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INTRODUCTION

Railway sleepers (also called “railroad ties” in North America) are safety-critical components
of ballasted railway tracks and the embedded type of ballastless tracks (Australian Standard:
AS1085.14, 2003; Griffin et al., 2014). In addition, other types of sleepers that are used in other
special locations are often termed differently to acknowledge the special conditions. For example,
railway bearers are used to define the crossties used in railway turnouts (or switches and crossings).
Railway transom or bridge beams are terms often used to refer to the flexural members used
over the railway bridges (without a ballast top). Despite the fact that the support and boundary
conditions are different, the critical duties of railway sleepers, bearers and transoms are identical:
(i) to redistribute dynamic loads from the rail foot to the underlying ballast bed; and (ii) to maintain
the rail gauge for safe passages of trains (Neilsen, 1991; Cai, 1992; Grassie, 1995; Kaewunruen and
Remennikov, 2006). These functions demonstrate the criticality for safety of rail operations. If they
are sufficiently damaged, trains can derail.

In recent years, composite materials have gained momentum in the railway industry. However,
there is notmuch of a track record on their performance. This is probably because there are somany
types of compositematerials: some performwell butmany do not (Kaewunruen, 2014; Kaewunruen
et al., 2017; Silva et al., 2017). For example, “fiber-reinforced foamed urethane (FFU)” composites
have been used as turnout bearers and embedded sleepers in Australia, Japan, UK, Germany and
other places around the world for just over 40 years (Sengsri et al., 2020a). In contrast, “CarbonLoc
composite” (with steel reinforcement) has been used as bridge transoms in Australia for a few years.
With these in mind, there has been an effort to develop a brand-new ISO standard (ISO 12856)
for standard test specifications of polymeric composite sleepers (with the scope to cover sleepers,
bearers, and transoms). The draft standard has now been made available for a technical review.

The aim of this paper is to highlight the test criteria with respect to the design and actual
in situ behaviors of composite sleepers in track systems. As a case study, full-scale experiments
to investigate the test load behaviors of full-scale “fiber-reinforced foamed urethane (FFU)”
sleepers have been adopted from very recent investigations. Influences of the standardized support
conditions are highlighted in this paper. Comparative studies with in situ behaviors of composite
sleepers in a ballasted railway are illustrated in order to improve the insight into the benchmarking
of the ISO standard’s test specification criteria.

FINITE ELEMENT ANALYSES

It is commonly known that the two-dimensional Timoshenko beam model is the most suitable
option for 2D modeling of concrete sleepers (Neilsen, 1991; Cai, 1992; Grassie, 1995; Griffin et al.,
2014). Using a general-purpose finite element package STRAND7 (G+D Computing, 2001), the
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TABLE 1 | Comparisons of test methods and resultant responses (deflection, shear force, and bending moment).

Cases Deflected shapes Maximum

mid-span

deflections (m)

SFDs (N) BMDs (Nm)

ISO 0.0083

Australian Standard 0.0096

Uniform distributed load 0.0017

Partial uniform distributed load 0.0000

(i) Finite element modeling of composite beams has been verified by full-scale experiments under both static and dynamic loads.

(ii) Fc,n = 100 kN, L = 1.5m, Wc,n = 40 kN/m for uniform distributed load, Wc,n = 50 kN/m for partial uniform distributed load.
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numerical model includes the beam elements, taking into
account shear and flexural deformations, for modeling the
composite sleeper. An industry-standard rectangular cross-
section of 0.16 × 0.26m is assigned to the composite sleeper
elements. In this investigation, the finite element model of a
composite sleeper has been previously developed and calibrated
against both experimental static and dynamic results. The
previous experimental results of full-scale composite sleepers
(Sato et al., 2007; Sengsri et al., 2020a,b) show that the composite
sleeper is likely to have a brittle failure mode with large
deformation before failure. Under dynamic loading conditions,
the first bending mode in a vertical plane of a composite sleeper
clearly dominates the first resonant mode of vibration under
a free-free condition (Sengsri et al., 2020b). Also, the dynamic
modal parameters of the composite sleeper are reduced when
damages occur. As a result, they reduce with damage severity
(Sengsri et al., 2020b). The linear static solver is thus used in
this study. The elastic modulus of the composite is set as 8.1 GPa
with the density of 740 kg/m3. In this model, the full length of
the sleeper is 2.5m. The length between two rigid supports (Lc)
is 1.5 m.

Since the ISO standard (ISO 12856) has been drafted without
sufficient clarification for test methods for center-section under
negative load test, this study compares the ISO test arrangement
with an existing test method complied with the Australian
Standard: AS1085.14 (2003). It is noted that the Australian
Standard: AS1085.14 (2003) has prescribed the test method for
evaluating the bending moments for both railway sleepers and
bearers. Although the most critical loading conditions on the
track systems are related to wheel impacts, the current design
procedure takes the dynamic effects into account by using a
dynamic load factor and treats the wheel burden as a quasi-
static load (Remennikov and Kaewunruen, 2007). In practice,
the wheel load generally imparts the positive bending moment
at the railseat whilst providing the negative bending moment at
mid span of the railway sleepers. To obtain comparable insights
into a test method for the center section under a negative load
test, this study considers four different load arrangements in
accordance with (i) draft ISO standard provision, (ii) Australian
standard provision, (iii) simulated ballast support as a uniform
distributed load, and (iv) freshly tamped ballast condition
simulated by a partial distributed load (illustrated in Table 1).
It should be noted that the negative reference test load (FC,N)
at the center section of the sleeper is chosen to be 100 kN for
benchmarking purposes. This could imply that a rail seat force is
50 kN.

Firstly, according to the ISO standard provision, two-
point loads (50 kN each) are applied with the distance of
Lc/3 (500mm in this case) in between the two-point loads.
Secondly, the distance between two-point loads are reduced
to 150mm to comply with the Australian Standard. Thirdly,
the uniform distributed load of 40 kN/m (equivalent to a
total of 100 kN point load) is applied to reflect the full
redistribution condition of ballast support (this condition
represents poor track maintenance). However, in the railway
industry, a proper ballast tamping and packing enable the
partial support condition in practice. These activities can

affect the flexural response of railway sleepers subjected to
a spectrum of ballast stiffnesses including the asymmetrical
ballast condition (Kaewunruen and Remennikov, 2007a,b, 2009;
Shokrieh and Rahmat, 2007; Kaewunruen et al., 2016) and thus
the uniform distributed load at mid-span is removed by the
length of Lc/3 in the last case to reflect this condition (as
recommended by AS1085.14). The comparative results presented
in Table 1 include deflected shape, maximum deflection at
mid span, Shear Force Diagram (SFD) and Bending Moment
Diagram (BMD).

DISCUSSION

The finite element analyses exhibit critical static effects stemmed
from a variety of boundary conditions (representing test methods
and ballast conditions). The effects of support conditions
together with ballast conditions on the static flexural behaviors
of composite sleepers are highlighted for comparison. Under the
conditions specified by standards (ISO 12856 and AS1085.14),
the results clearly show that the bending moment resultants
are affected by the spacing between load arms (Fc,n/2). The
ISO standard test method tends to yield a lesser bending
moment by 35%, implying that component testing by AS1085.14
method is more efficient. In addition, there was a myth that
the standard test methods could offer a situation close to
in situ ballasted conditions. When considering the deflected
shapes, it is evident that none of standardized test methods can
completely mimic in situ behaviors. This new finding is aligned
well with other studies (Reiff et al., 2007; McHenry et al., 2008;
Davis et al., 2009; Tangtragulwong et al., 2011; Kaewunruen
et al., 2018; McHenry and Gao, 2018; Qian et al., 2019). When
considering the purpose of performance benchmarking, it is
apparent that the Australian test setup condition (AS1085.14)
can better represent the hogging deformations at the mid span
than the test provision of ISO standard (ISO 12856). The insight
into the bending moment resultants is very critical for track
engineers and test engineers, who should be aware that the results
obtained from standard test methods should be interpreted
with cautions.

Composite materials have recently gained significant
attention for applications in railway industry. In recent practice,
composite sleepers and bearers have been used for bespoke
replacements of aged timber components in critical areas
such as switches and crossings, bridge transom sleepers, and
special locations with either stiffness or clearance constraints.
A new ISO standard has been drafted to accommodate
the need to carry out standardized tests to benchmark the
performance of polymeric composite sleepers and bearers. This
study highlights the test specifications in order to illustrate
the profound insight into the test methods for polymeric
composite sleepers in comparison with in situ conditions
in real life situations. This study explores the effectiveness
of the provision in the current design code for bending test
methods under various support conditions. The results clearly
demonstrate that the test methods cannot fully represent in situ
track conditions.
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