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The spread of pandemics such as COVID-19 is strongly linked to human activities. The
objective of this article is to specify and examine early indicators of disease spread risk in
cities during the initial stages of outbreak based on patterns of human activities obtained
from digital trace data. In this study, the Venables distance (Dv) and the activity density (Da)
are used to quantify and evaluate human activities for 193 United States counties, whose
cumulative number of confirmed cases was greater than 100 as of March 31, 2020.
Venables distance provides a measure of the agglomeration of the level of human activities
based on the average distance of human activities across a city or a county (less distance
could lead to a greater contact risk). Activity density provides a measure of level of overall
activity level in a county or a city (more activity could lead to a greater risk). Accordingly,
Pearson correlation analysis is used to examine the relationship between the two human
activity indicators and the basic reproduction number in the following weeks. The results
show statistically significant correlations between the indicators of human activities and the
basic reproduction number in all counties, as well as a significant leader-follower
relationship (time lag) between them. The results also show one to two weeks’ lag
between the change in activity indicators and the decrease in the basic reproduction
number. This result implies that the human activity indicators provide effective early
indicators for the spread risk of the pandemic during the early stages of the outbreak.
Hence, the results could be used by the authorities to proactively assess the risk of disease
spread by monitoring the daily Venables distance and activity density in a proactive
manner.
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INTRODUCTION

The objective of this study is to reveal and evaluate early indicators of human activity during COVID-
19 period in cities at the initial stages of the outbreak using measures of human activities derived
from digital trace data. As an arguably unprecedented global pandemic, the coronavirus disease 2019
(COVID-19) has infected millions of people worldwide with a mortality rate of 6.6% and a high
infection rate (Keni et al., 2020; World Health Organization, 2020). Since the spread of COVID-19 is
highly dependent on human activities, incidence of infection could be contained by restricting
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human activities and mobility (Gollwitzer et al., 2020). Many
countries and authorities have implemented various
nonpharmaceutical interventions (e.g., shelter-in-place orders,
regional lockdowns, and travel restrictions), which were
undertaken to slow the spread of disease by disrupting
transmission chains through restricting human mobility and
activities. Such social distancing and activity reduction
interventions have proven to be critical in slowing down the
spread of pandemics both in previous epidemics (Caley et al.,
2008) and during COVID-19 (Anderson et al., 2020; Tian et al.,
2020; Li, et al., 2020b; Ramchandani, et al., 2020).

While reduction in human activities is considered an effective
measure for containing epidemics and pandemics, there are
limited reliable, proven, real-time leading indicators related to
human activities that could provide early insights about the risk
of disease spread in a region to inform proactive policy making.
One reason for this limitation has been the absence of
quantitative measures and data that could be examined to
proactively evaluate human activities. With advancements in
location intelligence data technologies, however, information
derived from cellular devices offers a large depository of
digital trace data related to human activities increasingly
adapted and analyzed to promote understanding of and to
quantify human activity and mobility in pandemic analysis, as
well as in other applications (Balcan et al., 2009; Asgari et al.,
2013; Barbosa et al., 2018). For example, in the context of
COVID-19, the radius of gyration, which captures the mobility
of individuals using human movement trajectories, was adopted
to analyze the COVID-19 spread in Japan (Yabe et al., 2020).
Daily step-counts (gathered from smartphones) were used to
estimate and predict decreased movement of individuals within
the United States during COVID-19 (Gollwitzer et al., 2020). Two
of the most important aspects of human activities during an
epidemic are agglomeration of activities and intensity of activities.

Although previous research reveals insights regarding human
activities in the context of COVID-19, the relationship between
human activities and disease-spreading risk has not been fully
explored, and leading indicators of human activities to
proactively assess the risk of disease spread during the early
stages of pandemics are lacking. The majority of research studies
(Chang et al., 2020; Cintia et al., 2020; Gao et al., 2020; Li et al.,
2020a) focus on quantifying and analyzing the changes in human
activities as a consequence of the outbreak of the virus and in
response to protective policies (such as shelter-in-place policies).
The time-lag relationship between these human activity metrics
and the spread of virus, which can be generally described by the
basic reproduction number (R0), has not yet been fully examined.
The basic reproduction number, R0, is defined as the number of
secondary cases produced by one previous case in a completely
susceptible population (Dietz, 1993). Although research studies
(Lampos et al., 2020; Lu and Reis, 2020) have focused on leading
indicators obtained from users’ online search behavior, the
decrease of online search frequencies may not have direct
impact on the spread of the virus. Hence, the previous
indicators cannot be utilized for proactive assessment of
disease spread risk in a proactive manner. Epidemiological
modeling and disease spread modeling are also widely used to

predict the spread of the virus (Chen et al., 2020; Ellison, 2020;
Wu et al., 2020). By using fine-grained aggregated human
mobility data, Wu et al. (2020) forecasted the subsequent
spread of COVID-19 in different geographic regions, with
minimal parameterization of the model. Such simulation
models could provide the authority handy tools to predict the
spread of diseases in the future. The empirical studies and
simulation studies are both important for understanding the
spread of virus in either the COVID-19 or the future diseases.

In this study, the empirical data related to human activities
during COVID-19 was used to reveal the leading relationship
between the human activity and the basic reproduction number.
We adopted the Venables distance (Dv) index (Louail et al.,
2014) and also created the activity density (Da) index to serve as
two recent empirical data indicators to examine the spatial and
temporal patterns of human activities across 193 counties in the
United States using Mapbox high-resolution temporal-spatial
activity index data from January 1 to March 31, 2020. The
Venables distance captures the average distance
(i.e., concentration) of human activities across a city or
county (less distance between persons might indicate a
greater contact risk). The activity density captures the
intensity level of overall activities in a county or city (higher
activity levels might indicate a greater spread risk). Human
activities were examined in four categories—social, traffic, work,
and other—based on the location and time of activities.
Accordingly, we analyzed the correlation between the two
metrics (Dv and Da) and the basic reproduction number for
193 counties with the highest number of confirmed COVID-19
cases. The significant correlation between the two population
activity measures and the extent of spread of the virus suggested
that these two measures at the beginning stage of the outbreak
could provide promising leading indicators of the risk of spread
based on human activity. The examination of population
activity measures as leading indicators of pandemic spread
risk is critical for situational awareness and monitoring and
would complement the insights obtained from standard
mathematical disease spread models. Although the spread of
the pandemic is a complex phenomenon and is affected by
various factors, the focus of this research is only on the human
activity aspect and early indicators related to human activity.

The rest of this article is organized into three sections. The first
section discusses the description of the two datasets (Mapbox
data and total confirmed cases number data), as well as the
analysis methods. The second section describes the results of
time-lag correlation analysis between the two metrics and the
basic reproduction number. The last section presents the results
and the implications of the findings for future work.

METHODS

In this section, we describe the two datasets—Mapbox data and
total confirmed cases number data—and the procedures for human
activity categorization. Also covered in this section are definitions
and equations related to the Venables distance (Dv), the activity
density (Da), and the basic reproduction number (R0). The time-lag
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cross-correlation analysis method is presented at the end of this
section.

Data Source and Preprocessing
We utilized digital trace telemetry data obtained from Mapbox
from January 1 to March 30, 2020. The dataset contains a metric
of telemetry-based human activity, aT ,t , which varies across
spatial tiles and time t. The partition of tiles is based on
Mercantile, a Python library, which is capable of creating
spatial-resolution grids all worldwide. The aT ,t is collected,
aggregated, and normalized by Mapbox from geography
information updates of users’ cell phone locations by time
flows. The more users located in a tile at time t, the higher
the human activity (i.e., aT ,t). The dataset comprises the
United States and the District of Columbia; however, in this
study, we examined only 193 counties whose cumulative
confirmed cases were greater than 100 as of March 31, 2020
(Figure 1). In the raw data, the temporal resolution is 4 h. Each
tile represents about 100 by 100 square meters for spatial
resolution. Since the data is derived from cell phone activity,
data may not exist for all cells at all times. For example, a park
open during the day but closed at night would not generate any
data at midnight. Also, for protecting users’ privacy and the data
aggregation process, tiles with a small number of users are
reported without any activity data. It is also noteworthy that
the data is aggregated and normalized for each month, so the
absolute values of activity indices for different months cannot be
directly compared.

To reveal the time-lag relationship betweenmetrics and spread
of the virus, the total number of confirmed cases was used. We
obtained the data from the COVID-19 Data Repository by the
Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University (2020). The data in this repository were
gathered and aggregated from various sources, such as the
World Health Organization (WHO) and the Centers for
Disease Control and Prevention (CDC). We extracted the total

number of confirmed cases ci,j from the CSSE repository, where i
represents each date and j represents each county.

Tile Categorization
The nature of an activity might put its participants at a higher risk
level for contracting the virus. For example, activities in public
common areas, such as grocery stores or gyms, would lead to
greater risk of disease spread compared to the activities in
residential areas, such as working from home or walking a dog
in the community. The fine granularity of the spatial resolution
enables classification of each tile into one of the four categories:
(1) social tiles, (2) traffic tiles, (3) work tiles, and (4) other tiles.
Categorization is based on the following characteristics: (1) social
tiles are the location of at least one point of interest location; the
location information of point of interest is extracted from
SafeGraph data (including restaurant, gas station, and
commercial complex) (SafeGraph, 2020); (2) traffic tiles are
extracted by mapping the traffic network with all tiles
including roads; (3) work tiles are identified based on lack of
activity during the late evening hours; and (4) other tiles are
located in residential areas. We assigned these four tags to each
tile from social, traffic, work to other. Once a tile is assigned with a
tag, it is excluded for further categorization. We categorized tiles
in this way to examine the importance of human activity in each
category and its relationship with the reproduction number. The
analysis in this research examines human activities for social,
work, and traffic tiles separately. All the residential tiles are
excluded from the analysis because the human activities in
these tiles have less influence on the contact level among
people. Example tile maps related to each category are shown
in Figure 2 for Harris County, Texas.

Venables Distance (Dv)
To quantify the agglomeration of human activities, we used the
Venables distance (Dv) as a weighted average distance of human
activities. The Venables distance aggregates the spatial

FIGURE 1 | 193 selected counties whose cumulative confirmed cases were greater than 100 as of March 31, 2020.
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distribution of aT,t in a county and captures the urban spatial
structure of human activities (Louail et al., 2014). The Venables
distance is a metric to describe how distant the human activities
are from each other. It also provides a metric for concentration
activities. In examining the risk of pandemic, understanding the
concentration of human activities is an important consideration.
Hence, the Venables distance provides a metric to examine
fluctuations in this aspect of human activities. Compared with
the well-known spatial autocorrelation metric, the meaning of Dv

is easier to be explained and understood. Also, the meaning of Dv

is different from that of spatial autocorrelation, which describes
the presence of systematic in spatial space. The value of spatial
autocorrelation is from −1 to 1, and it could be negative if the
adjacent observations tend to have very contrasting values. The
Venables distance, however, is a metric to describe how far the
human activities are apart from each other, and its unit,
kilometer, has reality meaning. The Dv is calculated using Eq. 1:

Dv(t) � ∑T1 ≠T2aT1 ,t · aT2 ,t · dT1 ,T2∑T1 ≠T2aT1 ,t · aT2 ,t
, (1)

where aT1 ,t and aT2 ,t are the metrics of human activities in Tile1
and Tile2 at time t, respectively, and dT1,T2 is the distance from the
centroids between these two tiles. In Harris County, Texas, there
are more than 70K unique tiles, which makes it computationally
expensive to analyze all pairs of existing tiles. To reduce the
computational burden, we aggregated the 100-by-100 square-
meter tiles, aT ,t , to square cells 2 km in length using Eq. 2:

ak,t � ∑for all T in cell kaT ,t
Ak

, (2)

where ak,t is the intensity of human activity in cell k, at time t and
Ak is the area of the cell k. By aggregating human activity into a

larger spatial cell, we reduced the computational efforts,
maintaining a meaningful spatial resolution without losing
important characteristics in the raw data. Accordingly, the
modified Venables distance is derived as shown in Eq. 3:

Dv(t) � ∑k1 ≠ k2ak1 ,t · ak2 ,t · dk1 ,k2∑k1 ≠ k2ak1 ,t · ak2 ,t
, (3)

where ak1 ,t and ak2 ,t are the intensity of human activities in cells k1
and k2 at time t, respectively, and dk1 ,k2 is the distance from the
centroids between these two cells. In Eq. 3, the values of the
activity intensity (ak,t) are used as weights to calculate a
human-activity-weighted distance for the whole area. In
other words, the relative values of ak,t were used to examine
changes in agglomeration of activities. We calculated Dv(t) for
each county j, which is denoted as Dv(j, t) for all cells in the
county j. Due to high computational cost of conducting, we
aggregated the data into 2 km square. The Venables distance
describes how human activities are apart from each other, and
the spatial resolution of 2 km is capable to capture such
feature.

Activity Density (Da)
Although Dv captures the agglomeration of human activities, the
density of activities is also critical for examining population
contact. To make the raw data (aT ,t) from Mapbox
comparable among different months, we denormalized the
activity index to the contact activity metric caT ,t for each tile
and each month (where t is time). The original human activity
data was obtained from the use of cell phones and was
normalized within each month across all tiles and time
windows. Every value above the 99.9 percentile is set to 1,
and every value below that is scaled linearly. Since the maximum

FIGURE 2 | Maps of four different tile categories (social, traffic, work, and other) in Harris County, Texas.
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value of human activities across the entire United States (the
denominator of the normalization process) could be different in
different months, the normalized data cannot be compared
across different months. In the denormalization process, the
assumption was that, in each month, the minimum human
activity intensity among tiles is the same. First, the tile with
minimum human activity index (aT ,t) in each month was found.
Then we set the value of contact activity caT ,t in that low-activity
tile as 5 and denormalize the values for other tiles based on this
value. The value of tiles with the lowest activity is set in order to
keep the minimum activity in the tiles across the United States
fixed and consistent. By doing so, we can denormalize the data
uniformly for all other tiles in the country. For each county, the
activity density at time t [Da(t)] was calculated using Eq. 4:

Da(t) �

���������
1
N

∑N
T�1

ca2T ,t

√√
. (4)

Basic Reproduction Number Estimation
The basic reproduction number (R0) (the number of secondary
cases arising from one previous case) is a critical parameter in
epidemic modeling for understanding the speed of disease spread
(Dietz, 1993; Gatto et al., 2020), as well as the risk of virus spread
(Newman, 2002; Liu et al., 2018; Aleta et al., 2020; Giordano et al.,
2020). We adopted the R0 in the analysis, assuming a complete
susceptibility of the population. This is because, at the early stage
of the COVID-19 pandemic (March, 2020), all people were
susceptible. The effective reproduction number (Rt) is another
metric which is widely used to describe the spread speed of
disease (Nishiura and Chowell,, 2009; Althaus 2014). Rt assumes
only partial population is susceptible and takes into account the
effect of policies such as social distancing inmeasuring the disease
spread. Thus, Rt can be used in cases with populations having
immune members (Delamater et al., 2019). Hence, Rt would be
more appropriate in analyses at the later stage of the pandemic. In
the early stage of COVID-19, it was a novel virus for all people
and everyone was susceptible. Hence the basic reproduction

FIGURE 3 | The percentage change of Dv for 193 counties in March 2020. The height of each bar is the average percentage change of all 193 counties. The error
bar indicates the standard deviation among all counties. The three tile categories of social, traffic, and work are shown in each column, and three daily tile aggregations of
peak, average, and noon are shown in each row.

FIGURE 4 | The percentage change of Da for 193 counties in March 2020. The height of each bar is the average percentage change of all 193 counties, and the
error bar indicates the standard deviation among all counties. The three tile categories of social, traffic, and work are shown in each column, and three daily tile
aggregations of peak, average, and noon are shown in each row.
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number (R0) was used in this study to represent the spread speed
of the virus. R0 is calculated using Eq. 5:

ci+t � ci · Rt/τ
0 , (5)

where ci and ci+t represent the total confirmed cases in day i and
day i + t, respectively, and τ is a constant parameter. We
estimated R0 using CDC data (ci,j) in Eq. 6:

R0i,j � eτ
ln ci,j−ln ci−t,j

t , (6)

where R0i,j is the basic reproduction number at date i in county j.
Because the CDC total confirmed cases data fluctuates within the
course of a week (i.e., more reported cases in weekdays and less
reported cases during weekends), the time interval t was set to
7 days. Based on the existing literature and simulation models
related to COVID-19 (Zhang et al., 2020a; Zhang et al., 2020b;
Fan et al., 2020), the constant parameter τ was set to 5.1 days.
Accordingly, the R0 was calculated for all 193 counties for the
analysis period. The daily basic reproduction number for each
county will be used to conduct the correlation analysis with
proposed two indicators of human activities.

Time Lagged Cross-Correlation Analysis
In the next step, we examined the correlation between the two
human activity indicators and the basic reproduction number across
all counties. Since these variables are a time series, we used time-lagged
cross-correlation analysis to assess the synchrony of time series data
sets. The cross-correlation coefficient was calculated using Eq. 7:

ρA1A2
(τ) � Cov(A1(t),A2(t + δ))

σA1σA2

, (7)

where ρA1A2
is the cross-correlation coefficient for two time series

data A1 and A2; δ is the time offset of A2; Cov(X,Y) is the

function calculating the covariance of two variables; σA1 and σA2

are the standard deviation of data A1 and A2, respectively. Based
on the definition, ρA1A2

represents the correlation between two
variables and

∣∣∣∣ρA1A2

∣∣∣∣≤ 1 (∣∣∣∣ρA1A2

∣∣∣∣ � 1 happens if and only if
A1 � mA2 + n, where m and n are constants). Then, by
iteratively calculating the ρA1A2

(δ) with different δ, the
correlation coefficient would reach its peak when δ � T , and T
was determined as the time lag between two variables.

RESULTS

This section presents the results related to the calculation of
the two human activity metrics and their time-lagged
correlation with the basic reproduction number across 193
counties during the initial stage of the COVID-19 outbreak in
the United States.

Evaluation of Human Activity for Each
Category Among Counties
In this study, the Venables distance (Dv) and the activity density
(Da) were calculated to assess the human activities at the county
level using data from Mapbox. The very first four weeks (January
1–28) were considered as the baseline, and Dv andDa values were
compared with the average baseline in corresponding weekdays.
For example, the Dv values on March 1 (Sunday) were compared
with the mean value of Dv values on Sundays between January 1
and 28. Three different ways of daily activity aggregation were
used: peak, average, and noon. The peak (largest), average, or the
noon (11 a.m.–3 p.m.) values of human activities atile,t were
selected and set as the representative value of each tile at each
day. Figure 3 and Figure 4 show the percentage of Dv and Da

FIGURE 5 | Histogram plots of average percentage change of Dv and Da (each row) for three different categories (each column).
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change for social, traffic, and work activity categories and for
three types of daily tile aggregation.

The increasing trend of Venables distance (Dv) implies
declining concentration and rising distance among people, and
the decreasing trend of activity density (Da) indicates less human
activity compared with the beginning of this year. Due to the shelter-
in-place policies, residents changed their daily activity patterns.More
and more people reduced the nonessential outdoor activities (e.g.,
shopping in supermarkets, exercising in gyms, and eating at
restaurants). Such changes in daily human activity patterns led to
the change ofDv andDa. For the three categories, significant change
can be seen in both social and traffic tiles, while the change in work
tiles is not obvious. This is because the activities in work tiles could be
essential activities. TheDv increased the most, around 15%, in social
tiles, while the Da fell the most in traffic tiles, which is around 25%.
Differences among the three types of daily tile aggregation were not
significant. The percentage change of peak values is slightly greater
than the other two values, indicating that peak values are influenced

more by COVID-19, while average values are more stable. The
following analysis uses peak values to calculate Dv and Da.

Histograms of average percentage change of Dv and Da for
each county are shown in Figure 5. The average percentage
change is calculated during the last week of March. The Dv

values in the majority of counties increased, and Da values
decreased for social and traffic categories, while the work
category shows more even distribution around 0% for both
Dv and Da. These histogram plots are consistent with the claim
that human activities in work tiles are more essential than the
other two (social and traffic), which did not show significant
change during the COVID-19 study period.

WhileDv andDa describe the different global characteristics of
human activity—the Dv captures spatial distribution of human
activity and the Da focuses on the intensity of human
activity—they both reveal the insight of massive human
activity patterns, which could have a quite significant
influence on the spread of the virus. The correlation

FIGURE 6 | The time-lagged correlation analysis between Venables distance (Dv ) change and reproduction number (R0). The left column shows the number of
cases and the number of counties for different offset days, and the right column shows the correlation index and the number of counties with different p-value intervals.
Each row presents one of the three tile activity categories: social, traffic, and work.
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analysis between these two metrics and the basic reproduction
number R0 becomes critical.

TIME-LAGGED CORRELATION ANALYSIS

The spread of the coronavirus is closely related to the human
activity patterns. In the previous section, we showed that the
average distance between human activities (Dv) increased by
10%–15%, and the average human activity intensity (Da)
decreased by 5%–10% for social tiles during March 2020
compared with the baseline period of January 2020. This
result provides a good indication of the reduction in human
activities in response to social distancing policies. In this section,
we examine the extent to which the change in human activity
metrics was related to the change in reproduction rate of
coronavirus in the 193 counties under study. Hence, we
conducted the time-lagged correlation analysis for the two
human activity metrics calculated based on social, traffic, and
work tile activity categories. Then all of the counties were grouped

by the time lags. For each group, we counted the number of
counties and summed the confirmed cases numbers. We plotted
both the number of confirmed cases and the number of counties
in Figures 6, 7 to show what the time lag is for most counties and
for the most confirmed cases. The range of the confirmed cases
numbers for different counties is large. The minimum confirmed
cases number is 101, and the maximum number is almost 10,000
in New York Counties. That is why we used both of them to
represent the result in a more comprehensive way. Figure 6
shows the time offset results between the Venables distance (Dv)
change and the basic reproduction number (R0) for social, traffic,
and work activity categories. Since the number of confirmed cases
follows a skewed distribution during March 2020, the log scale is
used to illustrate the results. The results show that, in majority of
typical counties, the decline in the basic reproduction number
(R0) happens 20–40 days after the increase in Venables distance.
This result is consistent across all the three activity categories. In
the right column of Figure 6, the bar charts show the correlation
between the offset Dv and R0 within different p-value intervals.
The average correlation coefficients (with p-values less than 0.05)

FIGURE 7 | The time-lagged correlation analysis result between activity density (Da) change and reproduction number (R0). The left column shows the number of
cases and the number of counties for different offset days, and the right column shows the correlation index and the number of counties with different p-value intervals.
Each row presents one of the three tile activity categories: social, traffic, and work.
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are around 0.8 for each category, indicating a significant
relationship between the increased distance among human
activities and the decline in the virus spread speed. For the
p-values greater than 0.05 (indicating no sufficient evidence to
prove the correlation between two variables), the correlation
indices are correspondingly smaller. The number of counties
in each p-value interval shows that about 50% of the counties have
p-values less than 0.001 for Venables distance calculated based on
social and traffic activity tiles. The results related to work tiles,
however, show a significant correlation between the two variables
in a smaller number of counties.

Figure 7 shows the time offset result between activity density
(Da) change and reproduction number (R0) for the three activity
categories. The results show that the decline in the basic
reproduction number happens 6–17 days after the reduction
of the activity intensity (Da); a similar result exists in all
activity categories. The time lag is less than the one obtained
for the Venables distance (Dv), whichmeans that the spread of the
virus responds to human activity intensity reduction more
quickly than to human agglomeration reduction. In the right
column of Figure 7, the bar charts show the correlation of offset
Da and R0 in different p-value intervals. The average correlation
indices for p-values less than 0.05 are around 0.9 for tile activity
categories. This result indicates a significant relationship between
the human activity intensity reduction and the decline in the virus
spread speed. For p-values greater than 0.05, the correlation
indices are smaller as well. The number of counties in each
p-value interval shows that about 50% of counties have p-values
less than 0.01 for social and traffic tiles, while the work tiles result

shows p-values between 0.1 and 1.0 (indicating a nonsignificant
correlation).

Heterogeneity for Different County Features
In the next step, we examined the variation of findings across
counties with different population sizes, number of confirmed
cases, and date of first confirmed cases. The goal is to examine the
extent to which the correlation between the twometrics of human
activities and the reproduction number is sensitive to these
county features. The 193 counties were divided into three
uniform categories according to population size and confirmed
cases (on March 18, 2020) labeled high, medium, and low.
Similarly, the first case dates were labeled as early, mid-range,
and late for each one-third of counties. Then, the changes in Dv

and Da (on March 31, 2020) were examined for each label in each
tile category, and the results are plotted in Figure 8. Dv and Da

show different heterogeneities facing these county features. In the
left side of Figure 8, we cannot detect a clear difference in Dv

value changes in different group. In the right side of Figure 8,
however, we can observe that Da values decreased more in the
counties with larger population size, higher confirmed cases
number, and earlier first confirmed case, and such pattern
exists for all the social, traffic, and work tiles. Based on the
definition, Da represents the intensity of human activities. Based
on this result shown in Figure 8, we can conclude that the
intensity of human activities decreased more in counties with
larger population size, higher confirmed cases number, and
earlier first confirmed cases, which could imply a greater
recognition and response to the pandemic risks in such counties.

FIGURE 8 | Change in Venables distances (Dv ) and activity density (Da ) across counties with different population sizes, confirmed cases number, and the date of
first confirmed case in the three tile activity categories (social, traffic, and work).
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DISCUSSION

This study shows the utility of two human activity metrics [the
Venables distance (Dv) and the activity density (Da)] as leading
indicators of human activity for the spread speed of COVID-19 in
the early stages of the outbreak. These metrics were derived from
digital trace data obtained from Mapbox high-resolution
temporal-spatial datasets. The results provide statistical evidence
regarding the time-lag correlation between these twometrics and the
basic reproduction number (R0) in the context of COVID-19. The
results regarding the significant leader-follower relationship between
human activities and the rate of spread of viral infections could be
used by the public health officials and decision makers to monitor
human activity and provide insights regarding the trends in the basic
reproduction number in the future one to two weeks. For example,
time lag indicates that the spread of the virus responds to human
activity intensity reduction more quickly than to human
agglomeration reduction. As for the heterogeneity of indicators,
the result shows that the intensity of human activities decreased
more in the counties with more population, more confirmed cases,
and earlier first confirmed cases, which indicates a greater
recognition and response to the pandemic risks in these counties.

There exist other studies that examined human mobility in the
context of COVID-19. Wang et al. (2020) examined the similar
time-lag effect of human mobility on the COVID-19 infections in
the 80 cities most affected in China from Jan 17 to Feb 29. The
results showed that the time lag is about 10 days. The index of
intracity traffic volume (provided by Baidu) was used to represent
the human mobility. Such highly aggregated data, however, may
lose some critical spatial information about human activities.
Xiong et al. (2020) analyzed mobile device data at each
United States county for the COVID-19 period. The origin-
destination travel demand and aggregate mobility inflow were
used to represent the human activities, and the results showed the
dynamics in a positive relationship between human mobility and
COVID-19 transmission. Compared with the mentioned similar
metrics describing human activities, the two indicators in this
article (Dv and Da) capture both the agglomeration of activities and
intensity of activities, which are two of the most important aspects of
human activities during an epidemic. TheDv andDa are also easy to
calculate based on the human activity data provided by Mapbox.
They are the early indicators for authority to monitor in advance the
spread of the virus in the future.

This study has some limitations which need to be improved in
future studies. First, the tile activity categorization—social, work,
and traffic—is not precise. One tile could be labeled as both social

and work. In this study and due to data availability limitations,
however, we classified tiles into only one of the three categories.
Second, the CDC confirmed-cases data had limitations due to
testing availability. In this study, we did not adjust the confirmed
case data based on the extent of testing in different counties. A
lack of testing in some areas resulted in the underestimation of
the total cases.
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