer vision. As a fundamental technology
to track workers, a vision-tracking method was developed
to distinguish construction workers from other elements in
congested outdoor situations (Park and Ioannis, 2012; Lim et al.,
2016), as well as a real-time location system to detect the
movements and locations of multiple workers by radiofrequency
identification tags with accelerometers, and the researchers
verified the effectiveness of their tools at real construction sites.
The wireless real-time video monitoring system (WRITE) was
also developed to analyze sequences of images of workers and
was applied to the construction of a bridge (Kim et al., 2009;
Bai et al., 2012). Zhu et al. (2017) used data from construction
site videos to detect and track multiple construction objects
simultaneously. Moreover, Peddi (2008) captured the poses of
workers from a sequence of images at construction sites and
employed artificial intelligence to categorize them as instances of
ineffective or contributory work. In a study focused on materials,
Hamledari et al. (2017) developed a vision-based algorithm that
automatically detects the components of an interior partition and
validates the data by images captured by UAVs, smartphones,
and the Internet. Yu et al. (2019) designed a vision-based
three-dimensional (3D) motion capture algorithm to model the
motion of various body parts using an RGB camera to monitor
fatigue among construction workers. Ham and Kamari (2019)
proposed a method to automatically retrieve photo-worthy
frames containing construction-related contents from large-scale
visual data captured via UAVs. Although these methods have
advantages when detecting workers’ poses or motions specifically
without attaching devices to workers’ bodies, in some cases,
it is difficult to record several workers moving simultaneously
in congested construction sites with many obstacles that hide
workers from the vision-tracking system. In addition, as Ham
and Kamari (2019) pointed out, there is a problem of visual
data overload when these image analyses are applied for
longer durations.

Moreover, several researchers have applied sensors at
construction sites to focus on the safety of construction workers
in severe conditions. Cheng et al. (2013) employed a wideband
wireless position sensor and a biometric sensor to determine
the location and physiological status of workers to help them
avoid unsafe behaviors. Valero et al. (2017) developed inertial
measurement unit (IMU) devices to detect awkward postures
and decrease the risk of musculoskeletal disorders. In a similar
study, a wearable IMU was created to estimate the balance
of construction workers to prevent falls (Umer et al., 2018).
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Han and Lee (2013) developed a vision-based unsafe action
detection system for behavior monitoring and tested it by video
data related to ladder climbing. In another approach, Yantao
et al. (2019) introduced an automatic workload assessment
method to assess workers’ joints using image-based, 3D posture-
capturing smart insoles.

For an example of how an accelerometer can be installed
at a construction site in a way that mirrors the methodology
of the present study, Joshua and Varghese (2011, 2014)
investigated the feasibility of utilizing wearable accelerometers
attached to masonry workers’ waists for automated activity
classification. Moreover, similar methods to capture basic motion
at construction sites have been developed and verified (Akhavian
and Behzadan, 2016; Zhang et al., 2018), such as transporting
items, connecting steel bars, and sawing, by using accelerometers
and gyroscopes in smartphones. Another approach applied a
wristband-type activity tracker to discriminate masonry workers’
hand movements in the laboratory (Ryu et al., 2018). The
authors of these studies attempted to classify several kinds of
tasks for workers with different occupations at construction
sites, but developing a detailed versatile classification system for
this purpose is difficult. For example, setting plasterboard and
connecting steel bars entail completely different motions, and the
suitable position for attaching sensors may differ, although the
basic motions of walking or resting remain the same. Moreover,
the motions of workers engaged in the same task may vary
according to individual differences or the nature of the work. In
addition, some of the previous experiments were simulated in a
laboratory, where the researchers asked participants to move in
a certain way. Thus, overall, researchers have not considered the
problems involved at a congested building construction site.

Because of these difficulties of doing this type of research
at building construction sites, attaching sensors to machines or
materials is a feasible approach to detecting a specific type of
work. In the civil engineering field, it is easier to detect whether
machinery is moving or not. Akhavian and Behzadan (2015) used
smartphones to verify the operational status of civil engineering
and construction equipment. Moreover, KOMTRAX’s business
model (Hirano, 2010) connects the construction equipment at
a site for maintenance and consulting to collect data from a
large number of machines in civil engineering work. In one
example, strain sensors and accelerometers were attached to a
steel structural frame to monitor the automated construction
process (Harichandran et al., 2019), and an ultra-wideband
system was attached to workers, materials, and equipment for
location tracking in large, open-air construction environments
(Cheng et al., 2011).

Fields Other Than Construction
In fields other than construction, particularly in the medical and
health fields, there have been many studies on motion analysis
using accelerometers. Many of these studies do not feature direct
information, such as images and videos, because they are not
suitable for long-term research from the viewpoint of privacy.
Moreover, as Güttler et al. (2015) pointed out, making living
environments safer for elderly and disabled people in response
to aging societies has already become a serious problem. In

these contexts, monitoring is required 24 h a day, 365 days
a year, but there is a major cost problem for collecting data
continuously. Therefore, sensors can be used to collect small
amounts of indirect data on acceleration and optical information.
Thus, lowering the psychological hurdle for the participants
to track their activity is also important even in construction
sites, when the number of participants increases. According
to Godfrey et al. (2008), motion analysis using accelerometers
has been studied since the 1950s. Initially, researchers faced
challenges regarding the cost and accuracy of the equipment.
Thus, scholars then began focusing on this problem again in the
1970s with microelectromechanical systems (MEMS) technology,
and now, MEMS has become a common behavior analysis
method because accelerometers have advantages in quantitatively
measuring human movement at a lower cost (Yang and Yeh-
Liang, 2010). As an example of low-cost development, a system
using an inexpensive infrared sensor to recognize falling and
the related motion, was developed (Güttler et al., 2018). The
advantage of the automatic recognition of such operations is
that activities can be monitored 24 h a day, and the data can
be connected to other systems, such as a telephone service,
for further safety. In another approach, González-Villanueva
et al. (2013) developed a wearable sensing system to monitor
motions during physical rehabilitation, which consists of five
small modules, including an accelerometer.

Moreover, several research studies on factories have harnessed
data from accelerometers and microphones to identify tasks
performed by workers in a woodshop (Lukowicz et al.,
2004). A wrist-worn IMU was developed for workers on an
assembly line to distinguish between several types of work
(Koskimaki et al., 2009). Infrared-ID location sensor systems
and accelerometers were also used to identify the routine tasks
of nurses in hospitals (Naya et al., 2006). Shengjing Sun et al.
(2020) proposed an integrated framework of human–cyber–
physical systems and made a prototype for crane operators,
which monitors environmental conditions, acceleration, angles,
blood pressure, heart rate, and step, integrating data from
different devices.

In a context more closely related to people’s daily lives,
Hendelman et al. (2000) conducted a study with 25 people to
determine how much data they needed to measure the intensity
of real-life behaviors. In another study, Matthews et al. (2002)
conducted a physical activity analysis using accelerometers for
122 subjects for 3 weeks to shed light on behaviors in real-life
situations. In this research, the differences in activities, such as
adjustments for different days of the week, were clarified.

Most previous studies were based on the value of an
accelerometer mounted near the waist (Mathie et al., 2003).
When an accelerometer is attached to other parts (e.g., a
wrist, an ankle, or a thigh), most researchers also attached an
accelerometer to the waist. The reason behind this modification
is that the vicinity of the waist, especially the part behind the
waist (the back of the lumbar spine 3), is almost the same
as the center of gravity of the body and is less affected by
horizontal rotation; thus, this input can be recorded as movement
data based on the center of gravity. Sztyler and Stuckenschmidt
(2016) collected acceleration data from seven wearable devices
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in different positions (i.e., the chest, the forearm, the head, the
shin, the thigh, the upper arm, and the waist) in 15 subjects to
observe eight different activities. Duncan et al. (2019) attached
accelerometers on the non-dominant wrist, the dominant wrist,
the waist, and the ankle of 30 children and pointed out the
advantage of wearing an accelerometer on the ankle to replicate
moderate physical activity. In addition to waists, Kang et al.
(2018) attached IMU sensors to the wrists and the heads of sports
participants to recognize gestures in spinning sports. Sarcevic
et al. (2019) developed a new online classification algorithm,
which was applied to wrist-mounted wireless sensors equipped
with three triaxial sensors, an accelerometer, a gyroscope,
and a magnetometer.

As illustrated above, many researchers have attempted to track
motions on the basis of acceleration data or a combination of
other data. However, in some cases, frequent problems occur
with classifiers. Martín et al. (2013) evaluated the performance
of a set of lightweight classifiers for activity recognition working
on different sensor data in terms of accuracy, computational
cost, and memory fingerprint. Several motion estimation studies
feature machine learning and deep learning, and the data
used during the learning period successfully estimated worker
behavior with a high level of accuracy. Ramasamy and Roy (2018)
described recent trends in deep learning for human activity
recognition and classified recent studies according to what kind
of activities the authors recognized. Nweke et al. (2018) described
recent deep-learning studies for human activity recognition using
mobile and wearable sensor networks and categorized deep-
learning methods. These comprehensive studies discussed the
methodology, including how many activities are recognized
or how many sensors one should attach. Zheng et al. (2018)
focused on data reprocessing for deep-learning methods applied
to human activity recognition based on acceleration data from
wearable sensors. Kwon et al. (2014) proposed unsupervised
learning methods for human activity recognition, with sensor
data collected from smartphones even when the number of
activities is unknown, thus enabling human activity recognition
without training datasets.

However, these methods are not directly applicable to on-
site surveys in the construction industry. Makikawa (2016)
developed a software program that estimates daily activities using
acceleration data and machine learning. Even if the researchers
categorized the real-life motions into predetermined actions, they
could still only classify about 30% of the total motions. Of course,
if we classify the motions into several specific motions in advance
and ask participants to move in those ways, the classification
accuracy will increase. However, the target of the present study is
the long-term motions of workers at real construction sites, which
include many unclear, difficult-to-classify motions. Therefore,
it is not feasible to detect the types of construction workers’
movements specifically. Moreover, considering the nature of
construction sites, the authors of this article sought a simple
method that could be used for a large number of workers in
conditions more severe than those in a laboratory. An example
of a simple discrimination method based on acceleration can
be found in the work of Bouten et al. (1997), who developed
a portable unit to record acceleration and discriminate between

active and rest states. Mathie et al. (2003) also categorized daily
activities into two states (active and inactive) and developed a
program to identify those states.

Gaps in the Existing Literature
In previous research studies on the construction industry, to
improve safety conditions or to estimate worker’s performance,
workers’ conditions were detected. To achieve this goal,
researchers must classify workers’ motions, postures, and so
forth. However, in some cases, these methods have difficulty
particularly when applied to many workers simultaneously or
during long, continuous recordings from the viewpoint of
collecting and analyzing data. Compared with previous studies in
the literature, the present study aims to develop a simple method
applicable to many workers without focusing too much on one
worker or one motion. The present study places importance not
on better discrimination accuracy but on increasing the amount
of data by using a simple method (Matthews et al., 2002). The
authors adopted this approach because, if the amount of the
data will increase by using a simple method, the effect of the
application of new technology can be estimated, or the tendency
of workers’ movements can be analyzed. In addition, to increase
the number of workers or the time of recording, the physical
and mental loads of the participants attached to accelerometers
should be low. Thus, we attached only one accelerometer to
each worker’s waist and divided the workers’ activities into
active and inactive categories, as in the work of Mathie et al.
(2003). Although image analysis only involves mental loads, these
image analyses have difficulty with continuous recordings or
large amounts of data. We also analyzed what can be estimated
from the data, as well as whether or not the method can be
used for a larger number of workers or longer periods of time.
Furthermore, few researchers have applied accelerometers to
actual construction sites at buildings, which are congested and
have workers who move in unexpected ways and make mistakes.
Thus, the present study aims to examine the problems at actual
construction sites.

MATERIALS AND METHODS

Selection of an Accelerometer
The conditions required for the accelerometer used in the present
study are as follows. (1) Acceleration data can be acquired stably
for a long period of time at intervals at which it can be determined
whether workers are active or not. (2) The device must be
small and lightweight so as not to interfere with the work on
construction sites. Moreover, wired accelerometers are difficult to
use at construction sites.

Accelerometers can be broadly classified into two types: a
data transmission type and a data logger type. Although the
data transmission type is generally lightweight, it transmits data
to another storage medium, so reception may be interrupted
when the distance from the storage medium is large or when
there is an obstacle between accelerometer and another storage
point. In the data logger type, the accelerometer and the data
storage unit are integrated, and data can be stably stored.
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However, the data logger type is generally larger and heavier
than the data transmission type because of problems such as the
battery required.

For the present study, we prioritized lightweight and
compact devices and mainly used a data transmission-type
accelerometer, called A (25 g; 70 × 75 × 21 mm). Moreover,
an accelerometer, labeled B (180 g; 137 × 77 × 37 mm),
modified from Accelerometer A to a logger type by adding a
battery and a recording device, was also used for the survey
at both construction sites (Figure 1). Both accelerometers can
acquire triaxial acceleration data of approximately 100 Hz. The
accelerometer has a range of -2 g to + 2 g. As a result of
preliminary use at the laboratory, Accelerometer A was pinned to
the waist but was easily detached and unstable, so it was modified
to allow it to be attached to the waist belt. The data acquisition
of Accelerometer B was performed through a USB port. The data
were exported into a comma-separated values file.

Discrimination Program
To determine a worker’s active/inactive status, triaxial
acceleration data and time data were initially collected from
the accelerometer and listed according to when they were
recorded (normalized every second). Next, two types of filtering
were applied. First, the effects of gravity were removed using a
Butterworth high-pass filter. The gravitational force was assumed
to have only low-frequency components; therefore, a filter with
a 0.3 Hz cutoff frequency was used. Second, the data were
smoothed using a 19th-order median (non-linear, low-pass) filter
to remove high-frequency noise spikes (Mathie et al., 2003).

Using the equation below as a variable of the active state, the
signal amplitude area A was calculated for each list. As Mathie
et al. (2003) pointed out, to identify activity, both the magnitude
and duration of the signal needed to be taken into account. A is
the sum of the signal amplitude areas of each of the three axes
(a1, a2, and a3) normalized every second. A has units of m/s2,
which can be considered as the sum of the velocity per second,
and 135 × 10−3 G (G: gravitational acceleration) was used as a
threshold for activity/inactivity. The order of the median filter,
the threshold for parameter A, and the length of the list were

determined by Mathie et al. (2003).

A =
1
t
∗

(∫
t
|a1(t)|dt +

∫
t
|a2(t)|dt +

∫
t
|a3(t)|dt

)
(1)

To verify the program, two simple experiments were performed
in the author’s laboratory. First, a person attached a sensor
to his/her waist and walked, sat down, stood up, and stopped
(inactive) randomly for 65 s. Every second, the author tested
whether the discrimination from the data corresponded with the
authors’ observations. For active time (45 s) and inactive time
(20 s), the accuracy of the discrimination was 100 and 95%,
respectively. The discrimination failed only in 1 s in inactive
time. The reason for the failure was that, in that second, there
was a small motion that happened at the end of the previous
second. Thus, even for a clear motion, it is difficult to discriminate
activity/inactivity at the beginning or end of a motion.

Second, an accelerometer was attached to a person’s waist
when performing simple assembly work similar to that
performed at construction sites, and the device recorded the
work with a video camera. The activity/inactivity was determined
by the program every second (354 s in total), and the
video/camera image was also viewed by a person to determine
the activity/inactivity every second, and the rate of coincidence
between these three was examined (Table 1). The correspondence
rate of these three combinations ranged from 66.9% (visual
observations and Accelerometer B) to 78.0% (visual observations
and Accelerometer A). As for the cause of the deviation between
the visual observation and the accelerometer, because the unit
of the time for discrimination is 1 s, when both the active time
and inactive time are included in 1 s, the discrimination by the
program and the visual observation tend to change. Thus, even
though visual observations, it is difficult to discriminate between
activity and inactivity among workers. Moreover, this article aims
to develop a simple method to capture workers’ movements with
moderate accuracy. Hence, the authors applied these two sensors
during the survey at actual construction sites.

FIGURE 1 | Accelerometers attached to workers (indicated by white arrows): (A) Accelerometer A attached to the carpenter in House A and (B) Accelerometer B
attached to the carpenter in House B.
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TABLE 1 | Correspondence of visual observation and accelerometers.

Visual
observation and
Accelerometer

A

Visual
observation and
Accelerometer

B

Accelerometer
A and

Accelerometer
B

Correspondence (s) 276/354 237/354 245/354

Correspondence rate (%) 78.0 66.9 69.2

Survey 1: Detached House Construction
At the construction site with two houses (wooden post and beam
construction, House A and House B have approximately 100 m2

total area) where carpenters from the same contractor were
working, the carpenter in each house set plasterboard on the wall.
Accelerometer A was attached to the waist of the carpenter in
House A, and Accelerometers A and B were attached to the waist
of the carpenter in House B because, in cases in which there are
obstacles, it becomes difficult to receive data from Accelerometer
A. The active/inactive time and ratio for each plasterboard task
were recorded and analyzed. In House B, both accelerometers
recorded data. To match the conditions at house A, the data from
Accelerometer A were used in the analysis of House B.

In section “Result 1: Two Construction Sites With Detached
Houses,” the work time required to set one plasterboard was
calculated by measuring the time from the end of setting an
initial plasterboard to the end of setting a second plasterboard
as recorded by the video camera.

In House A, the survey was conducted for 2 days (about 3 h
each morning) in July 2019. In House B, the survey was carried
out for 4 h for 1 day in the morning in December 2019. The
carpenters in House A and House B had 15 and 13 years of
carpentry experience, respectively.

Plasterboards are common materials for substrates for
finishing in Japan. Plasterboard setting work mainly consists of
(1) measuring the place to set, (2) processing the plasterboards
to the correct size and shape, (3) transporting them to the setting
point, and (4) setting them. The sizes of the plasterboards were
910× 2,730× 12.5 mm in House A and 910× 2,420× 12.5 mm
in House B. At the corners of a wall, it takes more time to measure
and process plasterboards because the processing of uneven
portions or cuts requires adjustments to avoid leaving small parts
sticking out from the walls or ceilings. Before processing, the
plasterboard is placed in the room where it is to be installed or in
the next room, and transportation mainly refers to transporting
the processed plasterboard to the place where it will be installed.
On the second day at House A, it was difficult to classify the work
in parallel with the work on several kinds of door frames, among
other tasks; thus, only the results for day 1 for House A and House
B are described in section “Result 1: Two Construction Sites With
Detached Houses.”

Survey 2: Large Office Building
Construction
The work of people in multiple occupations was recorded
by an accelerometer and a video camera at a large-scale
office construction site (more than 100,000 m2 in total) for

5 days in November 2019. The target occupations include
rebar construction, formwork construction, scaffold jumping,
and construction management. Section “Result 2: A Large Office
Building Construction Site” focuses on floor slab reinforcement
work, and the reinforcement work of two workers was recorded:
that of a skilled worker (a participant with a 32-year career)
and that of an unskilled worker (a participant with a 2-year
career). These two participants worked in the same area in the
basement. Thus, sometimes, the acceleration data could not be
recorded by Accelerometer A because many obstacles stopped
the accelerometer from receiving data from the workers and the
authors (from the path on the ground floor). Thus, Accelerometer
B recorded these two workers’ data.

Rebar construction work is mainly divided into (1) carrying
the rebar, (2) locating the rebar, and (3) tying the rebar. Moreover,
the skilled worker gave orders to the unskilled worker. It is
more difficult to divide rebar arrangement work into certain
units of work than it is in the case of setting plasterboards (in
which the work can be divided according to the number of
boards). Therefore, the authors calculated the ratio of the seconds
determined by active time every 2 min; the ratio was 100% when
the active seconds accumulated to 120 s, hereinafter referred to as
“activity intensity.”

RESULTS 1: TWO CONSTRUCTION
SITES WITH DETACHED HOUSES

House A
In the research period, 16 plasterboards were set on the wall.
However, the accelerometers could not record the setting of the
15th and 16th plasterboards due to a video camera malfunction.
The accelerometers recorded data for 2 h, 55 min, and 11 s
(9:02:57 –11:55:08 a.m.). At the same time, we also recorded a
video of the work completed.

The active/inactive time and ratio for each plasterboard for
repeated work are described in this section. The work time per
board varied from 216 to 1,020 s (Figure 2). The average time
was 508 s for each board. As described above (section Survey 1:
Detached House Construction), if the boards were not processed
much, the time to set them became shorter. Looking at the ratios
of active and inactive time on each board, the ratio of active time
accounted for 33% on average (36% at maximum and 25% at
minimum). Thus, the variation of the ratio was relatively smaller
than the time to set the boards (Figure 3). This finding indicates
that, if the carpenter stopped working and thought about how to
cut the board or how to set it, the rate of active time decreased.
Thus, the stability of the ratio indicates that, whether the task was
difficult or not, the carpenters worked at a certain pace.

House B
The same motion tracking was performed when another
carpenter performed the work of setting the plasterboards with
Accelerometers A and B (data from Accelerometer A were used
for analysis). At this site, 43 boards were pasted, of which 23 were
large-sized boards and 20 were small boards used at the edges,
where there were gaps between the board and the ceiling, among
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FIGURE 2 | Active/inactive time in setting plasterboards (House A, 14 plasterboards).
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FIGURE 3 | The ratio of active/inactive time in setting plasterboards (House A, 14 plasterboards).

other places. Here, for comparison with the abovementioned
board setting work in House A, the work of 23 large board settings
was taken as an analysis target.

The work time at House B per plasterboard varied from 130
to 503 s (Figure 4). The average setting time was 331 s per board.
Next, looking at the ratio of active/inactive time on each board
(Figure 5), the average active time ratio was 47% (maximum
60%, minimum 35%). The activity time ratio amounted to 60%
when the measurement and processing of the board did not
take much effort.

Comparison of House A and House B
The work time at House B per plasterboard (333 s
per board on average) was shorter than at House A
(508 s per board on average). The different sizes of the
plasterboards may have affected the time required (described
in section “Survey 1: Detached House Construction”)
and the carpenters’ performance. The active time ratio
was varied more in House B (60% at maximum, 35%

at minimum) than at House A (36% at maximum and
25% at minimum).

As explained in section “Survey 1: Detached House
Construction,” plasterboard setting work can be classified
into four tasks: (1) measuring, (2) processing, (3) transporting,
and (4) setting. Figure 6 shows the ratio of the active time in
each of the four tasks. There was almost no difference in the
ratio of activity time for transportation and setting between
House A and House B. Conversely, there was a difference
of approximately 20% in both measurement and processing,
probably because there were fewer locations to measure and to
drill holes in the plasterboards in House B. This ratio analysis
reveals, quantitatively, the reason for the difference in the
workers’ performance between the two sites.

Figure 7 shows the relationship between the active and
inactive time in the plasterboard processing processes in Houses
A and B. The coefficient of determination (R2) of House A is
0.91, and that of House B is 0.38. Thus, there is a correlation
between active time and inactive time, with House A having
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FIGURE 5 | The ratio of active/inactive time in setting plasterboards (House B, 23 plasterboards).

a stronger correlation than House B. In addition, the gradient
of the approximate line of House A is two times larger than
that of House B.

There are two outlier points from the approximate straight
lines both in House A and House B (with arrows in Figure 7).
The outlier in House A (near 70 s active and 80 s inactive) was
the only point where only one processing task was carried out
with the plasterboard (i.e., the work is easier than others). The
outliers in House B (approximately 80 s active and 170 s inactive)
only consisted of the rework operations because the processed
board could not be set. Thus, this finding indicates that the data
from the accelerometer have the potential to detect problems at
construction sites.

RESULTS 2: A LARGE OFFICE BUILDING
CONSTRUCTION SITE

Figures 8, 9 show the transition of the activity intensity
(section “Survey 2: Large Office Building Construction”) of
the skilled worker and the unskilled worker, respectively.

Data are absent in two places in Figure 9 because of
periods of time when both Accelerometers A and B failed
to work properly; data from Accelerometer A could not be
received at those points, and the recording of Accelerometer
B stopped because of a sudden shock, as something at the
construction site might have hit it. Fluctuations in activity
intensity appear in both figures. The reason why the activity
intensity exceeded 80% immediately before and after a break
(from 9:30 a.m. for 20 min) is that both the skilled worker and
the unskilled worker had to walk to a break room at the large
construction site.

The average activity intensities (without the break time and the
time walking before/after the break) of the skilled worker and the
unskilled worker were 44.2 and 48.3%, respectively. The unskilled
worker’s average activity intensity was approximately 15% higher
than that of the skilled worker. The reason for this finding might
be that the unskilled worker tended to carry the rebar following
an order from the skilled worker.

Table 2 displays a comparison of the activity intensity of the
skilled worker and the unskilled worker. The activity intensity
of the skilled worker was generally in the 30–60% range except
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FIGURE 6 | The ratio of active/inactive time for each task (House A and
House B).
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FIGURE 7 | The relation between active time and inactive processing time
between House A (orange) and House B (blue); outliers are indicated by
arrows.

before and after the break when the skilled worker was walking.
Conversely, the unskilled worker’s activity intensity increased
or decreased significantly more than one time until the activity
intensity exceeded 80%. The standard deviations of activity
intensity were 16.7 and 23.3% for the skilled worker and the
unskilled worker, respectively. The number of times the activity
intensity surpassed 70% differed for the skilled worker (2) and
the unskilled worker (17), as did the number of times the activity
intensity dipped below 20% (again, 2 and 10, respectively).
Thus, the unskilled worker often ceased activity or moved more
vigorously than the skilled worker. Therefore, the average of the

activity intensity of the unskilled worker was 4.1% higher than
that of the skilled worker.

Comparing the two workers, the activity intensity of the
skilled worker was more stable than that of the unskilled worker.
Although the data were insufficient, several reasons might explain
this difference. First, the unskilled worker carried objects more
often than the skilled worker, meaning that his activity intensity
increased and decreased repeatedly. Second, the skilled worker
did not stop working to think about how to approach the tasks.

DISCUSSION

Feasibility of Data Acquisition by
Accelerometers at Building Construction
Sites
First, we must address the validity of the position and the
number of accelerometers. As for attaching an accelerometer
to the waist, the movement of the waist reflects the movement
of the whole user’s body and tends to detect activity/inactivity.
However, the position of the waist may record inactive time
when users move their hands without moving the body as a
whole. Hendelman et al. (2000) pointed out the inability of
accelerometers attached to the waist to detect the upper body
movement. In addition, when using waist-mounted acceleration
data, it is difficult to determine the type of the activity, even
though the intensity of the activity can be estimated. Thus, in
future research, scholars can investigate which kinds of work
accelerometers can effectively track when attached to the waist
by collecting data on several kinds of workers. In addition, as
Duncan et al. (2019) noted, the ankle can have advantages in
terms of replicating physical activities. Thus, in future studies,
researchers can analyze positions other than the waist, or they can
consider combinations of other positions and the waist, taking
the loads of the participants into account because, if the latter
become larger, it becomes difficult to increase the number of
participants or the time available to record data.

Second, compared with previous studies conducted in
laboratories (Joshua and Varghese, 2011, 2014) or open-air civil
engineering construction sites (Cheng et al., 2011), when using
an accelerometer at actual building construction sites with houses
and buildings, the data transmission-type accelerometer’s signals
sometimes cannot be received because of physical obstacles
in the area. Conversely, the data logger type is too large to
be worn on the waist, and if something hits the device, it
may stop recording. The problem with the data transmission
type can be solved by connecting with the network at the
construction site (because most large building construction sites
in Japan have local-area networks installed), and the problem
regarding the size of the data logger type can be solved by
developing a smaller one; in the present study, Accelerometer
B was the experimental one. Compared with the vision-tracking
method (e.g., Hamledari et al., 2017; Yu et al., 2019), even
small accelerometers have disadvantages in terms of the loads on
workers and the time required to attach them to the workers.
However, if it becomes possible to record acceleration data
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FIGURE 8 | The transition of the activity intensity of the skilled rebar worker.
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FIGURE 9 | The transition of the activity intensity of the unskilled rebar worker.

continuously and for a long time, small accelerometers can offer
advantages in congested building construction sites compared
with the computer vision technique.

Third, the time required for data acquisition and analysis to
classify workers’ activity is much shorter than that for human
observation because it is possible to measure acceleration data
remotely and classify them automatically. Of course, this was

TABLE 2 | Comparison of the activity intensity of the skilled worker and the
unskilled worker.

Skilled worker Unskilled worker

Average (%) 44.2 48.3

Standard deviation (%) 16.7 23.3

Number of unitsa over 70% 2 17

Number of unitsa under 20% 2 10

aOne unit is 120 s (see section Survey 2: Large Office Building Construction). The
“Number of units over 70%/under 20%” does not include the time before/after a
break.

an experimental study, and the authors recorded the workers’
motions with a video camera. However, in the future, if whether
the worker is active can only be captured by an accelerometer,
the cost of acquiring the data will decrease significantly. In this
experiment, the accuracy of detection by the accelerometer was
lower than that acquired by human observation or computer
vision, and it was difficult to detect what the workers were
doing specifically. However, this method can apply to many
workers and be used for long-term acquisition; furthermore,
with these large amounts of data, deep-learning classification
can be applied (Nweke et al., 2018; Ramasamy and Roy, 2018).
Moreover, the results of the present study indicate that only from
the acceleration data the site manager or other engineers can
capture workers’ performance, problems, and tendencies.

How to Utilize the Data From an
Accelerometer
The possible ways to utilize the acceleration data acquired
are outlined below.
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First, the data can be used to measure the ratio of
active time of workers, which can affect the performance
of workers. By using an accelerometer to determine the
correlation between the activity intensity and the work at
hand, researchers can estimate the efficiency with which the
work was performed. With this method, in the future, the
performance can be evaluated without a person observing
the state of the worker or manually inputting and classifying
the data acquired. Moreover, a long-term analysis of a large
number of people will enable more inexpensive verification
of quantitative effects before and after the adoption of new
technologies. Of course, without a video camera or human
observation, the reasons behind increases and decreases in
the activity intensity will remain unclear. However, with
such tools, we can identify changes and patterns in workers’
performance quantitatively.

Second, data can be harnessed to detect problems at
construction sites. If the activity intensity is extremely high
or low, a problem has likely occurred in the work. When
there is a sudden decrease in active intensity, the workers
might be waiting for an order or the arrival of materials,
among other things, such as the unskilled rebar worker
described in section “Result 2: A Large Office Building
Construction Site.” In cases where sudden decreases occur,
a worker might be working smoothly or walking around
at the site to look for materials or managers. If significant
increases or decreases in activity intensity are commonly
observed among a large number of workers, one can assume
that a construction management problem is occurring. Thus,
managers can detect changes in the situation without going
to the location directly, which can reduce the workload of
construction managers.

Third, the data acquired can help clarify workers’ tendencies.
For example, although this experimental study only yielded a
small amount of data, by examining the variation of the activity
time ratio (section “Result 1: Two Construction Sites With
Detached Houses”) or activity intensity (section “Result 2: A
Large Office Building Construction Site”), the tendencies related
to the work or the worker can be indicated. Even if the difficulty
of work per piece varies, the work continues at a constant pace;
as seen in the rebar work examined in this study, the skilled
person also worked at a more constant pace than the unskilled
worker, which may suggest that the construction work went
smoothly without any problems or stops. However, regarding
the activity time ratio and activity intensity, there was also a
difference in the plasterboard setting work completed by the same
contractor. In this experimental study, the conditions for each
work were not uniform. Therefore, it is important to consider
increasing the number of subjects in future studies as in the
previous studies in other fields (Hendelman et al., 2000; Matthews
et al., 2002) and to unify the conditions at each site and for each
type of work. Particularly, researchers can apply this method to
more repeated tasks. In the present study, even in the setting of
plasterboards, the size of the plasterboards varied, and the work
required for each board also differed slightly (e.g., at corners).
For example, during the finishing stage at large office buildings,
there is more repetition of the same tasks. Thus, the difference

in the activity intensity could be analyzed more accurately by
applying this method.

CONCLUSION

The present study developed a new method for discriminating
between activity and inactivity by using an accelerometer
attached to workers at construction sites. Several surveys were
conducted at building construction sites with a total of two
detached houses and one large office building. From the data
on activity/inactivity, the activity time ratio and activity intensity
were calculated, and ways to use the acceleration data gathered
through this method were also considered. The possible uses
of acceleration data include detecting if the workers are active
and identifying the problems and tendencies related to workers’
movements. This study presented a new method for capturing
workers’ activity quantitatively at construction sites – even for
larger numbers of people or for longer continuous periods of time
without going to the location directly by construction managers.
In a future research study, the authors will reduce the variation in
the types of data to be acquired and the content of each type of
work by measuring repeated tasks, such as attaching ceilings and
walls to large non-residential buildings.
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