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Operation-level vision-based monitoring and documentation has drawn significant
attention from construction practitioners and researchers. To automate the operation-
level monitoring of construction and built environments, there have been much
effort to develop computer vision technologies. Despite their encouraging findings,
it remains a major challenge to exploit technologies in real construction projects,
implying that there are knowledge gaps in practice and theory. To fill such knowledge
gaps, this study thoroughly reviews 119 papers on operation-level vision-based
construction monitoring, published in mainstream construction informatics journals.
Existing research papers can be categorized into three sequential technologies:
(1) camera placement for operation-level construction monitoring, (2) single-camera-
based construction monitoring and documentation, and (3) multi-camera-based onsite
information integration and construction monitoring. For each technology, state-of-the-
art algorithms, open challenges, and future directions are discussed.

Keywords: construction, site monitoring, operation-level, vision-based, state-of-the-art, computer vision, deep
learning

INTRODUCTION

Operation-level vision-based monitoring and documentation is vital to construction project
managers because it enables to obtain useful information required for project management
and control (Yang et al., 2015). By observing long-sequence video-streams collected by fixed
cameras, managers can identify different types of activities performed by construction workers
and equipment, and can measure their operational efficiency (e.g., direct work rate, hourly work
amount) (Kim et al., 2018d, 2019d). For instance, if too many workers are waiting to commence
concreting operations, managers can decide to allocate more concreting equipment (e.g., pump
cars, mixer trucks) or reduce the number of onsite workers. Operation-level monitoring also
allows managers to recognize unsafe behaviors of workers and equipment, such as lapses in
wearing safety equipment, speed limit violations, and access to dangerous areas. Based on such
operational information, project managers can perform safety training to prevent unsafe behaviors
and minimize accident risks. In addition to construction phases, vision-based monitoring would
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be also beneficial to operations and maintenance phases (Xu and
Brownjohn, 2018). Accordingly, operation-level monitoring may
be employed to complete construction projects successfully.

Given the importance of operation-level monitoring and
documentation, project managers visit construction sites directly
and gather onsite information manually. However, they often face
difficulty in the continuous monitoring of dynamic and large-
scale jobsites, and have thus installed closed-circuit television
(CCTV) cameras at construction and built environments to
perform vision-based monitoring remotely (Chi and Caldas,
2011; Kim, 2019). Since 2016, remote vision-based monitoring
and documentation has received more attention as the Korean
Government permitted construction companies to include
the camera-installation expenses in their jobsite management
budget (Korea Construction Technology Promotion Act, 2016).
Nevertheless, because it still requires to process an excessive
amount of CCTV videos manually, project managers reported
several shortcomings associated with remote monitoring; it is
labor-intensive, expensive, and time-consuming (Memarzadeh
et al., 2013). Many researchers have thus developed computer
vision technologies that can understand onsite images and
extract useful information automatically. Previous research has
shown the potential of computer vision technologies for diverse
operation-level monitoring applications, such as productivity
measurement (Bügler et al., 2017; Kim et al., 2017, 2019c) and
safety analysis (Seo et al., 2015b).

Despite their encouraging findings, it remains a major
challenge to exploit computer vision technologies in real-world
construction sites owing to various theoretical and practical
issues, implying that there are knowledge gaps in practice and
theory. Hence, there have been a few studies to review computer
vision research in construction and expand our understanding
on state-of-the-art technologies (Seo et al., 2015a; Teizer, 2015;
Yang et al., 2015; Ham et al., 2016; Xiao and Zhu, 2018; Fang
et al., 2020b,c; Sherafat et al., 2020; Zhang et al., 2020b). However,
because some of the review articles (Seo et al., 2015a; Teizer, 2015;
Yang et al., 2015; Ham et al., 2016) were published before 2016,
recent advances in deep learning and computer vision algorithms
could not be covered. In addition, recent reviews focused only on
limited monitoring purposes and/or technologies of operation-
level monitoring, resulting in a lack of holistic understanding
on state-of-the-art technologies. Specifically, Fang et al. (2020b;
2020c) and Zhang et al. (2020b) investigated existing studies
in the perspective of safety monitoring. The reviews of Xiao
and Zhu (2018) and Sherafat et al. (2020) were limited
only to construction object tracking and action recognition
technologies, respectively. Thus, knowledge gaps still remain
unclear over the various purposes and technologies of operation-
level monitoring and documentation. For example, in the context
of productivity monitoring, there is a lack of understanding
on how to install multiple cameras at complex jobsites, analyze
the collected visual data, and integrate analysis results derived
from a set of single cameras. To fill such knowledge gaps,
this study comprehensively reviews 119 papers on vision-based
construction monitoring and documentation, identifies open
research challenges, and proposes potential future directions.
State-of-the-art technologies, presented in top computer vision

conferences, are also introduced to bridge knowledge gaps in the
construction field. Through the holistic understanding, it would
be possible to clarify what research topics should be investigated
and suggest what state-of-the-art algorithms can be applied. The
findings of this study can help practitioners to implement vision-
based construction monitoring in real construction projects.

Figure 1 illustrates an overview of this review. This
paper provides background knowledge on operational-level
construction monitoring and documentation. It then explains
a research methodology to retrieve, select, and review relevant
journal articles. Next, previous research achievements, open
challenges, and future directions are discussed extensively in
the major three technologies of operation-level monitoring:
(1) camera placement for operation-level construction
monitoring, (2) single-camera-based construction monitoring
and documentation, and (3) multi-camera-based onsite
information integration and construction monitoring. Based on
the results of in-depth review, the author further derives open
research challenges and proposes future directions to address
them, which does not fall in the above three technologies but
have a significant impact when developing and implementing
computer vision technologies. Finally, the author concludes the
review and discusses the contributions of the research.

RESEARCH BACKGROUND

Operation-level vision-based monitoring and documentation
is a process of collecting and analyzing construction site
images continuously, thereby obtaining information required for
operational performance analysis. It is generally performed to
monitor onsite productivity and safety, which are two major
performance indicators of construction operations. To achieve
this goal, it is necessary to detect and track construction objects
(e.g., workers, equipment, materials), recognize their individual
actions, and understand object-to-object interactions as most
construction operations are conducted by those three basic
elements. For example, to carry out soil-loading operations,
an excavator and a dump truck should be located near each
other while performing specific individual actions (excavator:
dumping, dump truck: stopping). To assess the proper use of
hardhats, which is one of the major indicators of construction
safety, project managers should be able to identify workers and
hardhats, and to interpret their spatial interactions (e.g., distance,
overlapping areas).

Within these contexts, project managers have installed
multiple CCTV cameras at large-scale jobsites, observed
the collected videos, and integrated operational information
obtained from different cameras (see Figure 2). However, there
is often some degree of difficulty when performing remote
monitoring owing to cost and time limitations, and thus many
researchers have endeavored to develop the operation-level
vision-based monitoring technologies: (1) camera placement
for operation-level construction monitoring, (2) single-camera-
based construction monitoring and documentation, and
(3) multi-camera-based onsite information integration and
construction monitoring.
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FIGURE 1 | Organization of this paper.

METHODOLOGY

Given this background, the author reviews existing works,
identifies open research challenges, and proposes potential future
directions. To do this, the present study leverages a content
analysis approach for the systematic review of existing literature.
It is a well-known approach for synthesizing the literature
and deriving the objective findings, and its applicability has
been extensively demonstrated in the areas of engineering and
construction management (Yi and Chan, 2014; Mok et al., 2015;
Liang et al., 2016; Li et al., 2018; Zhang et al., 2020b).

Figure 3 illustrates the research methodology consisting
consists of three main processes: journal article collection, initial
article review, and in-depth article review. To collect academic
journal articles, an exhaustive search was carried out using the
Web of Science, Scopus, and Google Scholar search engines.
The scope of the publication search was limited to the period
2007/01/01 – 2020/07/31. This timeframe was selected because
relevant publications have been published since 2007 (Zou and
Kim, 2007). The search keywords can be grouped into two
categories: construction- and technology-specific terms. The

construction-specific terms include construction site, construction
operation, construction activity, site monitoring, construction
management, workers, equipment, material, productivity, and
safety, while technology-specific terms include computer vision,
vision-based, image processing, image-based, machine learning,
deep learning, surveillance, camera, video, detection, tracking, and
recognition so that the search can cover a broad range of related
disciplines. These keywords enabled to collect a sufficient number
of academic papers regarding operation-level construction
monitoring and documentation. It is worth mentioning that,
however, other terms related to project-level monitoring [e.g.,
drone, unmanned aerial vehicle (UAV)] (Kim et al., 2019d) were
not included because this review focused on operation-level
monitoring. The articles were retrieved from each search engine
using the keywords, and the results were integrated through the
removal of duplicate ones that have same digital object identifier.
Based on the results, 176 articles were retrieved after which
the initial review was performed as follows. The author also
restricted the search to articles in mainstream journals, which
were written in English as they are reputable and reliable sources
(Zhong et al., 2019). Specifically, the well-known mainstream
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FIGURE 2 | Technologies of operation-level construction monitoring and documentation.

journals were chosen with reference to the findings of existing
studies, which reviewed relevant research fields (Chen et al.,
2018; Asadzadeh et al., 2020; Zhang et al., 2020b). They included
Frontiers in Built Environment, Automation in Construction,
Advanced Engineering Informatics, Safety Science, Computer-
Aided Civil and Infrastructure Engineering, Journal of Computing
in Civil Engineering, Journal of Construction Engineering and
Management, Journal of Management in Engineering, Journal
of IT in Construction, Sensors, Journal of Civil Engineering
and Management, Visualization in Engineering, KSCE Journal of
Civil Engineering, and Canadian Journal of Civil Engineering.
Next, the publications that do not contain the aforementioned
keywords in their titles or abstracts were filtered out, and less
relevant and irrelevant papers were also screened out after
a brief visual assessment of the content of articles. In this
stage, two criteria were considered: (1) focus on operation-
level monitoring (i.e., onsite productivity and safety analysis)
and (2) focus on computer vision technologies or technologies
integrated with computer vision. For example, journal papers
that heavily focused on camera-equipped-drone-based project-
level monitoring were filtered out; however, some of them
are introduced to discuss an opportunity to integrate digital
cameras and drones in a later section. Eventually, 119 journal
papers in relevant to the monitoring of construction and built
environments were considered in the in-depth article review
stage. The journal papers were classified into each technology
of vision-based monitoring and documentation as shown in
Figure 2, and the open research challenges and future directions
were discussed via content analysis from a theoretical and
practical point of view.

REVIEW OF STATE-OF-THE-ART
TECHNOLOGIES

Camera Placement for Operation-Level
Construction Monitoring
This technology aims to install multiple cameras at different
physical locations and collect appropriate video data from
construction and built environments. It can be defined as a

problem that determines the proper number, types, locations,
and orientations of cameras required to sufficiently monitor
a large-scale jobsite. According to one recent study (Kim
et al., 2019d), project managers generally carry out the camera
placement based on their knowledge or experiences rather than
systematic guidelines. Their decisions occasionally come with
the acceptable performance of vision-based monitoring (in terms
of camera coverage or total costs), but they often experience
difficulty in determining appropriate camera configurations
and recording video-streams owing to the complex and
dynamic natures of a given jobsite (e.g., power supply, data
transmissibility, occlusion effects). For these reasons, researchers
have attempted to find the optimal camera placement for vision-
based construction monitoring.

As a first step, several studies investigated how to visualize and
quantify visible coverages of installed cameras (Figure 4). Chen
et al. (2013) developed a visible coverage visualization technique
for measuring the performance of camera networks in public
building spaces. Albahri and Hammad (2017a) also proposed a
method that calculates the coverage of cameras installed in indoor
buildings using Building Information Modeling (BIM). Building
upon the coverage visualization and quantification, researchers
made efforts to optimize the camera placement through the
integration with metaheuristic algorithms. In one study (Albahri
and Hammad, 2017b), the BIM-based coverage calculation
method and a genetic algorithm were combined to find
optimal configurations of camera networks in indoor buildings.
Particularly, BIM played a key role in automatically deriving
installation conditions such as geometrical constraints (e.g.,
ceiling) and operational conditions (e.g., vibrations produced by
facility equipment). As the existing studies focused on optimizing
the camera placement in BIM-available indoor buildings, other
researchers studied how to place digital cameras in outdoor
construction environments. For example, Yang et al. (2018)
built a two-dimensional (2D) spatial model of a given jobsite
and optimized the multi-camera placement using a genetic
algorithm. Zhang et al. (2019) enhanced the jobsite modeling
techniques to generate a three-dimensional (3D) virtual space,
which is more effective in evaluating the visible coverage of
camera networks in real-world construction environments. To
further improve the practical usefulness of previous studies,
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FIGURE 3 | Research methodology.

Kim et al. (2019c) discovered major practical characteristics of
construction sites and camera networks to be considered
when installing cameras on jobsites (e.g., power supply, data
transmission). The characteristics were integrated with the
previous optimization method, thereby producing network
alternatives that are more applicable to actual construction sites.

Earlier studies showed encouraging results in optimizing the
multi-camera placement and obtaining video data for operation-
level vision-based monitoring. However, because only a few
studies have been conducted in this research area, major research
challenges remain unaddressed. One of the most urgent issues is
that the dynamic and complex natures of construction and built
environments has not been fully considered. Although one study

incorporated various practical constraints of construction sites,
such as power accessibility and data transmissibility (Kim et al.,
2019d), most optimization techniques are based on an underlying
assumption: construction sites are static, which means that jobsite
components (e.g., structures, management offices, work zones)
do not vary over time. Thus, existing camera networks for given
jobsites are frequently unable to obtain appropriate video data
(e.g., objects-of-interest are invisible from cameras), and further,
they may need to be relocated as construction operations proceed,
resulting in additional costs and monitoring difficulty. To address
this issue, it is necessary to find the optimal camera configurations
that are robust to time-dynamic conditions of jobsites. For
instance, future studies can feed a four-dimensional (4D) BIM

Frontiers in Built Environment | www.frontiersin.org 5 November 2020 | Volume 6 | Article 575738

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles


fbuil-06-575738 November 23, 2020 Time: 15:7 # 6

Kim Operation-Level Vision-Based Monitoring on Construction Sites

FIGURE 4 | Example of camera coverage in indoor buildings (AXIS Coverage Shape Software).

model (x, y, z, t) into optimization processes to consider jobsite
constraints and conditions varying over time. Otherwise, if
possible to relocate camera networks several times (e.g., three
times during a project duration), previous approaches can be
applied repeatedly for a few important stages (e.g., earthmoving,
framing, finishing).

Next, since earlier works developed camera placement
methods for limited monitoring purposes and project types,
it is still burdensome to determine a generalized camera
placement framework and optimal configurations. In this
regard, the approach proposed in the previous research
(Kim et al., 2019d) can become a baseline for deriving and
structuralizing diverse characteristics of construction sites. They
categorized the characteristics of building construction sites
into visual monitoring determinants, influencing factors, and
camera placement conditions (i.e., camera network and jobsite
conditions) based on the result of in-depth interviews with 12
construction experts. Building on this taxonomy, future research
can discover more various considerations by performing expert
interviews and case studies from diverse projects types. Once
the taxonomy is built, it would be beneficial to develop camera
placement frameworks that are applicable to various monitoring
purposes and project types.

Finally, there were no research efforts to optimize the
camera placement from the perspective of maximizing the
performance of visual analytics. Existing studies mainly focused
on maximizing the visible coverage of camera networks and
minimizing installation costs. However, for automated vision-
based monitoring, it may be more significant to find the optimal
configuration that can well-extract the operational information,
rather than only maximizing the visible coverage. In this sense,
researchers can put the first attempt to optimize the camera
placement that maximizes the performance of construction
object detection, which is a prerequisite step for operation-level
vision-based monitoring. They can utilize a 4D jobsite simulation

model, developed in many previous studies (Boton, 2018;
Swallow and Zulu, 2019; Wang et al., 2019a; Choi et al., 2020),
to place cameras and evaluate the monitoring performances (e.g.,
object detectability) in virtual spaces.

Single-Camera-Based Construction
Monitoring and Documentation
After digital cameras are installed at jobsites, it is required to
analyze the visual data collected from each single-camera and
extract onsite information. As described above, previous research
focused on capturing operational information about construction
objects, their individual actions, and object-to-object interactions
from jobsite images.

Construction Object Detection and Tracking
A large number of research papers were found in the area
of construction object detection and tracking (Table 1). This
may be because it is fundamental and essential to obtain
sequential locations of construction objects for operation-level
monitoring (Figure 5). For example, Chi et al. (2009) applied
spatial modeling and image matching techniques to identify
and track construction objects in laboratory environments. Park
and Brilakis (2012) used a background subtraction method
to localize construction workers from actual jobsite videos,
and they achieved the detection rate of 99.0%. Several studies
assessed the performance of visual tracking algorithms (e.g.,
mean-shift tracking, Bayesian contour tracking, active contour
tracking) when localizing a single construction object (Teizer
and Vela, 2009; Brilakis et al., 2011; Park et al., 2011). Chi and
Caldas (2011) trained machine learning classifiers, such as Bayes
models and neural networks, and compared their performances
for object identification. Azar and McCabe (2012a) integrated
a support vector machine (SVM) with histogram-of-oriented-
gradient (HOG) features to recognize dump trucks from onsite
images, Memarzadeh et al. (2013) presented a similar approach
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TABLE 1 | Summary of existing object detection and tracking algorithms.

Algorithms Objects-of-interest Dataset (image frames) Performance
(accuracy or error

distance)

Literature

Training Test

Spatial modeling Image
matching

Workers N/A N/A 85.0% Chi et al. (2009)

Background subtraction Workers 2,200 500 99.0% Park and Brilakis (2012)

Mean-shift tracking
Bayesian contour tracking
Active contour tracking
Graph-cut tracking

Workers N/A 3,730 2.12 pixel Teizer and Vela (2009)

Contour-based tracking
Kernel-based tracking

Workers and equipment 33 35 82.3% Brilakis et al. (2011)

Contour-based tracking
Kernel-based tracking
Point-based tracking

Workers and equipment N/A 2,037 17.6 pixel Park et al. (2011)

Bayes classifier Neural
network classifier

Workers and equipment 750 1,282 96.7% Chi and Caldas (2011)

HOG SVM Dump trucks 800 380 86.8% Azar and McCabe (2012a)

Excavators 770 253 95.2% Azar and McCabe (2012b)

HOG + color SVM Workers and equipment 12,148 5,359 88.6% Memarzadeh et al. (2013)

Particle filtering Workers and equipment N/A 3,080 11.1 pixel Zhu et al. (2016)

Functional integration of
detection and tracking

Workers 9,664 4,793 98.2% Park and Brilakis (2016)

Workers and equipment 44,597 8,066 86.5% Zhu et al. (2017)

Functional integration of
detection and tracking
Online learning

Equipment N/A 64,968 86.4% Kim and Chi (2017)

Adaptive object model Workers 688 2,079 72.2% Konstantinou et al. (2019)

Faster R-CNN Equipment 2336 584 96.3% Kim et al. (2018b)

Workers and equipment 8,500 1,500 93.0% Fang et al. (2018e)

License plates of dump truck 6,851 387 95.8% Kim et al. (2019b)

Faster R-CNN Residual
network

Workers Public dataset 2,241 94.3% Son et al. (2019)

SSD Equipment 2,617 654 91.2% Arabi et al. (2020)

Equipment 216 24 98.8% Guo et al. (2020)

Mask R-CNN Residual
network

Workers, equipment, and materials 2,000 Public dataset 800 0.2 m Fang et al. (2020a)

Mask R-CNN
Gradient-based algorithm

Workers Public dataset Public dataset 81.8% Angah and Chen (2020)

LSTM Workers and equipment 152,000 58,000 1.11 pixel Tang et al. (2020a)

for classifying workers and equipment simultaneously; they
increased the detection accuracy from 86.8% to 88.6% while
diversifying types of detectable objects. The SVM-HOG approach
was also used to detect deformable parts of earthmoving
excavators, e.g., buckets, arms, main bodies, in another study
(Azar and McCabe, 2012b).With additional considerations of
deformable parts, the performance of the SVM-HOG approach
was improved up to 95.2%. To continuously track target objects
in complex construction environments, Zhu et al. (2016) tested
the robustness of particle filter algorithms to occlusion effects,
which are a major cause of visual analysis failures, and the error
rates were reported as 11.1 pixels. Park and Brilakis (2016) and
Zhu et al. (2017) also made efforts to handle the occlusion issues
through the functional integration of detection and tracking.
Such detection-tracking integrated frameworks were further
enhanced by Kim and Chi (2017). They appended online learning
techniques that generate object-specific training data in real-time,

enabling to train more powerful object detectors and track target
objects better. Their method was able to achieve 86.4% accuracy
without human-labeled training data. Similar to the concept of
online learning, Konstantinou et al. (2019) proposed an adaptive
model to track construction workers continuously.

With the remarkable advances in deep learning algorithms,
researchers have investigated deep neural networks (DNNs) for
construction object detection and tracking. Kim et al. (2018b)
designed a region-based convolutional neural network (R-CNN)
for the detection of various types of construction equipment
(accuracy: 96.3%). As most objects were located at near the
center in the testing images, Fang et al. (2018e) further applied
a Faster R-CNN model for the real-world construction scenes
and showed the detection rate of 93.0%. Son et al. (2019) also
improved the previous R-CNN model by combining residual
neural networks to recognize construction workers under varying
postures and viewpoints (accuracy: 94.3%). Single shot detector
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FIGURE 5 | Examples of construction object detection.

(SSD), which is a lighter CNN model but which has a comparable
performance to the R-CNN, was also tested in another study
(Arabi et al., 2020); in their experiments, the SSD model showed
91.2% detection rate. Other researchers further examined the
applicability of DNNs to detailed visual analyses. Kim et al.
(2019b) used a Faster R-CNN model to detect license plates of
dump trucks and obtain their site-access data, and Guo et al.
(2020) built an SSD-based system for detecting construction
entities and capturing their physical orientations. The CNN-
based method presented in another study (Fang et al., 2020a)
localized construction workers and equipment at pixel-level and
the average error rate was reported as 0.2 m. Similarly, Angah and
Chen (2020) integrated a Mask R-CNN model with a gradient
location prediction algorithm to detect and track construction
workers with the accuracy of 91.2%. Tang et al. (2020a) also
predicted motion trajectories of construction objects using LSTM
encoder-decoder model. In their experiments, the average error
rate was reported as 1.11 pixels.

Despite the successful achievements, significant research
opportunities remain to be addressed in the field of construction
object tracking. One of the most challenging issues is to track
multiple objects over the long term from complex construction
images. As there exist a large number of construction objects that
move dynamically, it is common for target objects to be occluded
by others, causing to disappear and reappear from the camera’s
field-of-view (FOV), resulting in frequent tracking failures. For
this issue, it is recommended to investigate how to re-track
construction objects when they reappear in a camera’s FOV after
the occlusions and/or disappearances. One attractive solution

is to adopt the Markov Decision Process (MDP) approach
proposed by one study (Xiang et al., 2015). The MDP approach
considers re-tracking as a problem of undertaking one of the
three transition actions when a target object has the state of
lost: a lost target can be lost again, tracked if it reappears, and
inactive if it disappears forever. Here, the state of lost represents
when a target object was not detected owing to occlusions
and/or disappearances. Given this formulation, researchers need
to carefully combine decision-making criteria with deep decision
networks. For example, most state-of-the-art algorithms leverage
deep visual features of target objects (extracted by CNN) under
an assumption: a target object may have a visual similarity
before and after the occlusions and disappearances (Guo and
Cheung, 2018; Chen Y. et al., 2020). Spatial information is
also an important source for re-tracking a lost object; a lost
object may reappear in near areas where it was occluded or
disappeared (Shen et al., 2018). However, since construction
objects and surrounding environments changes over time, it
would be also effective to consider temporal dynamics, such
as sequential patterns of object movements (e.g., locations and
speeds over time). In the computer vision domain, Milan et al.
(2017) employed a recurrent neural network (RNN) to predict
possible regions-of-interest of a lost object in the future image
frames. In addition, recent computer vision studies have also
emphasized the importance of interaction features for object
re-tracking (Sadeghian et al., 2017; Gupta et al., 2018). The
interaction features represent a situation where an object’s
movements (e.g., speed, directions) may be affected by other
objects in crowded environments. This phenomenon may be
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also observed in construction scenes. For instance, a worker
would bypass nearby heavy equipment and/or hazardous areas
(e.g., holes on worksites). Such interaction features can be
effectively modeled with graph neural networks (GNNs), which
are an emerging deep learning architecture. The GNN forms
target objects and their interactions using a set of graph nodes
and edges, and learns object-to-object relationships, thereby
well-encoding interaction effects among different objects (Qi
et al., 2018). By properly selecting purpose-specific features
and decision networks, it would be possible to effectively
represent the dynamic movements of construction objects and
re-track them if lost.

Another major challenge is that it remains unclear exactly
what technical problems should be solved for construction object
tracking. This is because construction researchers have tested
tracking algorithms under different analytics conditions (Xiao
and Zhu, 2018). For the first step, it is vital to build and share
benchmark datasets, as argued in many existing studies (Seo et al.,
2015a; Kim et al., 2018b). In addition to the benchmark datasets,
it may be also helpful to develop a simple baseline model, which
does not require any tracking-specific training and complex
optimization tasks, and comprehensively analyze its performance
and failure cases. Interestingly, recent studies in the computer
vision domain reported that a very straightforward algorithm
(i.e., intersection-over-union-based tracker) has a comparable
performance with deep learning-based cutting-edge tracking
algorithms (Bochinski et al., 2018; Bergmann et al., 2019). These
findings motivated researchers in the field of deep learning
and computer vision to revisit the existing tracking paradigm,
which is based on complex DNNs. Based on the experimental
results, the authors analyzed in-depth several failure cases and
derived the primary failure causes, providing guidelines for
future research. It would be also valuable if similar approaches
are applied to construction sites, and specific problems can be
identified and addressed by future studies.

Individual Action Recognition of Construction
Objects
The second step of single-camera-based construction monitoring
and documentation is to recognize the individual actions
of construction objects using their detection and tracking
results, i.e., spatio-temporal trajectories. The information about
individual actions of onsite workers (e.g., working, idling)
can be used for operational performance analysis. In this
area, previous methods mainly focused on two different types
of monitoring purposes, i.e., productivity and safety analysis
(Table 2). For instance, Zou and Kim (2007) proposed a method
that analyzes hue, saturation, and value color spaces to classify
whether an excavator is working or idling. Golparvar-Fard
et al. (2013) adopted a concept of bags-of-visual features to
categorize activity types of earthmoving excavators and dump
trucks. Their method could recognize the activity types with
the performance of 91.2%. In one study (Soltani et al., 2017),
deformable parts of excavators and their detailed postures were
detected with 84.0% accuracy. Gong and Caldas (2010) trained
a machine learning classifier to identify tower cranes’ buckets
and to track their movements for the productivity analysis of

concrete placement operations. This method was improved and
applied to other types of operations, such as earthmoving, slab
pouring, hoisting, and scaffold installation (Gong and Caldas,
2011). The productivity of tower cranes was also analyzed in
another study (Yang et al., 2014). Their method inferred the
activity types of tower cranes using site-layout information and
operation cycles. Vision-based approaches were also developed
for the productivity analysis of construction workers. Gong
et al. (2011) combined bags-of-visual features and Bayesian
networks to classify the actions of construction workers, such as
traveling, transporting, and aligning. Yang et al. (2016) tested the
performance of different features of HOG, histogram-of-optical-
flows, and motion-boundary-histograms. The performance of
their method was limited to 58.5% for more than 10 different
operations, but they showed the possibility of diversifying the
types of detectable activities. In recent years, similar to object
detection and tracking, further studies have been performed to
apply deep learning algorithms. Chen C. et al. (2020) designed
a rule-based reasoning algorithm to interpret the working
states of excavators from the CNN detection results, and their
performance was 87.6%. Roberts and Golparvar-Fard (2019) also
employed a hidden Markov model to analyze the tracking results
of earthmoving equipment (i.e., bounding boxes over time) and
to identify their activity types (accuracy: 85.1%). Kim and Chi
(2019) improved the performance of excavator action recognition
by integrating CNN and double-layer LSTM (90.0%). In other
studies (Liang et al., 2019; Luo et al., 2020b), the detailed skeletons
and postures of earthmoving excavators were detectable by CNN-
based models. Luo et al. (2018c) proposed a two color-temporal
stream CNN model that recognizes workers’ actions, and the
model was further improved in later studies. Luo et al. (2018a)
added one more gray-scale color stream to improve the model
performance (80.5%→ 84.0%), and Luo et al. (2019) appended
Bayesian nonparametric learning to capture workers’ activities in
far-field surveillance videos. In the research (Roberts et al., 2020),
the CNN-based detection results were used to track multiple
workers and estimate their detailed postures and joint angles.
They could achieve the performance of 82.6% while providing
more detailed information (i.e., postures, joint angles) compared
to other action recognition research.

Regarding safety analysis, researchers mainly focused on
monitoring unsafe behaviors of construction workers who are
the major victims of accidents. Han and Lee (2013) identified
safety-specific physical movements and presented a vision-based
method that captures the workers’ motions, and these results
demonstrated the applicability of computer vision technologies
for construction safety monitoring. Han et al. (2013a) conducted
an empirical assessment of depth cameras for workers’ motion
capture and recognition, and they used the motion information
to detect unsafe actions of workers when performing a ladder
climbing activity (Han et al., 2013b). The research team also
tested diverse types of motion features, such as joint angles,
position vectors, and movement directions, to detect workers’
unsafe actions in a later study (Han et al., 2014). Thereby,
they could increase the performance of action recognition
to 94.6%. Yan et al. (2017) further improved the posture
recognition method through the application of view-invariant
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TABLE 2 | Summary of existing action recognition algorithms in construction.

Algorithms Objects-of-interest Dataset (image frames) Performance
(accuracy or error

distance)

Literature

Training Test

Productivity monitoring

Color Rule-based reasoning Excavators 300 1,080 99.8% Zou and Kim (2007)

Gaussian background
subtraction Rule-based
reasoning

Tower cranes N/A 7,287 87.5% Yang et al. (2014)

Boosted cascade Rule-based
reasoning

Tower cranes and buckets 4,260 234,000 97.5% Gong and Caldas (2010)

Workers and equipment 12,060 72,000 86.1% Gong et al. (2011)

Bags-of-HOG features SVM Excavators and dump trucks N/A N/A 91.2% Golparvar-Fard et al. (2013)

Workers 1,570 720 58.5% Yang et al. (2016)

HOG SVM Excavators 30,600 557,625 84.0% Soltani et al. (2017)

Faster R-CNN Deep SORT
tracker Rule-based reasoning

Excavators and dump trucks 19,260 5,280 87.6% Chen C. et al. (2020)

Retina networks Hidden
Markov model

Excavators and dump trucks 29,518 59,037 85.1% Roberts and Golparvar-Fard (2019)

CNN-LSTM Excavators 40,000 32,365 90.0% Kim and Chi (2019)

Hourglass networks Cascaded
pyramid networks

Excavators 3,000 500 144.6 mm Liang et al. (2019)

Excavators 5,124 1,281 90.0% Luo et al. (2020b)

Multi-stream CNN Workers 63,300 31,650 80.5% Luo et al. (2018c)

Workers 47,136 20,202 85.0% Luo et al. (2018a)

Temporal segment networks
Bayesian nonparametric
learning

Workers 27,000 13,500 84.0% Luo et al. (2019)

YOLOv3 Single-person pose
estimators

Workers 26,504 13,252 82.6% Roberts et al. (2020)

Safety monitoring

HOG Mixture-of-parts model Workers 220 5,405 88.0% Han and Lee (2013)

Kinect motion capture systems Workers N/A 3,136 100% Han et al. (2013a)

Workers 1,385 8,310 90.9% Han et al. (2013b)

SVM Workers 1,385 8,310 94.6% Han et al. (2014)

DNN Decision tree k-Nearest
Neighbor

Workers 75,600 32,400 95.0% Yan et al. (2017)

OpenSim 3D SSPP Workers N/A 3,600 95.5% Seo et al. (2015b)

Point tracking-based model Workers N/A N/A 3.8 cm Liu et al. (2016)

CNN Workers 8,000 Public dataset 180,000 83.4% Fang et al. (2018c)

Workers Public dataset 15,779 94.9% Zhang et al. (2018b)

Workers N/A 1,000 96.7% Chu et al. (2020)

CNN-LSTM Workers 56,250 18,750 92.0% Ding et al. (2018)

Hourglass networks Workers Public dataset 3,878 3.9 cm Yu et al. (2019b)

Workers Public dataset 3,878 85.0% Yu et al. (2019a)

features, resulting in a slight performance gain (95.0%). In
another study (Seo et al., 2015b), the detected motions and
postures were utilized to perform workers’ biomechanical and
musculoskeletal risk assessment; they fed the motion data into
the existing biomechanical analysis tool, i.e., 3D static strength
prediction program. Liu et al. (2016) estimated worker’s 3D
skeleton from stereo video cameras for ergonomic analysis. In
line with productivity monitoring, deep learning approaches
also shown promising results in construction safety analysis.
Fang et al. (2018c) utilized a CNN-based face identification
model to confirm whether workers are performing a non-
certified operation (83.4%), and Ding et al. (2018) proposed a
hybrid deep learning model composed of CNN and LSTM to

detect unsafe behaviors of construction workers when climbing
a ladder (92.0%). To interpret workers’ unsafe motions in detail,
Zhang et al. (2018b) extracted their 3D postures and body
joints from a single ordinary camera with 94.9% accuracy. Such
fundamental posture data were further analyzed for physical
fatigue assessment (Yu et al., 2019b), biomechanical workload
estimation (Yu et al., 2019a), and ergonomic posture analysis
(Chu et al., 2020).

Although much research focused on vision-based action
recognition in construction, there are several open challenges
to be addressed. First, existing approaches were designed
only for limited types of construction operations and objects.
As for productivity monitoring, most studies analyzed the
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operational efficiency of earthmoving excavators and dump
trucks, and only a few studies evaluated the productivity of
framing operations. Hence, it remains unclear what types
of construction objects and individual actions need to be
recognized for different operations, e.g., foundation and finishing
works. Future researchers should develop a construction-specific
dictionary that categorizes objects-of-interest as well as their
meaningful behaviors in terms of productivity monitoring. For
instance, to measure the cycle time and productivity of curtain-
wall installation, which is a widely performed operation in
recent building construction projects, it is recommended to
track mobile/tower cranes, curtain-walls, and workers and to
identify their individual actions (e.g., lifting). Regarding the
safety monitoring, researchers primarily focused on construction
workers and their unsafe postures/behaviors when performing
specific operations, such as ladder climbing and masonry works.
Accordingly, it is proposed that computer vision technologies be
applied to a wider variety of construction operations for safety
monitoring purposes. In particular, according to the interviews
with construction safety experts, there is a great interest in
monitoring dangerous behaviors, such as smoking, smombing
(i.e., walking while on the phone), and unconsciousness.

Next, there is a limitation to develop high-performance vision-
based algorithms that are applicable to actual construction
sites. Because construction objects can conduct different actions
while showing similar visual characteristics, it is difficult to
classify those actions using only visual signals. For example,
both “swinging” and “hauling” excavators rotate their deformable
parts (e.g., main body, arm, bucket), and “sitting” workers can
perform “steel-framing” or “resting.” Operational contexts can
play a key role to address this issue. In one study (Kim and
Chi, 2019), they considered sequential working patterns of visual
features and operations cycles to recognize various types of
excavator actions (Figure 6), thereby improving the recognition
performance by 17.6%. Another major cause of performance
deviations is the low image resolution. Construction objects
are often observed with a low resolution in a camera’s FOV,
resulting in a lack of visual information and analysis difficulty.
Such intrinsic shortcomings can be effectively overcome by using
pan-tilt-zoom (PTZ) cameras. If using PTZ cameras, it would be
possible to select an object-of-interest from an entire-jobsite view,
PTZ the object, and obtain a sufficient image resolution for visual
analysis. In this way, individual actions of construction objects
can be well-recognized, even with existing algorithms.

Object-to-Object Interaction Analysis
Researchers also investigated how to interpret the object-to-
object interactions and relationships from complex construction
scenes (Table 3). Azar et al. (2013) first developed a system
that analyzes excavator-to-dump truck interactions and classifies
soil-loading activities, and Bügler et al. (2017) adopted the
interaction analysis system to estimate earthmoving productivity.
Kim et al. (2018c) further improved the previous method by
considering the action consistency of equipment. The methods
developed in other studies (Bügler et al., 2017; Kim et al., 2018c)
could achieve the performance over 90% without requiring
a pretrained model. As these studies focused only on the

interactive operations of earthmoving equipment, Luo et al.
(2018b) developed a relevance network that infers the likelihood
of interactions among workers, equipment, and materials during
the framing operations. Their method was able to detect various
activities of different resources, but the performance remained
in the vicinity of 67.3%. This method was further enhanced to
identify working groups, i.e., which objects are working together
for a certain operation in a later study (Luo et al., 2020c).
Cai et al. (2019) also designed a two-step LSTM model to
achieve working group identification and activity classification.
Interaction analysis has been also studied for safety monitoring
purposes. The method presented in a study (Chi and Caldas,
2012) assessed the probability of struck-by-object accidents
based on object-to-object spatial interactions (e.g., proximity).
Kim et al. (2016) also monitored struck-by-objects using the
spatial relationships of construction workers and equipment; the
performance was slightly decreased by 2.9% compared to the
results of the previous study (Chi and Caldas, 2012), but their
fuzzy inference method enabled construction workers to be aware
of unsafe conditions rapidly. Zhang et al. (2020a) customized the
spatial analysis method to evaluate their collision risks between
excavators and workers. Hu et al. (2020) used more detailed
spatial features of excavators and workers (i.e., skeletons) for
collision risk assessment; the approach achieved 91.6% accuracy
while providing spatial information more precisely. In another
study (Fang et al., 2019), their method detected construction
workers and structural supports, and examined their spatial
relationships to prevent falls from heights. As wearing personal-
protective-equipment (PPE) is a major indicator that indicates
the levels of workers’ safety, other researchers explored the
spatial interactions between workers and PPEs. Park et al. (2015)
presented a vision-based system that localizes both workers and
hardhats, interpreted their spatial interactions (e.g., overlapping
areas), and determines non-hardhat-wearing states. The non-
hardhat-wearing detection system was further enhanced to be
applicable to far-field surveillance images (Fang et al., 2018b) and
indoor dynamic environments (Mneymneh et al., 2019). Similar
systems were also developed for other types of PPEs, such as
safety vests (Nath et al., 2020), harnesses (Fang et al., 2018d),
anchorages (Fang et al., 2018a), and eye/face/hand protection
(Tang et al., 2020b). Owing to the intrinsic limitation of 2D
image analysis, there have been several studies to capture the 3D
spatial relationships of construction objects. Yan et al. (2019b)
proposed a safety assessment method that detects construction
workers and calculates 3D spatial crowdedness using a single
camera. Luo et al. (2020a) presented a 3D proximity estimation
technique for preventing worker-to-excavator collisions. Yan
et al. (2020) enhanced the single-camera-based system to predict
3D spatial relationships of various construction objects, e.g.,
workers, excavators, dump trucks, and mixer trucks.

Despite the promising results, it is still challenging to
understand various interactions and relationships among
construction objects from complex onsite images. One of
the most crucial issues is that existing studies focused on
monitoring limited types of construction operations for specific
purposes. Productivity monitoring research was limited mainly
to earthmoving and framing operations, and vision-based safety
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FIGURE 6 | Examples for the sequential working patterns of earthmoving excavators: (A) Sequential patterns of visual features. (B) Sequential patterns of operation
cycles. Reprinted from Kim and Chi (2019) This article was published in Automation in Construction, Kim, J. and Chi, S. (2019) Action recognition of earthmoving
excavators based on sequential pattern analysis of visual features and operation cycles. vol. 104, pp. 255–264, Copyright Elsevier (2019).

TABLE 3 | Summary of existing interaction analysis algorithms in construction.

Algorithms Objects-of-interest Dataset (image frames) Performance
(accuracy or error

distance)

Literature

Training Test

Productivity monitoring

SVM Excavators and dump trucks 1,342 180,000 95.0% Azar et al. (2013)

Rule-based reasoning Excavators and dump trucks N/A 144,000 90.0% Bügler et al. (2017)

Excavators and dump trucks N/A 11,513 91.2% Kim et al. (2018c)

Relevance networks Workers, equipment, and materials 6,232 1,558 67.3% Luo et al. (2018b)

Conditional random field Workers, equipment, and materials 396,536 188,160 98.7% Luo et al. (2020c)

LSTM Workers and equipment 1,710 428 95.0% Cai et al. (2019)

Safety monitoring

Rule-based reasoning Workers and equipment N/A 1,211 97.2% Chi and Caldas (2012)

Workers and hardhats N/A 3,320 94.3% Park et al. (2015)

Workers and hardhats N/A 100,000 95.3% Fang et al. (2018b)

Workers and hardhats N/A 3,601 86.5% Mneymneh et al. (2019)

Workers, hardhats, harnesses, and anchorages N/A 33,480 90.0% Fang et al. (2018a)

Fuzzy inference Workers and equipment N/A 1,161 95.6% Kim et al. (2016)

Workers and equipment N/A 300 93.40% Zhang et al. (2020a)

Fuzzy neural networks Workers and equipment 1,080 180 91.6% Hu et al. (2020)

Dual mask translation Workers and supports 1,461 450 82.5% Fang et al. (2019)

CNN Workers, hardhats, and safety vests 1,184 288 67.90% Nath et al. (2020)

Workers and harnesses 5,693 77 89.0% Fang et al. (2018d)

Workers, hardhats, and eye/face/hand protection 3,652 913 74.4% Tang et al. (2020b)

DNN Workers 6,000 50 99.0% Yan et al. (2019b)

2D–3D geometric projection Workers and equipment N/A 1,000 91.0% Luo et al. (2020a)

Workers and equipment N/A 500 0.7 m Yan et al. (2020)

assessment relies on only the spatial interactions. Hence, to
monitor other types of operations, it is difficult to determine
whether construction objects are interacting, and what are
the natures of their interactions. To address this issue, future
studies need to clearly define the concept of interactions
and relationships by developing construction ontologies
(i.e., a set of if -then rules) on a purpose-by-purpose basis.
Recently, Zhong et al. (2020) manually built a comprehensive
construction ontology for vision-based safety monitoring, and

Wang et al. (2019b) exploited crowdsourcing techniques for
the development of safety violation ontology. Such ontologies
have been applied for safety hazard identification in other
studies. Xiong et al. (2019) and Fang et al. (2020d) used a
safety-specific ontology when understanding visual relationships
and identifying hazardous factors from jobsite images, and
Zhang et al. (2020c) evaluated spatial risks between construction
workers and equipment by feeding only the object detection
results into a safety ontology. Liu et al. (2020) also leveraged an
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ontology to understand and describe construction scene images
in natural language. These findings indicate that construction
ontologies can specify what information is needed for a certain
operation (e.g., object types and locations), and can easily
transform the visual analysis results to meaningful project
information. Thus, ontology-driven approaches can be also
developed for productivity monitoring as well as for a wider
variety of construction operations.

Another major challenge is to determine how to encode
complex interactions into computer-understandable feature
vectors. Most research mainly extracted the spatial information
(e.g., location, size, velocity) for interaction analysis owing to the
encoding difficulty. Fortunately, recent studies shown that the
integration of various features can represent the object-to-object
interactions more effectively than using only spatial features. Cai
et al. (2019) exploited both spatial (e.g., locations, directions)
and attentional cues (e.g., worker’s head pose) when identifying
interacting groups and classifying their activity types. Luo et al.
(2020c) also improved the performance of group identification
with the additional considerations of deep visual features
(extracted by CNN). Further, as indicated by Cai et al. (2019),
temporal features can also play a key role in detecting visual
relationships of construction objects; this is because the longer
observations are available, the better the dynamic interactions
among objects can be understood. Moreover, it would be also
effective to incorporate operational contexts, which means that a
particular type of construction object tends to have a certain type
of relationship with a specific type of object. For example, mixer
trucks have operational contexts to be “connected to” pump
cars rather than to be “next to” when performing a concreting
activity. Thus, operational contexts may be helpful for classifying
object-to-object relationships more accurately, beyond the spatial
interaction (e.g., “next to”). Furthermore, such comprehensive
interaction features can be well-learned using GNNs, as
reported in recent computer vision research (Hu et al., 2019;
Zhou and Chi, 2019).

Multi-Camera-Based Onsite Information
Integration and Construction Monitoring
This technology aims to integrate analysis results derived from
a set of single cameras, and to obtain all information required
for construction monitoring. This objective can be achieved by
finding the same object in multiple cameras installed at different
physical locations. Park et al. (2012) first presented a stereo-
camera-based method that pairs the same worker from 2D images
and estimates 3D locations using triangulation theory. The
stereo-cameras and triangulation theory were also used to obtain
the detailed 3D postures of excavators in one study (Yuan et al.,
2017). Soltani et al. (2018) further integrated the stereo systems
with location sensors (e.g., global positioning systems) for 3D
pose estimation of excavators. However, as it is not common
to install stereo-cameras on actual jobsites, Konstantinou and
Brilakis (2018) proposed an approach that matches construction
workers from four different monocular cameras in indoor
environments. The approach calculated the similarity scores for
all possible candidates based on their motion, geometry, and

color information. In another study (Wei et al., 2019), they used
similar features but trained more powerful deep learning models.
Zhang et al. (2018a) also developed a vision-based method that
simultaneously matches various construction objects, such as
workers, excavators, and traffic cones. In a recent study (Kim and
Chi, 2020), they proposed a novel approach for pairing the same
dump truck in multiple non-overlapping cameras.

Existing studies demonstrated promising results for multi-
camera-based object matching and onsite information
integration. However, a significant challenge remains to be
addressed because only a few attempts have been made in
this field; only seven journal articles were retrieved. First,
previous research focused on finding the same object in cameras
having quite large overlapping areas, even though multiple
cameras are generally installed while maximizing the visible
coverage areas (i.e., with fewer overlapping areas). Therefore,
it is a major challenge to find the same object in multiple
non-overlapping cameras. Fortunately, construction researchers
can refer to a multi-target multi-camera (MTMC) tracking
approach that is widely adopted in the computer vision domain.
The MTMC tracking aims to track and re-identify multiple
objects (e.g., people, cars) across a multi-camera network. With
this paradigm, most state-of-the-art algorithms mainly rely on
spatio-temporal cues (e.g., location and speed over time) and
layout information (e.g., city map). Such approaches can be
also effective in construction environments; once a mixer truck
arrives at an entry zone, it may reappear in a concreting zone
after a certain period of time (Figure 7). In this sense, recent
algorithms, developed by in existing computer vision studies
(Ristani and Tomasi, 2018; Hsu et al., 2019; Tang et al., 2019), can
be examined, and the experimental results can play a crucial role
in deriving critical technical issues and providing development
guidelines in the area of construction object re-identification.
Building on these findings, the incorporation of construction-
specific contexts is recommended. In one study (Kim and Chi,
2020), their method effectively paired the same dump truck by
considering queueing disciplines of earthmoving operations
from non-overlapping cameras: dump trucks are loaded by an
excavator in a specific arrival sequence, which means that the
first-in dump truck in an entry zone may be the same as the first-
served entity in a loading zone. These jobsite- and object-specific
characteristics would be beneficial for multi-camera-based
object matching and onsite information integration. In the
meantime, it may be also reasonable to consider current practices
for which construction firms often mark unique IDs, such as
QR codes or numbering on hardhats, on onsite workers and
equipment. As its feasibility was confirmed by Azar (2015), the
detection of QR codes on construction equipment may be a
realistic solution.

OPEN RESEARCH CHALLENGES AND
FUTURE DIRECTIONS

This section proposes open research challenges and future
directions for operation-level vision-based monitoring on
construction sites. In particular, theoretical and practical issues
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FIGURE 7 | Spatio-temporal cues and site-layout information for multi-target multi-camera tracking.

when applying computer vision technologies to real-world
construction environments are discussed.

Benchmark Dataset
As claimed in many existing literatures (Seo et al., 2015a; Zhong
et al., 2019; Fang et al., 2020b,c; Zhang et al., 2020b), it is necessary
to build and share a comprehensive construction benchmark
dataset for model development and validation. While researchers
in the computer vision field established diverse benchmark
datasets (e.g., ImageNet, Activity Net, MS COCO), construction
researchers validated their methods using different datasets. Even
if a few studies already developed open construction datasets,
each dataset can be used only for a certain technology, such
as object detection (Tajeen and Zhu, 2014; Kim et al., 2018b)
and action recognition (Luo et al., 2018c, 2020c; Roberts and
Golparvar-Fard, 2019), hindering the comprehensive validation
of vision-based systems. Therefore, it is difficult to compare
model performances fairly and to identify technical problems
that commonly arise in many algorithms. The author suggests
to develop purpose-specific benchmark datasets for end-to-
end framework validation. For example, for the purpose
of earthmoving productivity monitoring, benchmark datasets
should enable the simultaneous testing of the performance of
object detection, action recognition, and interaction analysis.
Further, when expanding to multi-camera-based construction
monitoring, site-layout and actual productivity values (e.g.,
input resources, hourly work amount, schedule) should be also
embedded together. To this end, it would be effective to form a
basis dataset using existing ones, apply crowdsourcing techniques
(Liu and Golparvar-Fard, 2015; Han and Golparvar-Fard, 2017;
Wang et al., 2019b), and utilize convenient annotation tools
(Roberts et al., 2019a,b).

Database-Free Vision-Based Monitoring
As most state-of-the-art technologies originate from traditional
deep learning algorithms, it is necessary to build an extensive
and high-quality training image database (DB). This requires
the manual annotation of construction objects and/or their
operational information (e.g., object types and locations) on
every single image frame, which is extremely labor-intensive,
time-consuming, and expensive. Hence, several efforts have been
made to generate synthetic images from virtual models (e.g., 3D
CAD, BIM) (Soltani et al., 2016; Braun and Borrmann, 2019) and
to oversample given training data using generative adversarial
networks (Bang et al., 2020). Many computer vision studies are
also underway to minimize the amount of training data and
human effort while maximizing the model performance. For
example, Roy et al. (2018) and Brust et al. (2019) employed
active learning algorithms to train an object detector. As
active learning algorithms select the most informative-to-learn
instances from abundant unlabeled training data and train a
deep learning model with the selected data first, it is possible to
significantly reduce the amount of training data and the human
effort required for DB development (Kim et al., 2020b). Other
researchers also investigated the few-shot learning algorithm
(Kang et al., 2019; Wang et al., 2019c; Yan et al., 2019a), which
aims to learn and detect new types of target objects even if
a small amount of training data are given, i.e., less than 30
images. This would be very beneficial for construction sites
where diverse types of construction resources exist and they
often vary from phase to phase. Future research can exploit
the aforementioned approaches and comparatively analyze their
performances. The comprehensive results can build a solid
foundation and provide valuable insights for DB-free vision-
based monitoring on construction sites.
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Visual Data Overload
With the increasing availability of CCTVs, a large amount of
visual data (e.g., still images, videos) is being collected, resulting
in an inevitable problem: visual data overload. When recording
a video-stream with a 1280 × 720 resolution and 10 fps, the
amount of video data collected from one camera for eight
working hours is about 33.0 GB (Seagate, 2020). Assuming that
a project proceeds for 1 year (i.e., 365 days) with five cameras
installed, 60 TB of data storage are required, and the size of
visual data may even reach the order of PB for a long-term
and large-scale project. To address this issue, several studies
attempted to filter out less meaningful images (e.g., images
having no objects-of-interest) and store only informative ones
(e.g., images having workers who are performing a concreting
activity). Chen and Wang (2017) developed a construction video
summary system that screens out redundant images based on
color, gradient, and texture features, and Ham and Kamari (2019)
considered worthy scenes as image frames where objects-of-
interest (e.g., workers, equipment, materials) exist. Despite their
encouraging findings, it remains a major challenge to define
appropriate meaningful images for diverse monitoring purposes.
For example, for safety monitoring, it may be also valuable
if saving and analyzing people-less images. Accordingly, it is
recommended to establish important criteria according to each
purpose, and to develop appropriate methodologies. With further
studies, it will be possible to address data overload issues and
facilitate visual analytics.

Integration With Other Technologies
It would be favorable to integrate computer vision with other
technologies to address intrinsic shortcomings of ground-level
digital cameras. First, location and identity sensors, such as
the global positioning system, radio frequency identification
(RFID), and Bluetooth low energy (BLE), can be used to
counterbalance the main failure cases of vision-based analysis,
i.e., occlusions and disappearances. Previous research confirmed
the potential usefulness of location and identity sensors. Soltani
et al. (2018) proposed a fusion of computer vision and RFID
for 3D pose estimation of hydraulic excavators, and Cai and
Cai (2020) also combined BLE sensors to obtain the 3D spatial
locations of construction workers from onsite images. Second,
the integration with construction simulation would be also
advantageous. While sensing technologies, including computer
vision, can capture the current status of construction sites and
resources (e.g., locations, working states), simulation techniques
(e.g., discrete event simulation, system dynamics, agent-based
modeling) enable the modeling and analysis of the complex
relationships involved in construction processes. In this regard,
operational information extracted by computer vision (e.g.,
activity durations, number of input resources) can be used as
the inputs of construction simulations. Several studies shown
the high potential of such imaging-to-simulation approaches.
Kim et al. (2018a, 2019b) fed the results of vision-based object
detection to a construction simulation model for the analysis of
earthwork productivity, and Golabchi et al. (2018) developed a
computer vision-simulation integrated framework for workers’

ergonomic risk assessment. Based on these findings, further
research can explore the applicability to different construction
projects and operations. Finally, it would be possible to mount
digital cameras on UAVs to periodically acquire top-view images.
As previous research confirmed the usability of camera-equipped
UAVs (Kim et al., 2019a, 2020a; Bang and Kim, 2020; Bang
et al., 2020), project managers can gather useful information
that are not acquired from ground-level images. Regarding
the productivity, UAV-acquired images can provide information
about the performance of output production (e.g., volume of
soil excavated) (Siebert and Teizer, 2014). In other studies (Kim
et al., 2019a, 2020a), they monitored the spatial trajectory and
proximity of construction objects using UAV images to prevent
contact-driven safety accidents.

CONCLUSION

This study comprehensively reviewed existing literatures,
derived major research challenges, and proposed future
directions for operation-level vision-based monitoring on
construction sites. Total 119 papers were thoroughly examined
and discussed in the aspect of operation-level monitoring
technologies: (1) camera placement for operation-level
construction monitoring, (2) single-camera-based construction
monitoring and documentation, and (3) multi-camera-based
onsite information integration and construction monitoring.
Research trends, major open challenges, and future directions
were described in detail for each technology. Theoretical and
practical issues that may arise when applying computer vision
techniques to real-world construction sites were also discussed.
Furthermore, cutting-edge algorithms presented in top-tier
computer vision conferences were also introduced to indicate
potential solutions for research challenges. The findings of
this study can form the basis of future research and facilitate
the implementation of vision-based construction monitoring
and documentation.
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