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Corrosion presence is a recurrent concern in buildings and structures that use steel

as their core or as reinforcement, due to the change of steel’s properties caused

by this phenomena. Therefore, methods to detect and quantify corrosion had been

developed; some are based on electrical and electrochemical measurements. On

reinforced concrete structures, sometimes there are exposed steel bars which are

visible, but on those, a visual inspection could determine corrosion presence. There

exist different options to measure the steel bars’ corrosion and its level. The more

straight forward consists of cutting through the concrete until the bar is exposed and

connecting a measurement device there. A disadvantage of this technique is that steel

has to be exposed to the environment during the measurement; as an alternative, novel

contact-less electrochemical techniques are getting more popular. Recent advances in

low-cost and portable electrochemical devices and embedded sensors can change how

the structures are tested. Moreover, there is a discussion about how those devices,

if developed for other fields as biosensors, can assist in other areas. This mini-review

also gives some hints of what the future trends could be due to the combination of

those areas.

Keywords: portable device, cyclic voltammetry (CV), steel corrosion, electrochemical impedance spectroscopy

(EIS), corrosion

INTRODUCTION

From long ago, humans had been building bridges to connect cities, countries, and overcome
obstacles; the materials used in these constructions have changed over the times, from the stone
and wood to the modern bridges made of steel and concrete. These structures require periodical
maintenance to keep them well, but a common cause of problems in bridges is corrosion in
the steel bars due to the environment. In particular, the changes in temperature can cause small
dilatations and contractions; also, the rainfalls could raise the humidity. These factors increase the
probability that corrosion appears on the steel bars used during the construction. However, some
researchers had developed models to predict corrosion (Tuutti, 1982; Guo et al., 2019) that are
used to estimate the aging of a structure and the corrosion in advance. A fast approach to these
models is using a Finite Element Method (FEM) and simulating Reinforced Concrete behavior due
to corrosion as in Bossio et al. (2015). This corrosion could affect the durability of the steel and also
reduce its ability to sustain strain, reducing the stress threshold as modeled in Deng et al. (2018).
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For example, the ultimate flexural capacity of reinforced concrete
elements is decreased due to the corrosion of steel, as pointed
out by Bossio et al. (2019b), they compared a set of experimental
data against a non-linear FEM model. Netherless, the seismic
capacity is directly affected by the corrosion level (Bossio
et al., 2019a) shows how the mechanical properties such as
ductility of the structure are affected, leading to structural failure
during an earthquake. However, some researchers (Bossio et al.,
2018) are working in a High-Performance Concrete (HPC)
that could aid the structure to sustain stress and improve the
structure ductility even in advanced corrosion levels. However,
reasearchers (Formisano et al., 2018, 2019) discussed the use of
non-destructive tests such as the leed hardness test to measure
steel properties. These tests use a penetration device, which
punctures a sample with a fixed force and measure the dent
on the steel. Which using conversion tables can achieve the
estimation of the material hardness. Otherwise Di Lorenzo et al.
(2019) and Rizzo et al. (2019), present corrosion wastage models;
which could be used to predict corrosion in steel. The model
proposed by Rizzo et al. (2019) can estimate the corrosion depth
in structures made of wrought iron. Meanwhile, the model of
Di Lorenzo et al. (2019) based on experimental data obtained a
model calibrated with measurements on both mild carbon and
weathering steels.

There exist experimental measurements of corrosion
propagation that use steel plates and a corrosion chamber that
simulate environmental conditions (Odrobinák and Gocál,
2018). Such conditions are set to induce accelerated corrosion
to model the behavior of steel of similar specifications on
bridges. Authors of Alexander and Beushausen (2019) present
a review of different ways to determine durability or service
life prediction of RC structures. However, it critiques some
of the current approaches and proposes the use of worldwide
specifications and models that improve those parameters. Some
common ions speed up the corrosion in the RC structures.
One of the most studied is the Chloride ion, the penetration in
the concrete (Wang et al., 2018), how it interacts with cracked
concrete (Kušter Marić et al., 2020), and how it is transported
to the steel. These studies lead to models that can characterize
how the transport changes depending on the wetting/drying
cycles (van der Zanden et al., 2015; Kušter Marić et al., 2020).
In this mini-review, standard corrosion detection methods are
presented, including commercial devices used; the third section
shows recent developments in terms of low-cost and portable
devices that meet similar criteria, also embedded sensors, and a
benchmark. Finally, the last section presents a vision of future
trends that gives hints about what problems these devices
could solve.

TYPICAL TECHNIQUES OF
MEASUREMENT

For bridges made of reinforced concrete, it is necessary to
estimate the corrosion rate of steel embedded inside the concrete;
for this, several techniques had been developed throughout the
years. Usually, a routinary inspection consists of a visual test

looking for rust or cracks in the structure, which could not give
an accurate measurement of corrosion and its level inside the
structure. On Marić et al. (2019), authors present some study
cases of bridges and how the use of non-destructive techniques
in routinary inspections can lead to more accuracy in find
steel corrosion and their level inside structures. The most used
technique is the Half-cell potential (HCP) (Poursaee, 2016),
which is used to detect corrosion resistance of steel bars using a
single contact point in the bar (electrode), and a second electrode
on the concrete surface (Kawaai et al., 2019). Another common
technique is linear-polarization-resistance (LPT). This technique
involves applying a small voltage (usually about 30mV) above
and below its corrosion potential to the steel bar meanwhile
the current is measured; with this, the polarization resistance
(Rp) could be estimated, which is defined as the slope of the
current-potential curve. Also, making use of the Tafel plot
obtained, the corrosion rate could be estimated (Alexander and
Orazem, 2020a). This technique requires a direct connection to
the steel, which in some cases, implies digging across the concrete
to expose the steel. To avoid this situation, researchers had
explored the use of electrochemical analysis (Keddam et al., 2009;
Alexander and Orazem, 2020b), with contact-less measurements,
which could calculate steel corrosion using Electrochemical
Impedance Spectroscopy (EIS). Those tests are made with lab
potentiostats such as Gamry Reference 3000 (Gamry, USA) or
VersaSTAT 4.0 (Princeton Applied Research).

The LPT analysis of reinforced concrete by EIS is used to
obtain the polarization resistance (Rp) of the bar; this is on
the EIS Nyquist charts. The typical impedance values could
vary from 100� to 10 k�; this difference could vary by
electrodes distance and position, as described by Alexander and
Orazem (2020a), where the Rp measured in the same reinforced
concrete sample changed by 10 times due to the position of the
electrodes on the surface. However, the corrosion measurement
by impedance techniques could also test the effectiveness of
anti-corrosive coatings, testing coated and uncoated samples
(Alvarez-Pampliega et al., 2014; Raj et al., 2020) to test
anti-corrosive coats properties. Those tests and measurements
require an advanced electrochemical device such as the Autolab
PGSTAT302 and algorithms developed to extract the information
from the data like MATLAB.

ELECTRONIC TECHNIQUES AND
PORTABLE DEVICES

There are currently attempts to reduce the size of electronic
measurement devices, while keeping their characteristics and
operation ranges. A field with a significant amount of these
devices is the biosensors, in which they research low-cost and
portable potentiostats suited for electrochemical tests. Some of
those devices can carry out most of the standard electrochemical
tests. For example, Segura and Osma (2017) developed a
miniaturized potentiostat that can do Cyclic Voltammetry (CV).
With applied voltages from −1.65 to 1.65V, measured currents
from 80 µA to 10mA, and impedances in the range of 50� to 20
k�. Other devices, like a low-cost amperometric device, can do
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FIGURE 1 | Some of the portable devices for electrochemical measurements. (A) Miniaturized Potentiostat (Segura and Osma, 2017). (B) Wireless potentiostat

(Steinberg et al., 2015). (C) USB Potentiostat Galvanostat (Dobbelaere, 2017).

TABLE 1 | Comparison of commercial and low-cost devices.

Voltage

supply

Techniques

supported

Operation Voltage Communication Size W × H Price one device

USD

Current

measurement

capabilities

Miniaturized

Potentiostat (Segura

and Osma, 2017)

3.3 V CV −1.650V to 1.650V USB 4.45 cm × 5.34 cm N/A 10 µA to 10 mA

Wireless potentiostat

(Steinberg et al., 2015)

3.3 V CA −0.325V to 0.900V NFC 8.00 cm × 5.00 cm N/A 15 nA to 100 µA

USB Potentiostat

Galvanostat

(Dobbelaere, 2017)

5 V CV −8.00V to +8.00V USB 5.00 cm × 5.00 cm Below $100 2.5 µA to 25 mA

USB based sensor

(Bukkawar et al., 2019)

5 V LSV 0.000V to 3.300V USB 19.81 cm × 12.19 cm ∼$47 150 nA to 250 µA

Autolab PGSTAT101 120V SV, LSV, CV, ASV,

SWASV, CA

−10.00V to 10.00V USB 9.00 cm × 21.00 cm More than $2.000 10 nA to 100 mA

PalmSens3

Potentiostat/

Galvanostat/

Impedance Analyzer

5 V SV, LSV, CV, ASV,

SWASV, CA, FRA/EIS:

10 µHz up to 1 MHz

−5.00V to 5.00 V Wireless Bluetooth or

USB

15.70 cm × 9.70 cm More than $2.000 100pA to 10 mA

CVs with a voltage range from 0V to 5V, and current measures
up to 4.5 µA, with USB and Bluetooth connectivity (Agustini
et al., 2020). Some of them had EIS measurement capabilities
with a portable setup (Pruna et al., 2018; Barreiros dos Santos
et al., 2019; Jenkins et al., 2019), with voltage and current ranges
that could be used to measure corrosion. There are even open-
source projects which share all the information required to build
one of those portable devices. For example, Dobbelaere (2017)
presents a potentiostat/galvanostat, design, and fabrication. Also
Steinberg et al. (2015) developed an open-source potentiostat
ABE-Stat with the EIS technique; this technique could be used
on corrosion detection, as illustrated by Eid et al. (2020), Etim
et al. (2020), and Kenny and Katz (2020). Figure 1, presents
some of the portable devices mentioned in this section, those
devices are portable and their cost is a fraction of commercial
laboratory equipment.

However, other elements, such as embedded sensors, could
improve a portable device corrosion measurement. For example,
chloride-induced corrosion is a significant threat to reinforced
concrete (Sandra et al., 2020); this is common in places near

saltwater (Honglei et al., 2020). This effect had been studied
for a long time, leading to experimental data and simulations
(Chen et al., 2020). However, there exist researchers who are
working on the detection of the presence of chloride ions.
For example, Torres-Luque et al. (2017) developed a chloride-
ion detector made to be placed inside the reinforced concrete
during the building process. This sensor detects andmeasures the
concentration of chloride-ions, using capacitorsmade of Calcium
Aluminate. Due to the geometrical disposition of the capacitors,
it had the potential to measure the corrosion direction.
Furthermore, its low cost and small size make it possible to be
placed throughout the entirety of the bridge or structure. Table 1
presents a comparison between commercial devices and some of
the portable devices mentioned in this section.

DISCUSSION

Corrosion and electrochemical tests, in general, require
complicated and expensive devices and specialized laboratories.
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Nevertheless, due to recent advances in technology, some
researchers had developed their own low-cost and portable
devices, which gives technological independence. Additionally,
those custom made devices had small dimensions, making them
portable and a perfect choice for fieldwork. The portability also
refers to the supply voltage independence, which is usually of
5V. This voltage could be easily provided by batteries or any
USB port from a laptop. Some of them even could be powered
remotely by NFC technology, which makes them perfect for
embedding inside the concrete, and carrying out measurements
in place, reporting data wirelessly to a smartphone or a laptop.
This option could yield to obtain and process the data in situ,
which gives an advantage over the commonly used processes.

Therefore, some commercial brands have also started
developing their own portable devices, but they still are
expensive. However, they have excellent specifications, and this
takes advantage of the know-how and the infrastructure that
backs them up. Nevertheless, there exists a gap when there
are large structures such as bridges or buildings, for which
it may be beneficial to have more readouts and even to had
embedded sensors and devices that allow continuous monitoring
of the corrosion. In the future, those low-cost devices could
be embedded in a large structure, and using IoT technologies
and lots of sensors, can create a mesh that could get a

fast measurement of the status of the structure and how the
environment affects it over time.
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