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The energy effects of roofs have primarily been studied using theoretical models.
However, empirical methods are needed for validation or when not all drivers of energy
change can be observed. This study used mixed empirical techniques to estimate the
impact of whitening existing roofs. Two years of hourly site cooling energy use were
collected for 114 homes in Austin, TX. Seven properties selected to have their roofs
coated white at no charge, imitating incentive policies. The empirical results are mixed,
primarily limited by the small treated sample size. Individual household comparisons
generally demonstrate statistically significant impacts of whitening, ranging from 14%
to 49.2% reductions in daytime site cooling energy use and a 9.7% increase to a
40.3% decrease in nighttime site cooling energy use. Ordinary least squares regression
estimates statistically significant mean daytime reductions of 9.7% but no significant
nighttime effects. However, clustering the standard errors by household substantially
reduces the significance level. Tweedie regression, which better accommodates slightly
inflated zeros in the sample, demonstrates significant daytime and nighttime reductions
of 14.3% and 5.5%, respectively. A life-cycle costs analysis using a mix of primary and
secondary data explored the secondary benefit of delaying roof replacement resulting
from the added protection of the coating material. Absent this delay, whitening would
pay for itself in only 41% of simulations with a median net cost of $310 and simple
payback of 22 years. Including a benefit to delay roof replacement, the median payback
period is 1 year and the median net benefit is $310 across a range of assumptions.
However, the benefits of whitening are only robust for older roofs and longer service
lives for the coating. For roofs older than 10 years of age, most simulations reflect net
benefits if the coating lasts at least 5 years.

Keywords: roof, difference in difference (DD) method, life cycle cost (LCC) analysis, white roofs,
statistical approaches

INTRODUCTION

Almost 90% of United States homes now use space cooling (Doe (U.S. Department of Energy),
2017b). Thus, cost-effective strategies to reduce energy consumed for cooling are critical to
improving the performance of the U.S. energy system.

In warm climates, a significant passive heat load may enter the building through the roof (Nahar
et al., 2003). Passive design strategies can mitigate excess heat loads using either natural ventilation,
thermal insulation, orientation, evaporation, or solar reflectance (Hernández-Pérez et al., 2014). All
else equal, white roofs will reflect more sunlight than dark roofs, reducing a building’s heat gain.
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In addition to albedo, a roof ’s thermal emittance, or its
propensity to emit thermal radiation, can also impact thermal
performance. Highly emissive roofing materials, such as most
asphalt shingles, will radiate more stored heat away from the
building than lower emissivity materials, such as bare metal roofs.
However, most research indicates that roof albedo dominates a
roof ’s effect on building cooling (Akbari and Konopacki, 1998;
de Brito Filho et al., 2011; Al-Obaidi et al., 2014; Brito Filho and
Santos, 2014). In cooler climates, however, less emissive materials
can beneficially store and indirectly transfer heat into buildings
during the heating season.

The thermal effects of building albedo change are relatively
well understood. Hernández-Pérez et al. (2014) review several
decades of building albedo research, identifying 42 studies
applying theoretical models of building albedo, 18 field trials, 10
studies of albedo change on existing buildings, and 8 studies using
calibrated theoretical models. Collectively, these studies produce
a high pedigree of confidence that higher albedo building surfaces
reduce building cooling site energy use, with the magnitude of
any given reduction being influenced by the degree of albedo
change, building-level characteristics, and climate.

Studies also indicate that site heating energy use increases
with increasing albedo, typically referred to as the “heating
penalty.” However, studies find few contexts in which the heating
penalty outweighs the environmental or monetary benefits of
cool roofs (Akbari and Konopacki, 1998; Hosseini and Akbari,
2014). For example, Synnefa et al. (2007) use theoretical
building energy demand models to explore global variation
in site cooling energy use in homes retrofitted with a cool
roof coating. For a solar reflectance change to 0.85 from 0.20,
they estimate reductions in end use consumption for cooling
exceeding any increases in heating site energy use for 26 of
27 global cities, with the heating penalty in Mexico City being
slightly larger than the reduction in site cooling energy use.
If losses in electric power generation and transmission were
included, the results would likely show primary energy savings
for all locations.

Growing awareness of cool roof performance has prompted
research estimating outcomes from widespread cool roof
adoption and respective implications for policy. Levinson and
Akbari (2010) estimate that retrofitting 80% of U.S. commercial
buildings with a white roof would reduce cooling site energy
use by 37 PJ per year and provide HVAC energy cost savings
of $735 million per year. State estimates of site cooling
energy reductions vary from 12 to 28 MJ per year per
m2 of roof (mean of 18), and site heating energy penalties
range from 0.32 to 15 MJ per year per m2 of roof (mean
of 6.9). Coupling their results with state energy prices and
regional power grid emissions, Levinson and Akbari (2010)
estimate net monetary savings and reductions in CO2, NOX ,
SO2, and Hg for all U.S. states, even when including a
heating penalty.

Sproul et al. (2014) perform a similar techno-economic
assessment of traditional black, white, and green roof alternatives
using literature estimates and data from 22 roof projects in
diverse U.S. cities. Including installation and maintenance costs,
electricity grid emissions, equipment downsizing for stormwater

and cooling, and avoided storm water fees, they estimate that
white roofs outperform black roofs for all 22 projects and
outperform green roofs in 21 projects, with a representative white
roofs lifetime savings of $96 per m2 and $26 per m2 relative to
green and black roofs, respectively.

By reducing the thermal extremes to which roofs are exposed,
white roof coatings may also increase the useful roof service life
over and above darker materials, and such benefits are often
cited by policy makers (Doe (U.S. Department of Energy), 2017a).
Industry estimates suggest that coatings can increase the service
life of conventional commercial roofs by 5–15 years for a diverse
type of roof materials (APOC, 2017). However, I identified no
empirical information describing the observed increase in roof
service life from coatings.

Policy makers have responded to the opportunities of cool
roofs by encouraging adoption using a mix of financial incentives,
standards, and labeling schemes. The Cool Roof Rating Council
(2017) indicates that 17 municipalities (across 13 states), 7 states,
and the U.S. Internal Revenue Service offer rebates for cool roofs.
The U.S. Energy Star program promulgated its first consumer
label for cool roof products in 1999, which has since been
revised twice (Energy Star, 2017). Researchers have previously
recommended changes to California’s building energy code on the
basis of theoretical energy reductions from cool roofs (Levinson
et al., 2005; Rosado and Levinson, 2019).

Measuring the performance of cool roofs adopted in response
to current policies requires methods different from those
theoretical techniques profiled above. Theoretical models and
field trials can treat influential parameters (e.g., envelope
insulation) parametrically when estimating performance.
However, such influential variables are unobserved in the context
of current policies aiming to influence consumer choices. Policy
makers simply offer an incentive or provide a label but do not get
to prescribe the occupancy or building characteristics associated
with affected retrofits. As a result, methods that accommodate
unobserved participant heterogeneity or selection bias are
needed to estimate roof performance in the context of current
adoption policies. For example, occupant behavior, which is not
integrated into current theoretical models, has been shown to
significantly affect roof performance (Pisello et al., 2015).

The difference-in-differences (DiD) method is a quasi-
experimental technique that utilizes longitudinal data to
“difference out” group effects that could otherwise influence
measured outcomes. Equation 1 presents the basic DiD model.

Yi, t = β0 + β1treati + β2postt + D
(
treati × postt

)
+ εi,t

(1)

where Yi,t = outcome for unit i at time t
treati = group indicator distinguishing for treated units
(0 = control; 1 = treated)
postt = indicator for the treatment period (0 = prior to
treatment; 1 = post treatment)
β0, β1, β2 = estimated model coefficients
D = difference-in-differences estimate or the effect of the
treatment
εi,t = error term.
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Consider comparing expected values (E[Y]) for two groups
(a treated and a control) with one common treatment period
(treat = 0 before treatment and treat = 1 after treatment).

E
[

Ytreat=1,post=0

]
= β0 + β1 = before treatment, treated

group
E
[

Ytreat=1,post=1

]
= β0 + β1 + β2 + D = after treatment,

treated group
E
[

Ytreat=1,post=0

]
− E

[
Ytreat=1,post=1

]
= β2 + D = average

effect of treatment on treated group.

By modeling differences in the outcome, Y, within a
treated group over time, the group-level term, β1, has been
“differenced out.” Controlling for group effects is important
if the treatment group demonstrates tendencies that influence
Y that are otherwise unrelated to the treatment. For example,
homeowners choosing a white roof might also have higher site
cooling energy use as a result of poor insulation. Without a
group effect that controls for this, the effect of attic insulation
could be improperly attributed to whitening. This first difference,
D+ β2, represents the average effect of the treatment comparing
the treated group before and after treatment, which includes both
the outcome of interest, D, and a time effect, β2. The parameter
β2 represents any impacts to energy use that occurred in the
treatment period unrelated to the treatment itself. By modeling
a second “difference” across control and treatment groups, one
can find this time effect as follows.

E[Ytreat=0,post=0] = β0 = outcome before treatment, control
group
[Ytreat=0,post=1] = β0 + β2 = outcome after treatment,
control group
E[Ytreat=0,post=0] − E[Ytreat=0,post=1] = β2 = fixed effect for
treatment period.

The second difference, E[Ytreat=0,post=0] − E[Ytreat=0,post=1]

or β2 is the average difference for the control group before and
after the treatment period. This difference should represent any
time effects unrelated to the treatment. A final “difference-in-
differences” produces the estimate of interest, D.

β2 + D− β2 = D = E
[

Ytreat=1,post=0

]
− E

[
Ytreat=1,post=1

]
︸ ︷︷ ︸

Average difference in treated group
before and after treatment

−E[Ytreat=0, post=0] − E[Ytreat=0, post =1]︸ ︷︷ ︸
Average difference for control group
before and after treatment period

This second difference removes any confounding time effects, β2,
assuming such affects are similar for the treated and control units.
This assumption is known as the “parallel trend” assumption for
DiD models. DiD methods have been applied to other energy
efficiency retrofits (Adan and Fuerst, 2016; Datta and Filippini,
2016; Adland et al., 2018).

Similar to existing cool roof monetary incentives encouraging
adoption, residents in Austin, TX were invited to participate
in an experiment in which their roofs would be coated
white at no charge. Space cooling branch circuits were
separately monitored on an hourly basis for both the treated
homes (those choosing to whiten their roof) and a control
sample. Varied empirical methods, including individual within-
household comparisons and regression, were used to estimate
whitening’s impact.

A life-cycle costs analysis was also conducted to gauge the
secondary benefit of delaying roof replacement as a result of the
added protection afforded the roof membrane by the coating
materials. In addition to the benefit from delaying replacement,
the life-cycle cost analysis included the costs of roof whitening
(materials and labor), a heating penalty, and site cooling energy
reductions estimated from the DiD model. The methods profiled
herein can be generally applied to measure the performance of
roof retrofits where unobserved effects influence selection or
energy consumption.

MATERIALS AND METHODS

Sample Preparation
Approximately 120 households across 25 ZIP codes in Austin,
TX, United States were invited to participate in an experiment
in which their roofs would be coated white at no charge and
the effect on space cooling would be estimated. A total of seven
homes were recruited.

Roofs on the treated homes (also referred to as the “coated”
or “whitened” homes) were all conventional asphalt shingles that
were either light gray, dark gray, or brown in color. Six of the
treated homes were one story and one was three stories. The
distribution of roofs slopes (rise to run) for the treated homes is
4 over 12 (n = 4), 3.5 over 12 (n = 1), 2.5 over 12 (n = 1), and a
mixed slope (n = 1).

Two homes were coated in fall 2015, and the remaining
five were coated in the summer and fall of 2016. Photographs
of the coating used, Behr’s Multi-Surface Roof Paint (color
White Reflective No. 65), are included in the Supplementary
Information. Each home received two coats, the second within
a week of the initial coat. The roof coating schedule is provided
in the Supplementary Information. In preparing the sample
for analyses, homes were indicated as coated on the date of
the initial coat. Recruitment, project scheduling, and white roof
coating (BEHR, 2020) were managed by the White Roof Research
Project. Photographs of two coated homes are included in the
Supplementary Information.

The Pecan Street Research Institute (2017) provided
household characteristics data (floor space and number of
floors) and metered hourly site cooling electricity use from May
2015 and October 2017. All data management, visualizations,
and modeling were completed using the R language and
compatible packages (Wickham, 2016; R Core Team, 2020;
Wickham et al., 2020).

In an effort to reduce inflated zeros and remove observations
of electricity used by heat pumps for heating, heating days were
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TABLE 1 | Household-level summary statistics (mean and standard deviation) of site cooling energy use and cooling degree hours per period for 114 homes in Austin,
TX, United States monitored between May 2015 and June 2017.

Group Status Period Observations
(household * period)

Site cooling energy use per
period (MJ per home)

Cooling degree
hours per period

All – Day and night 71,522 39.6 (26.5) 59.1 (53.2)

Control Untreated Day 34,288 47.3 (28.7) 101.6 (42.5)

Control Untreated Night 34,288 32.6 (22) 16.5 (14.8)

Treated Before treatment Day and night 826 36.1 (21.8) 65.0 (56.1)

Treated Treated Day 1060 33.6 (24.5) 101.6 (43.4)

Treated Treated Night 1060 22.1 (14.9) 17.1 (15.3)

The data reflect only the cooling season as described in the narrative. A “period” refers to either a full day, daytime, or nighttime as indicated by the row. Cooling degree
hours were estimated as the sum over the hourly differences between the outdoor temperature and the median cooling setpoint of 25.6◦C (78◦F).

FIGURE 1 | Household-level site cooling energy use of 114 homes in Austin, TX, United States by group (control, whitened) and period (day, night) monitored
between May 2015 and June 2017.

estimated and removed by comparing thermostat set points
to historical temperature records. Inflated zeros can cause the
distribution of observations to deviate from normality, making
it harder to fit data to related statistical models. Pecan Street
publishes thermostat set point data for a broader sample of homes
(n = 341) than those for which cooling is monitored. The median
heating (21.1◦C or 70◦F) and cooling (25.6◦C or 78◦F) thermostat
set points were used as the basis for defining heating and cooling
days. Only days where the mean outdoor temperature is above
the median thermostat set point for heating were included in
the analysis. These criteria identified 126, 128, and 123 cooling
days in years 2015, 2016, and 2017, respectively, between May
2015 and October 2017. The distribution of the resulting air
conditioning data still has a small amount of inflated point mass
(0.3% of observations) at zero.

It was assumed that household occupants traveled during
periods when at least two consecutive days during the cooling

season recorded no site cooling energy use, and these periods
were dropped from the analysis.

The final sample, summarized in Table 1, consists of
unbalanced observations of site cooling energy use for 114 homes
(7 treated and 107 controls) by date, daytime, and nighttime,
where daytime and nighttime periods were distinguished by
local sunrise and sunset data (U.S. Navy, 2017). The Pecan
Street data identifiers used in this analysis are included in
the Supplementary Information for those interested in further
studying this sample.

Figure 1 shows distributions of site cooling energy use by
treatment status, experimental group, and period (day or night).
Visually, whitening appears to reduce site cooling energy use,
which is most apparent during daytime. During the day, the
distributions for each experimental group are nearly identical
when untreated, whereas consumption for the treated group
appears to decrease after whitening.
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Within-Household Comparisons
Site cooling energy use was compared before and after treatment
for individual households using descriptive statistics and t-tests.
Separate comparisons were made for day and night on the basis
of sunrise and sunset.

Model of Site Cooling Energy Use
Individual household comparisons may be misleading for two
reasons. First, factors other than whitening—both technical
and behavioral—can impact whitening’s performance. If these
factors correlate with whitening, their effect on site cooling
energy use could be improperly associated with whitening.
Second, these same factors may influence whitening’s impact.
An example of this is demonstrated by showing graphically the
impact of observed attic insulation on whitening’s impact in the
“Results” section.

Statistical approaches are needed to estimate whitening’s
impact while controlling for other influences on site cooling
energy use. Equation 2 presents a two-way fixed effects model of
site cooling energy use.

aci,t = β0 + βpost × posti,t + βw × w+ βh × h+ εi,t

(2)

where aci,t = site cooling energy use in units of MJ per
period for household i at time t
posti,t = household i whitened at time t (0 = not whitened;
1 = whitened)
w = day fixed effect
h = household fixed effect.

Equation 2 is a more generalized version of the two-period
DiD model presented in Eq. 1. Equation 1 includes only one,
uniform treatment period and controls for household-level
variation by group. In contrast, Eq. 2 controls for individual-level
household and temporal variation with fixed effects or “dummy
variables,” h and w. Equation 2 is more robust than Eq. 1 and also
reduces potential confounding temporal effects characteristic of
DiD methods (the parallel trend assumption).

Ordinary least squares (OLS) solutions to DiD models are
often prone to serial correlation (Bertrand et al., 2004). Serial
correlation would imply errors are correlated by household over
time. Serial correlation biases the standard errors (and thus p
values) for estimated coefficients. Standard errors are clustered
by household to reduce serial correlation.

In an effort to better represent the observed frequency of
zero site cooling energy use, Tweedie regression was applied
in addition to OLS estimators. The Tweedie distribution better
accommodates the slight observed probability mass spike at zero.

The performance of reflective roofs changes at night.
Differences in roof temperatures between light and dark roofs
have also been observed to sustain past sunset (Parker and
Barkaszi, 1997). As such, separate daytime and nighttime models
have been prepared, where periods are differentiated by sunset
and sunrise (U.S. Navy, 2017).

The coefficient βpost in Eq. 2 represents the average effect
of whitening for the treated homes compared to two control

groups: those untreated throughout the experiment and those
not yet treated (Goodman-Bacon, 2018). The average effect
is often of most interest to policy makers, where policies
aimed at encouraging retrofits do not get to control for
influential household-level variation and behavioral change may
influence outcomes.

Description of Life-Cycle Cost Analysis
The subset of homes (n = 89) for which floor space and
the number of floors are published (Pecan Street Research
Institute, 2017) were used. The roof area for these homes was
estimated as the floor space divided by the number of floors.
The cost estimate sample consists of 89 homes with distributions
of roof areas and air conditional site cooling energy use as
described in Table 2.

Site cooling energy use reductions were estimated by applying
Eq. 2 to these 89 homes. The regression results for βpost
include the only mean effect of whitening, whereas whitening’s
effect is expected to vary by household. It is assumed that the
distribution of βpost estimated by regression is a reasonable
proxy for household-level variation in whitening’s effect. To
simulate this household-level variation, 100 random samples
were drawn from the distribution of βpost for each household,
producing 100 different records of daily energy reductions for
each household. Importantly, the assumed βpost does not change
within a simulated household record, as opposed to allowing βpost
to vary across days. In other words, for any given simulation,
the βpost assumed for a given household is constant. Daily
simulations were then aggregated by household and month, and
then a representative year for each household was constructed
by randomly sampling months in the observation period to
moderate across the different weather patterns experienced
during the experiment. The net effect of sampling produced
a synthetic record of monthly cooling consumption of 4450
household∗months.

In estimating the monetary savings from site cooling energy
reductions, total electricity demand (Pecan Street Research
Institute, 2017) was used in order to account for Austin’s tiered
pricing schedule (Austin Energy, 2013). The remaining cost
assumptions and references—including those used to estimate
roof whitening costs, heating penalties, and delayed replacement
benefits—are summarized in Table 2. Perhaps the most difficult
of these assumptions is the expected heating penalty, modeled as
a percent reduction. Previous works estimate ranges in heating
penalties around 2% to 14% (Rosado and Levinson, 2019) and
10% to 30% (New et al., 2016). The latter estimated a cool roof
heating penalty intensity of 1.8 MJ per m2 of roof area. Applying
this intensity to the 99 homes for which roof area is available
would correspond to a 10% (first quartile) to 30% (third quartile)
increase in site heating energy use, assuming baseline heating
intensities are consistent with U.S. Department of Energy surveys
(Doe (U.S. Department of Energy), 2012).

As summarized in Eq. 3 and Table 3, the life-cycle cost analysis
includes a benefit for delaying roof replacement, electricity
savings, the initial cost of whitening, and an annual heating
penalty. Life-cycle costs are presented on a net present value basis
using standard discounting. Social benefits, such as reduction in
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TABLE 2 | Assumptions used for the cost analysis.

Variable Units Assumed
distribution

Empirical assumption

Assumptions for uncertainty and variability modeling

Coating material (Clark, 2017,
personal communication;
homewyse.com, 2017)

$ per m2 of roof Uniform $1.72/m2 to $2.26/m2

Labor cost (Clark, 2017, personal
communication; homeadvisor.com,
2017; homewyse.com, 2017)

$ per m2 of roof Normal $1.94/m2 to $4.52/m2

Roof space, floor space (Pecan
Street Research Institute, 2017)

m2 Discrete 89 homes in the control sample with a mean (standard deviation) roof area of 130 m2 (45)
and floor space 190 m2 (70)

Whitening cooling savings MJ Discrete,
normal

Estimated from simulation using regression results (Eq. 2) in which values for regression
model coefficients were randomly drawn assuming a normal distribution (see Table 3).
Simulations were aggregated by month, and then months were randomly sampled into a
yearly record for each household.

Annual space heating site energy
use per unit floor area

MJ per m2 Normal The mean and standard deviation of 1.3 and 1.0 MJ per m2, respectively, were taken from a
pooled sample of 784 of single family detached urban homes in Texas [n = 541 from Doe
(U.S. Department of Energy) (2012)] and Census Division West South Central [n = 243 from
Doe (U.S. Department of Energy) (2017b)]. These data were taken from microdata
associated with Residential Energy Consumption Survey using fields TOTALBTUSPH and
TOTHSQFT.

Heating penalty (Levinson et al.,
2019; Rosado and Levinson, 2019)

% increase Uniform 2%–5%. Estimated using theoretical models for homes of varied vintages (pre-1980, 1989,
and 2012) and orientations (East–West and North–South) located in Houston, TX,
United States assuming a modified albedo of 0.6. The lower (2%) and upper (5%) estimates
aligns with two- and one-story homes, respectively.

Roof replacement
(homeadvisor.com, 2017)

$ per m2 Normal Mean and standard deviation of $34.40 and $4.30 per m2

Roof service life Years Uniform 15–25 years

Coating service life (APOC, 2017) Years Uniform 10–15 years

Assumptions for deterministic values

Price natural gas (Doe (U.S.
Department of Energy), 2017c)

$ per MJ NA $0.0107

Cost of electricity (Austin Energy,
2013)

$ per MJ NA Tiered charges of 0–1800 MJ $0.0078 per MJ 1801–3600 MJ $0.0016 per MJ
3601–5400 MJ $0.022 per MJ 5401–9000 MJ $0.026 per MJ >9000 MJ $0.03 per MJ
Fixed charges of $0.0131/MJ in summer $0.0129/MJ in non-summer

Assumptions for switchover analysis

Roof age Years Discrete {5, 10, 15, 20 years}

Years replacement delayed from
whitening (APOC, 2017)

Years Discrete {1, 5, 10 years}

Discount rate. The 2019 10-year
bond return was 7.2%.
(Damodaran, 2017)

– Discrete {3%, 5%, 7%}

Normally distributed variables were truncated at zero to avoid negative values.

TABLE 3 | Summary of the cash flow discounting used in the life-cycle cost analysis.

Cash flow
category

Discount factor,
where d refers to
the discount rate

Relevant cash flows n (years)

Future values
discounted to
the present

(1+ d)−n Replacement cost without whitening Roof service life minus
roof age

Replacement cost with whitening Roof service life minus
roof age minus years
delayed

Future annuities
discounted to
present

[
(1+d)n

−1
d(1+d)n

]
Electricity savings Service life of coating

Heating penalty Service life of coating

Initial cost – Initial cost of whitening = Floor space
Number of floors [Unit price paint+ Unit price labor] –
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greenhouse gases, are not included in this analysis.

NPV =
Replacement cost

without whitening
−

Replacement cost
with whitening︸ ︷︷ ︸

Benefit of deleyed replacement

+
Electricity

Savings
−

Initial Cost
of Whitening

−
Heating
Penalty

RESULTS

Table 4 summarizes the household-level comparisons before and
after treatment. Table 4 indicates significant reductions at the
1% confidence level for all within-household comparisons except
for daytime consumption for household 9654 and nighttime
consumption for household 2158. Statistically significant percent
reductions range from 14% to 49.2% during the day, and a 9.7%
increase to a 40.3% decrease during nighttime.

Unobserved variation in multiple technical and behavioral
factors is expected to drive the observed differences in whitening
performance across households. As a demonstration, Figure 2
shows variation in site cooling energy use by the amount of
attic insulation before and after whitening. Theory suggests
that whitening would have a lower impact with increasing attic
insulation, which is demonstrated by the two linear trends
approaching each other in Figure 2. At high R values in Figure 3,
the 95% confidence intervals in the trend lines nearly approach
each other, suggesting that whitening may not have detectable
effects for R values beyond 35.

There are dozens of household and occupant factors expected
to influence air conditioning consumption and the impact of
white roofs. Since few, if any, of these factors can be measured
in a realistic policy setting, regression is needed to estimate
the mean effects, controlling for confounding variation where
possible. Table 5 summarizes the two-way fixed effects regression.
Both day and night regresses suggest that whitening reduces

electricity consumption (βpost < 0). While OLS estimates of
βpost demonstrate statistical significance, clustering errors by
household to moderate serial correlation increases the standard
error of the coefficients to ranges normally not considered
significant. The clustered errors should be contextualized given
the small, unbalanced sample (MacKinnon and Webb, 2017).
Using OLS estimators, the mean reductions in daytime and
nighttime site cooling energy use are 7.6% and 1.8%, respectively.
These reductions are considerably smaller than the household-
level analysis presented in Table 4 because Eq. 2 controls for other
sources of variability that might either be improperly attributed to
whitening or influence whitening’s impact, such as the example
presented with insulation.

Relative to OLS estimates, using Tweedie estimators that
better accommodate inflated zeros slightly worsens model fit for
daytime periods (from a coefficient of determination or R2 of
0.76 to 0.69) but improves model fit for nighttime considerably
(from an R2 of 0.51 to 0.68). This is likely because more homes
have more inactive air conditioning periods at night. The Tweedie
estimators also increase the impact of whitening from a mean
reduction of 7.6% (OLS) to 14.3% (Tweedie) for daytime periods
and 1.8% to 5.5% for nighttime site cooling energy use. Tweedie
estimates decrease the p values for models of nighttime period
from those well above thresholds considered significant (p = 0.38
for OLS estimators) to a p value of 0.01 using Tweedie regression.

Site cooling energy reduction estimates were drawn equally
from estimated coefficients (βpost) using both the OLS and
Tweedie estimators. Only daytime reductions were assumed,
producing a conservatively low estimate of reductions in site
cooling energy use.

Figure 3 shows the results for each category of life-cycle costs,
including decreased costs for cooling, increased heating costs (the
heating penalty), the cost of roof whitening (labor and materials),
and the savings from delaying replacement. See Table 2 for
assumptions used in the life-cycle cost analysis. Life-cycle results
indicate that the savings from delaying replacement are on par
with or greater than the other cash flows. Even for relatively

TABLE 4 | Household-level comparisons for the treated sample.

Period Household* Mean (standard deviation) of site cooling energy use in MJ Mean reduction (MJ) Reduction p

Before whitening After whitening

Day 2158 252 (60.5) 212.4 (83.4) 39.6 15.7% <0.01

Day 621 32.5 (15.3) 24.5 (17.5) 8.0 24.6% <0.01

Day 8198 136.3 (22.3) 69.2 (30.1) 67.1 49.2% <0.01

Day 930 147.2 (50.5) 126.5 (53.4) 20.7 14.0% 0.020

Day 9654 127.8 (64.5) 121 (60.9) 6.8 5.3% 0.38

Day All 162.2 (90.2) 114.7 (87.2) 47.6 29.3% <0.01

Night 2158 121 (33.3) 132.7 (57.5) −11.7 −9.7% 0.018

Night 621 25.1 (8.5) 20.7 (9) 4.4 17.7% <0.01

Night 8198 78.7 (14) 47 (23.6) 31.7 40.3% <0.01

Night 930 108.1 (25.3) 92.6 (27.2) 15.5 14.3% <0.01

Night 9654 100.8 (47.9) 79.6 (39.2) 21.2 21.0% <0.01

Night All 97.7 (45.5) 76.4 (54.8) 21.3 21.8% <0.01

*Only five treated homes are included because two homes were treated before electricity monitoring started.
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TABLE 5 | Regression results for applying Eq. 2 to the sample.

Transformation of
dependent

variable

Period βpost No clustering Clustered errors R2 Mean site cooling
energy use (MJ)

Mean reduction

Estimator Std error p Std error P

OLS None Daytime −3.59 0.92 ∼0 3.48 0.30 0.76 47.0 7.6%

OLS None Nighttime −0.58 0.66 0.38 1.84 0.75 0.51 32.2 1.8%

Tweedie Log Daytime −0.15 0.002 ∼0 – – 0.69 47.0 14.3%

Tweedie Log Nighttime −0.057 0.021 0.01 – – 0.68 32.2 5.5%

FIGURE 2 | Household-level variation in site cooling energy use given attic insulation and whitening for six treated household. Attic insulation is not reported for one
of the seven treated households. Convert the RSI value to an R value (in◦F · ft2 · h/BTU) by multiplying RSI values by 5.68.

new roofs, the benefit from delaying replacement is, on average,
more than half of the savings from reduced cooling. For older
roofs, the benefit for delaying replacement is similar to that of
the cooling savings. Uncertainty in the estimated cooling savings
is high because the savings were estimated by drawing from two
distributions estimated for the regression coefficient for βpost : one
using basic OLS and Tweedie regression.

Figure 4 shows the overall net present value for different
assumed roof ages and years of extended roof life (“years
replacement delayed”). When adding costs and benefits, costs
have been assigned a negative value and benefits have been
assigned a positive value such that positive net present values
represent a net savings. Absent increasing the service life,
whitening would pay for itself in roughly 41% of simulations
over the lifetime of the coating with a median cost of $310 and
a simple payback period of 22 years. However, including a benefit
of delaying roof replacement significantly alters the benefit–cost
implications. Across all simulations that assume some increased

service life, the median simple payback period and net benefit are
1 year and $310, respectively. The positive benefits of whitening
are only robust for older roofs and longer service lives from
coating. For example, for roofs older than 10 years of age, most
simulations reflect net savings if the coating lasts at least 5 years.
This is despite the broad uncertainty in the empirically estimated
impact of cooling.

DISCUSSION

The potential energy benefits of cool roofs have spurred
policies that encourage cool roof choices through incentives and
labels. Properly measuring policy performance therefore must
extend beyond theoretical models to accommodate unobserved
occupant and household heterogeneity that also affects energy
consumption. The empirically estimated average reduction in
site cooling energy use from roof whitening—ranging from
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FIGURE 3 | Household net present values for heating penalty, cooling savings, whitening savings, and savings from delaying roof replacement as a result of coating.
The ranges include all sources of variability and uncertainty summarized in Table 2 and reflect the first and third quartiles. Results are shown for a discount rate of
5%. Similar results for discount rates of 3% and 7% are included in the Supplementary Information.

FIGURE 4 | Simulated per household net present values from coating roofs in homes represented by the sample. Positive values reflect a net savings. Results are
shown assuming whitening does not delay roof replacement (far left) and does delay replacement for different roof ages. Ranges reflect the first and third quartile
values and include uncertainty and variability summarized in Table 2. Results are shown for a discount rate of 5%. Similar results for discount rates of 3% and 7%
are included in the Supplementary Information.

7.8% to 14.3%—are on par with theoretical results profiled in
the section “Introduction.” In particular, these results conform
to a recent study that estimates cool roof savings for areas
throughout the United States using applied theoretical models
(Rosado and Levinson, 2019). Simulations for homes in Houston,
TX, United States assuming varied vintages (pre-1980, 1989, and
2012) and orientations (East–West and North–South) estimate
mean site cooling energy reductions for two-story homes of 4.7%,
which would roughly correspond to 9.4% for a one-story home.
While these consistencies between theory and empirical estimates
are helpful, more robust empirical evidence than demonstrated
here—derived through larger and more diverse samples—is
needed to build widespread confidence in whitening’s impact.

The empirical evidence indicating whitening’s effect is
limited by the small sample size of treated homes (n = 7).
Despite this limitation, the study is demonstrative of empirical
methods that can measure cool roof performance in the future,
providing an approach that differentiates between daytime and
nighttime performance, distinguishing between heating and
cooling seasons, modeling of zero inflated data expected of site
cooling energy use, and reflecting the potential benefit of delaying
roof replacement. The examples provided herein can improve
future research and policy making. For example, primary heating
data could readily be incorporated into the DiD framework to
incorporate the heating penalty in the regression framework.
Also, the DiD analysis can flexibly include other covariates, such
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as geographic factors or orientation, which could be used to
study roof performance for a sample that reflect more diverse
climates or diverse homes. The methods outlined here would
also be beneficial to document expected long-term decline of
whitening’s performance.

Future studies could make better use of diurnal variation
in cool roofs’ performance, where the treatment effect becomes
muted at some point each night. This has the effect of increasing
variation in the treatment effect, which both improves statistical
rigor and would allow for more explicit testing of the “parallel
trend” assumption inherent in DiD. This assumption assumes
homogeneous time effects between the treated and control groups
outside of the treatment itself (e.g., β2 in Eq. 1 is the same for both
treated and control groups). Experiments that couple monitoring
energy consumption alongside roof surface temperatures for
treated and control samples would help identify periods in which
the treatment effect is muted at night.

The protective nature of cool coating materials is expected
to increase the service life of roofs, but the amount of
extended service life is uncertain and likely voids any remaining
manufacturer warranties. Also, homeowners do not often know
when their roof will fail. So, the delayed-replacement benefit of
coating acts like a premium to insure against the future risk of
failure. It is not clear how homeowners would weigh the potential
benefits of delaying replacement given these uncertainties,
suggesting an opportunity for future social science research.

CONCLUSION

The empirical evidence for whitening’s impact on cooling
is mixed, with insight primarily constrained by a small
treated sample. Most individual household-level comparisons of
consumption before and after whitening demonstrate statistically
significant (p < 0.01) reductions from 14% to 49.2% during
the day. During the nighttime, one house demonstrated a
9.7% increase in site cooling energy use (p = 0.018) with
the remaining treated households demonstrating statistically
significant (p < 0.01) nighttime reductions ranging from 14%
to 40.3%. These results suggest the benefits of cooling extent
past sunset, consistent with other observations (Parker and
Barkaszi, 1997). Regressions results estimating the mean group
effect are also mixed. OLS estimates demonstrate a statistically
significant mean daytime reduction of 7.6% but no significant
mean nighttime reductions. However, clustering the errors by

household to moderate serial correlation increases p values
to levels usually considered insignificant. Tweedie regressions,
which better fit the slight zero inflation demonstrated in the
sample, improve the model fit for nighttime consumption and
produce statistically significant air conditioning reductions of
14.3% and 5.5% during the day and night, respectively.

The benefit for delaying roof replacement was found to be on
par with or greater than other more conventionally estimated
costs and benefits. A 5-year delay in roof replacement sways
the average benefits of whitening to nearly negligible to quite
favorable for roofs older than 10 years of age, results generally
robust to a range of assumptions.
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