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In sensed buildings, information related to occupant movement helps optimize functions
such as security, energy management, and caregiving. Due to privacy needs, non-intrusive
sensing approaches for tracking occupants inside buildings, such as vibration sensors, are
often preferred over intrusive strategies that involve use of cameras and wearable devices.
Current sensor-based occupant-localization approaches are data-driven techniques that
do not account for structural behavior and limited to slabs on grade. Varying-rigidity floors
and inherent variability in walking gaits lead to ambiguous interpretations of floor vibrations
when performing model-free occupant localization. In this paper, an extensive analysis of
vibrations induced by a range of occupants is described. Firstly, the need for a structural-
behavior model for occupant localization is assessed using two full-scale case studies.
Structural behavior is found to significantly influence floor vibrations induced by footstep
impacts. Since a simple relationship between distances from footstep-impact to sensor
locations cannot be assured, the use of physics-based models is necessary for accurate
occupant localization. Secondly, measured data are interpreted using physics-based
models and information related to uncertainties frommultiple sources. There are two types
of uncertainties: modelling uncertainties and measurement uncertainties, including
variability in walking gaits. Error-domain model falsification (EDMF) and residual
minimization (RM) are model-based approaches for data interpretation. Unlike RM,
EDMF explicitly accounts for the presence of systematic errors in parameters and
overall model bias. In this paper, model-based occupant localization is carried out
using EDMF and RM on a full-scale case study. By explicitly accounting for the
presence of uncertainties and the influence of structural behavior, EDMF, unlike RM,
accurately reveals possible occupant locations on floor slabs.

Keywords: footstep-induced floor-vibrations, structural influence, model-based data interpretation, error-domain
model falsification, residual minimization, walking-gait variability

INTRODUCTION

Sensed buildings increasingly incorporate sophisticated technology to track occupants to provide
services that enhance safety (Song et al., 2008), caregiving (Cully et al., 2011; Cully et al., 2012) and
comfort (Erickson et al., 2013) of inhabitants. Information regarding occupant locations inside
buildings may also be beneficial for energy saving and space management (Uotila and Skogster, 2007;
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Stoppel and Leite 2014; Diraco et al., 2015). The most commonly
used techniques for occupant localization employ optical sensors
including passive infrared sensors (Lu et al., 2010; Erickson et al.,
2013) and cameras (Kamthe et al., 2009; Bamis et al., 2010). Also,
radio-frequency identification devices including portable sensors
(Fierro et al., 2012; Lazik et al., 2015), embedded Wi-Fi (Zeng
et al., 2016; Lee et al., 2020) and Bluetooth beacons (Feldmann
et al., 2003; Lazik et al., 2015) have been used for occupant
localization. However, these sensing techniques require clear
spaces and a dense deployment of sensors to provide accurate
localization of occupants and above all undermine the privacy of
building occupants (Tekler et al., 2020).

Alternative sensing approaches such as CO2 sensors
(Candanedo and Feldheim 2016; Jiang et al., 2016), acoustic
devices (Bian et al., 2005; Desai et al., 2011), smart-flooring
systems (Yun, 2011; Serra et al., 2016) and vibration sensors
(Richman et al., 2001; Mirshekari et al., 2018; Drira et al., 2019b)
protect the privacy of occupants. A limitation of CO2-based
approaches has been related to the slow spreading of CO2

within an indoor space. Also, air ventilation may compromise
interpretation of CO2 concentrations inside buildings, leading to
ambiguous results related to occupancy levels (Tekler et al., 2020).
Acoustic-based methods have been found to be sensitive to
ambient audible noise (Alpert and Allen, 2010; Geiger et al.,
2014). Smart flooring systems have required highly instrumented
floors (Yun, 2011; Serra et al., 2016). Such systems are not suitable
for large full-scale applications (Tekler et al., 2020). This paper
describes occupant detection and localization carried out using
sensors measuring floor vibrations induced by human footsteps.
Use of a physics-based model to interpret monitoring data from
sparse configurations, as suggested in this paper, alleviates the
requirement for dense instrumentation.

Typical data-driven techniques used to interpret vibration
measurements have relied on evaluating time-difference-of-
arrivals (TDoAs) of floor vibrations generated by a footstep at
multiple sensors to triangulate occupant locations (Pakhomov
et al., 2003; Schloemann et al., 2015; Lam et al., 2016; Mirshekari
et al., 2018; Clemente et al., 2019). Model-free approaches provide
precise results only for slabs on grade on ground floors and in
basements (Mirshekari et al., 2018). Triangulation-based
techniques are affected by the low signal-to-noize ratio (SNR)
vibrations that result from the dispersive nature of typical floor
slabs. Also, more complex structural configurations (upper
floors) and the presence of elements (such as beams and
walls) have limited their applicability (Bahroun et al., 2014;
Mirshekari et al., 2018; Drira et al., 2019b). This has led to
ambiguous localization results. Thus, highly instrumented
floors are required to provide accurate localization (Bahroun
et al., 2014; Pan et al., 2016) (∼one sensor per 2 m2).

Footstep impacts, characterized as an impulse, generate waves
that travel through the floor slab. Floor slabs are typically
approximated as solid plates that are freely supported in the
vertical direction. Also, typical floor thicknesses are of the order
of 20–30 cm. Since the ratio of wavelength to floor thickness is
significant, waves resulting from a footstep impact are described
as Lamb waves (i.e. plate waves) (Viktorov, 1970; Mirshekari
et al., 2018).

However, Lamb waves are dispersive, which leads to distortion
in the footstep-induced floor vibrations. These waves travel
through the floor slab with frequency-dependent phase
velocities (Worden, 2001; Lee and Oh, 2016; Pan et al., 2017).
Mirshekari et al. (2018) have observed that the propagation of
these waves in a dispersive medium resulted in shape changes of
the floor signals induced by footstep impacts at sensors.
Moreover, distortion effects of the wave propagation have
been magnified by ambient noise (Mirshekari et al., 2016) and
by support conditions leading to reflection issues (Gregory and
Gladwell, 1983). This has led to ambiguous interpretations of
TDoAs resulting in inaccurate occupant localizations (Mirshekari
et al., 2016).

Data-driven techniques have been shown to provide accurate
localization only when there is a monotonic relationship between
signal characteristics and the distance from footstep-impact to
sensor locations. An inversely proportional decay between
distance from footstep-impact to a sensor location and
impulse energy was shown by Pan et al. (2014). However, it
has been shown by Drira et al. (2019b) and Pai et al. (2019) this
relationship is not always observable due to the presence of
support conditions such as columns and walls leading to
varying rigidity of floors.

Preliminary analysis by Pai et al. (2019) has shown that
due to the influence of structural behavior on floor vibrations,
there is a need for model-based approaches for occupant
localization. In addition, a sensitivity analysis over several
signal characteristics was carried out to find suitable metrics
for model-based occupant localization. However, this
analysis was limited to a small area of a floor slab
(∼35 m2) with measurements from only two occupants
walking on floor. A more comprehensive evaluation of
measurements from multiple occupants walking on larger
area of full-scale floor slabs is necessary to ascertain effects of
structural behavior on occupant localization.

Use of physics-based models introduces knowledge of structural
behavior while interpreting data and may overcome shortcomings
of current data-driven techniques. A model-based approach using
error-domain model falsification (EDMF) has been shown to
provide accurate localization (Reuland et al., 2017b; Drira et al.,
2019b; Drira et al., 2019c; Drira et al., 2019d) and precise tracking of
a single occupant (Drira et al., 2019b; Drira et al., 2019c; Drira et al.,
2019d). EDMF is a population-based approach that explicitly
accommodates systematic errors and model bias to provide
accurate identification.

Another existing model-based approach for data-
interpretation is residual minimization (RM) (Catbas and
Kijewski-Correa, 2013). However, RM has been found to be
sensitive to noisy measurements. Applications of RM have
involved the assumption that residuals between simulated and
measured responses were constrained only by the choice of model
parameters to be identified (Mottershead et al., 2011). Moreover,
uncertainties from each measurement source have been assumed
to be independent. While more complicated formulations and the
addition of fitting parameters are possible using RM, it has not
been demonstrated that greater complication results in greater
accuracy.
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Furthermore, RM cannot account for the presence of multi-
source model bias due to use of safe design models as well as
systematic parameter uncertainties that vary with position in real
applications. The presence of systematic bias and correlation
between measurements (Simoen et al., 2013) do not satisfy typical
assumptions of zero-mean independent Gaussian estimations of
uncertainties (Jiang and Mahadevan, 2008; McFarland and
Mahadevan, 2008). These inappropriate assumptions have
resulted in many cases of inaccurate interpretations of data
using RM in engineering applications, for example see (Beven,
2000; Pai et al., 2018).

In the context of model-based data interpretation approaches
for locating building occupants, simulated and measured
vibrations have been prone to large magnitudes of
uncertainties. Potential uncertainties have originated from the
natural variability in walking gaits of the same person and
between individuals (Drira et al., 2019d). Variability in
walking gaits have been engendered by sources such as
individual anatomy, walking speed, shoe type, health and
mood (Gage et al., 1995; Racic et al., 2009; Pan et al., 2015).
The variability in gait of an occupant walking at the same location
multiple times and wearing hard and soft-soled shoes has resulted
in a relative measurement uncertainty of ±45% (Drira et al.,
2019d). In the context of occupant localization, no previously
published research has evaluated the accuracy of model-based
occupant localization while accommodating systematic errors
and model bias.

In this paper, an analysis of vibration measurements from
multiple people is carried out to observe the influence of
structural behavior on floor vibrations. This analysis involves
evaluations of measurements from two full-scale case studies to
demonstrate the need for model-based approaches for occupant
localization. Then, EDMF, which accommodates uncertainties
from multiple sources, is used to localize five occupants walking
individually on a full-scale floor slab. Results are compared with
those obtained using RM.

The paper starts with a description of model-based occupant
localization strategies (Model-Based Methodologies for
Occupant Localization section). Empirical analyses to
evaluate the influence of structural behavior on footstep-
impact vibrations are presented in Influence of Structural
Behavior on Floor Vibrations under subheading of CASE-
STUDY 1 and Influence of Structural Behavior on Floor
Vibrations under subheading of Case-Study 2 sections, based
on vibration measurements from two full-scale floor slabs. An
evaluation of the relationship between signal magnitudes and
footstep-impact locations is then provided in Relationship
Between Signal Magnitudes and Occupant Locations under
subheading of Case-Study 1 and Relationship Between Signal
Magnitudes and Occupant Locations under subheading of Case-
Study 2 sections. Subsequently, inter- and intra-subject
variability in walking gaits is examined in Variability in
Walking Gaits section. Finally, the application of model-
based occupant-localization strategies to a full-scale floor
slab is described in Model-Based Occupant Localization
section. In Summary and Discussion section, results obtained
from both case studies are discussed.

MODEL-BASED METHODOLOGIES FOR
OCCUPANT LOCALIZATION

Model-based methodologies involve comparing floor-vibration
measurements with simulated footstep impacts to identify
occupant locations. Measured floor vibration signals induced
by footsteps are extracted from continuous streams of data
from multiple sensors using a model-free technique developed
by Drira et al. (2019a). Once signals from these sensors
corresponding to a footstep are extracted, they are compared
with model simulations to determine possible locations of an
occupant on the floor slab. In the context of model-based data
interpretation approaches, simulated and measured floor
responses are prone to multiple sources of uncertainty. In the
following sections, description of uncertainty sources and two
model-based methodologies for interpreting vibration
measurements are presented.

Modelling and Measurement Uncertainties
Development of physics-based models is an idealization of reality.
Choices that are made to build a numerical model are inherently
subjective to constraints such as time and prior knowledge. These
subjective choices lead to modelling uncertainties as defined by
Walker et al. (2003). Modelling uncertainties can be separated
into two categories, aleatory and epistemic (Der Kiureghian and
Ditlevsen, 2009). Aleatory uncertainties are intrinsic to the
randomness of a phenomena. These uncertainties are thus
assumed to be irreducible. Uncertainties that arise from lack
of knowledge are presumed to be epistemic. The epistemic
uncertainties are reducible with appropriate additional
information.

Typical modelling uncertainties in civil engineering include
support and boundary conditions, material and geometrical
properties, as well as analysis details such as the choice of
element type in finite-element modelling. These sources are
mostly epistemic uncertainties. In the context of occupant
localization, idealized loading to simulate footstep impacts
may also increase modelling uncertainties.

Model predictions are also prone to uncertainties from sources
such as simplification and omissions, which lead to systematic
difference between simulated and measured responses. In this
paper, these uncertainties are referred to as model bias. A
literature survey on modeling assumptions that are assumed
with the respect of omissions and simplifications has been
presented by Goulet et al. (2014) and more recently by
Simoen et al. (2015). Systematic errors and model bias need to
be considered in the model-based approaches to ensure accurate
identification (i.e. localization). Sources of modelling
uncertainties, in the context of occupant localization, are
further described in Uncertainty Estimation section.

Measurements are also prone to uncertainties from multiple
sources. Measurement uncertainties include the resolution and
precision of sensors, connection variations, and cable losses. For
the application of occupant localization, in this paper, the natural
variability in walking gaits can also contribute to variability in
floor-vibration measurements. Occupants walk with different
styles according to their walking speed, type of shoes, moods
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and health (Öberg et al., 1993; Gage et al., 1995; Hausdorff, 2007).
This may lead to a significant variability in walking gaits from the
same person and among individuals. Differences are denoted as
inter- and intra-subject variability. Variabilities can also be
classified as either aleatory or epistemic uncertainties
depending on factors affecting gait patterns of occupants.
Walking-gait variability in measurement is discussed in
Variability in Walking Gaits section in which external factors
that affect the walking-gait patterns are also described.
Quantification of modelling and measurement uncertainties
has generally been based on engineering judgment and prior
observations (Pasquier et al., 2016; Pai et al., 2018; Drira et al.,
2019b).

Residual Minimization (RM)
Residual minimization (RM) has been the most common data-
interpretation technique utilized by practicing engineers to solve
inverse problems for several decades, due to its simple
formulation (Schlune et al., 2009; Catbas and Kijewski-Correa,
2013). Also referred to as “curve fitting” and “model calibration,”
RM originates from the work of Gauss and Legendre (19th
century) (Sorenson, 1970) on least-squares fitting. The RM
approach is intended to minimize the difference between
model predictions and actual measurements so as to
determine the optimal (i.e. the most likely) model parameters.
A typical RM formulation is described by the objective function
shown in Eq. 1.

θ̂ � argmin
θ

∑nm
i�1
( gi(θ) − m̂i

m̂i
)2

x ≤ L; y ≤B (1)

In Eq. 1 the optimal model-parameter set (θ̂) is obtained by
minimizing the objective function that corresponds to the sum
among all sensor locations nm of the squares of normalized
residuals (gi(θ) − m̂i) (Simoen et al., 2015). In this paper,
model parameters (θ) to be identified are the x and y
coordinates of occupant locations. The residual is the
difference obtained between the model response, gi(θ), and
the measurement m̂i, at sensor location i. The objective
function is constrained by the floor bounds that are defined by
the length L and the width B in Eq. 1. Normalizing the residuals
ensures that the calibration will not be biased towards
measurements with large magnitudes. Small measurement
magnitudes may lead to abnormal ratios. Such small
measurement values are not used since they are below the
levels of sensor noise.

Parameter identification using RM has employed various
optimization algorithms such as genetic algorithms (Chou
and Ghaboussi, 2001) and particle-swarm optimization
(Nanda et al., 2014). RM has also been performed by trial
and error to estimate optimal parameters (Sanayei et al.,
2012). In this paper, an exhaustive search is applied for
localization where residuals are assessed from measured
and pre-simulated floor responses. These simulated floor
responses are induced by footstep impacts at possible
locations. Thus, localization procedure using RM is a
constrained satisfaction procedure.

Error-Domain Model Falsification (EDMF)
Error-domain model falsification (EDMF) is a population-based
approach proposed by Goulet and Smith (2013). EDMF involves
generation of an initial set of model instances (i.e. simulations) of
a system to interpret its behavior regarding measured data
(Tarantola, 2006). The initial model population is produced
using possible ranges of parameter values that are obtained
based on prior information about a system and engineering
knowledge. Predictions obtained using physics-based models
are then compared with the measured structural response
using compatibility metrics to identify candidate models
among the initial population. Based on prior estimation of
uncertainties from multiple sources, model instances that are
not falsified form a candidate-model set.

Assuming θ is the vector of model parameter values which
correspond to cartesian coordinates (to be found) of occupant
locations in this study and gi(θ) is the predicted response at
measurement location i. The vector of measured responses at
sensor location i is denoted mi. Modelling and measurement
uncertainties associated with each measurement location are
εmod,i and εmeas,i respectively. Modelling uncertainties that
result from conservative and simplified models are
intrinsically systematic with unknown correlations between
measurement locations. Measurement uncertainties include
variability in measured responses. For model-based
occupant localization, the natural variability in walking
gaits contributes the most to uncertainty in measured floor
vibrations. Quantification of these uncertainties is generally
based on engineering judgment and prior observations
(Pasquier et al., 2016; Drira et al., 2019b).

The true (unknown) structural response at a measurement
location i, denoted as Qi is shown in Eq. 2. The true structural
responseQi, equals either the sum of model prediction (gi(θp))
with true parameter values θ* conditioned by model uncertainty
(εmod,i) or the sum of measured response (mi) conditioned by
measurement uncertainty (εmeas,i).

Qi � gi(θp) + εmod,i � mi + εmeas,i i � 1..nm (2)

In Eq. 2, nm is the total number of measurement locations.
Rearranging Eq. 2, the residual between the predicted and
measured responses is equal to the combined uncertainty, εc,i,
at a measurement location i as shown in Eq. 3.

gi(θp) − mi � εmeas,i − εmod,i � εc,i (3)

Modelling (εmod,i), measurement (εmeas,i) and combined
errors (εc,i) are quantified as random variables denoted as
Umod,i, Umeas,i and Uc,i, respectively. In a probabilistic
approach, these uncertainties are assumed to follow a
uniform distribution due to the lack of information regarding
their distributions. The use of uniform distributions does not
require of the quantification of correlations between variables
(Reuland et al., 2017a). In addition, uncertainties, particularly
Umod,i can be represented with a bias (no requirement for zero-
mean distributions).

Measurement and modelling uncertainties are subsequently
combined using Monte Carlo sampling. The combined
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uncertainty (Uc,i) and a target reliability of identification (i.e.
localization), ϕ ∈ {0, 1}, are used to compute the identification
thresholds denoted as Thigh,i and Tlow,i as shown in Eq. 4 (Goulet
et al., 2013; Goulet and Smith, 2013). In structural engineering,
the value of target reliability of identification (ϕ) is often taken to
be 0.95.

ϕ
1
/nm � ∫Thigh,i

Tlow,i

fUc,i(Uc,i)dUc,i (4)

In Eq. 4, fUc,i is the probability density function (PDF) of
the combined uncertainty, Uc,i, at measurement location i.
The term 1/nm, in Eq. 4, denotes the Šidák correction (Šidák,
1967). This term is applied so that the reliability of
identification remains constant with increasing number of
measurements.

Regarding occupant-localization applications, following Drira
et al. (2019b) and introduced above, θ represents x and y
coordinates of possible occupant locations on the floor slab.
The residual, which is the difference between footstep-impact
simulations and footstep-event (e) measurement is denoted as
gi(θ) − mi,e, as shown in Eq. 5.

Tlow,i,e ≤ gi(θ) − mi,e ≤ Thigh,i,e ∀ i ∈ {1, .., nm}, e ∈ {1, .., ne} (5)

Using the initial location set, for each detected footstep
event (e), all location instances whose residuals lie inside the
localization thresholds (Tlow,i,e and Thigh,i,e) at each sensor
location (i) are accepted and form the candidate-location
set (CLS) (Reuland et al., 2017b; Drira et al., 2019b; Drira
et al., 2019c; Drirs et al., 2019d) as shown in Eq. 5. This
operation is repeated for each newly detected footstep-event
signal. Since EDMF provides a population of possible
locations, all candidate models are treated as equally
probable due to the lack of information on the true
uncertainty distributions.

The identification of occupant locations is not
computationally expensive since pre-simulated footstep
impacts at a grid of possible locations compared with
measured footstep-event signal. This allows repeated use of the
same simulations for multiple comparisons with all measured
footstep-event signals. Thus, the falsification process allows a
near-real-time localization of occupant footsteps.

Sequential Analysis
Resulting CLSs are subjected to a sequential analysis that
combines information about consecutive footstep events, as
described in detail by Drira et al. (2019b). The sequential
analysis involves the assumption that the distance between
two consecutive footstep impacts cannot exceed a predefined
average step length (approximately 70 cm) (Figueiredo et al.,
2005; Racic et al., 2009). A candidate location is rejected when
its minimum distance from the CLS of the preceding footstep
event is greater than the predefined distance. Thus, the
sequential analysis has the potential to reduce ambiguity
within the CLSs of footstep events to increase localization
precision.

CASE-STUDY 1

Description
A preliminary evaluation of the influence of structural
behavior on floor vibrations induced by footstep impacts is
demonstrated using a large area of a full-scale floor slab that
is shown in Figure 1. The relationship between signal
magnitudes of detected footstep events and occupant
locations is evaluated using the case study. The case study
involves a reinforced-concrete slab located in a multi-story
building in Switzerland. The floor slab is 20 cm thick and the
floor surface is covered with a linoleum-based finishing. This
case study includes a corridor and four offices (Offices A, B, C
and D in Figure 1), and covers a surface of approximately
100 m2.

The reinforced-concrete slab rests on a steel frame composed
of two H-beams and 13 I-beams, and it is supported by six steel
columns, as shown in Figure 1. Separation walls made of
plasterboard are underneath and above the structure. The
floor is connected to reinforced concrete walls at the west end
of the slab. The east end is free. The south end of the slab is
connected to the remaining part of the structure (continuity of
the floor slab). The north end of the slab is connected to a
structural masonry wall.

Vertical velocity-response of the slab was captured using
uni-directional vibration sensors (Geophones SM-24 by I/O
Sensor Nederland). The floor vibrations were recorded using
an acquisition unit (NI USB-6003) with a sampling rate of
1000 Hz. As shown in Figure 1A, eight vibration sensors in
five configurations were used to record ambient vibrations.
Ambient vibrations were recorded for 20 min for each set of
sensors. In an initial commissioning stage, these
measurements were used to perform an initial modal
analysis of the floor slab. Since sensors were simply placed
on top of the floor slab, they were easily moved from one
configuration to another. Ambient vibrations were recorded
separately at sensors of each configuration. Thereby, Sensors
S1 and S2, placed at quarter-span and three-quarter-span of
the corridor (see Figure 1A), were used as references to assess
the fundamental mode shapes. Sensor layouts, as shown in
Figure 1A, were chosen to cover the entire floor space while
accommodating the positions of office furniture in order to
provide good estimates of bending mode shapes. While such
coverage was not sparse, it was only employed for an initial
study, prior to localization measurements.

Figure 1B shows sensor locations that have been used to
measure footstep-induced floor vibrations. Measurements
were carried out for a single occupant walking along two
fixed trajectories (dots and circles in Figure 1B) with a
moderate walking speed of 1.6 Hz and wearing hard-soled
shoes. Trajectory #1 started from the north end of the
corridor and ended at the south end, leading to
20 footstep-impact locations. Trajectory #2 extended from
the west end of Office B to the west end of Office C, leading to
26 footstep-impact locations. Walking tests following
trajectories # 1 and #2 were repeated 10 times.
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Modal Analysis
In an initial commissioning stage, modal analysis is carried out
prior to the evaluation of footstep-induced floor vibrations to
understand the structural behavior of the floor. The frequency-
domain decomposition approach (FDD) (Wang et al., 2016) is
used to ascertain vertical mode-shapes that correspond to
fundamental bending modes of the floor slab. FDD also
implicates evaluation of the cross-power spectral density
(CPSD) (Kanazawa and Hirata, 2005) of ambient vibrations
that are recorded by each sensor configuration (see

Figure 1A). Matrices resulting from the CPSD operation are
then decomposed into singular values and vectors.

Fundamental frequencies of the floor slab are identified
using the resulting singular values. Estimates of mode shape
of the fundamental frequencies are defined by the singular
vectors. Higher magnitudes of the first singular values for
each sensor configuration reveal the modes with most energy
contribution to vertical bending. The modes of the floor slab
with most energy contribution to vertical bending have
frequencies between 20 and 40Hz. Estimates of the

FIGURE 1 | Case-Study 1. (A) In an initial commissioning stage, five sensor configurations used to record ambient vibrations for modal analysis. (B) Sensor
configuration used to study the influence of the structure on recorded footstep-induced floor vibrations.

FIGURE 2 | Normalized deformed-shape amplitudes corresponding to the first and second modes of the floor slab of Case-Study 1.
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fundamental bending modes of the structure are at
frequencies of 20 and 27.5Hz.

In Figure 2, the deformed-shape patterns that correspond
to the first and the second modes of the floor slab of Case-
Study 1 (see Figure 1) are shown. In Figure 2 diamonds,
circles, squares, upward- and downward-pointing triangles
are deformed shape amplitudes at positions defined by sensor
configurations #1 to #5 (see Figure 1A). The amplitude of the
deformed shape at each sensor location is normalized by the
deformed-shape amplitude given by the reference Sensor S2
(see Figure 1A). Boxes represent the locations of steel
columns. Empty circles represent the reference amplitudes
at each sensor location. Dashed lines indicate the free end of
the slab (see Figure 1).

The mode shape at 20 Hz, as shown in Figure 2A, governs the
fundamental mode of the floor slab that mainly affects the office
region. The mode shape at 27.5 Hz, as shown in Figure 2B,
governs the behavior of the corridor region of the floor slab.
Maximum amplitudes associated with the first mode-shape are
located at the quarter-span and the three-quarter-span of the
floor slab. The mode shape at frequency of 27.5 Hz (see
Figure 2B) also governs the second mode of the floor within
the office region. Amplitudes associated with the second mode-
shape present local maxima at quarter-span, three-quarter-span
and mid-span of the floor slab.

The resulting deformed shape amplitudes are compared with
recorded footstep-induced floor vibration at various locations to
understand the effect of the structural behavior. Details of this
analysis are presented in the following section.

Influence of Structural Behavior on Floor
Vibrations
The influence of structural behavior on floor vibrations is assessed
using measurements from occupants walking on the floor. These
measurements are recorded from the floor of office environment
using the sensor configuration shown in Figure 1B. Footstep
impacts are from a walking occupant following Trajectory #1, as
shown in Figure 1B. Standard deviation (σ) values of extracted
footstep-impact signals at several sensors are used to characterize
the detected footstep events. The standard deviation (σ) of
recorded signals is expressed mathematically through the
following equation:

σ �
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∑Ns

j�1
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In Eq. 6, Ss,f is the footstep-impact signal recorded by the
sensor, s. The impact signal, Ss,f is processed using continuous
wavelet transform (CWT) and inverse wavelet transform
(IWT) at frequency range (f ). µs,f denotes the mean value
of the impact signal, Ss,f . Ns denotes the size of the impact
signal, Ss,f . Standard deviation (σ) values are well-suited to
evaluate the impact signals since they are correlated to the
impact force induced by footsteps as analyzed in detail by Pai
et al. (2019). Other metrics including maximum difference in
amplitudes and root-mean square (RMS) of processed

footstep-impact signals are also evaluated in this study.
Characterizing the extracted event signals using these
metrics provide similar results when compared with results
using σ values.

Standard deviation (σ) values of processed footstep-event
signals in terms of velocity are illustrated in Figure 3. In
Figure 3, the σ values are presented as a function of footstep-
impact locations. Footstep-induced floor vibrations are
decomposed using CWT and reconstructed using IWT at a
frequency range of 20–40 Hz corresponding to frequencies of
the first few bending modes of the floor slab (see Modal Analysis
section). This frequency range helps increase the SNR of extracted
footstep-impact signals. Bars represent the variability of 10
measurements defined as one standard deviation. Circles
correspond to the mean values. In Figure 3A, σ values are for
footstep-impact signals that are recorded by sensors S2 and S7 at
impact locations #1 to #20, as shown in Figure 1B. Sensors S2 and
S7 are placed at quarter-span and three-quarter-span of the
corridor (see Figure 1B). In Figure 3B, σ values are for
footstep-impact signals that are recorded by sensors S5, S6
and S8. These sensors are placed inside Offices A and B, that
define half of the region at the north end of the floor slab (see
Figure 1B).

Average standard deviation (σ) values of low-frequency
components of footstep-impact signals, in Figure 3, reveal an
increasing trend to a maximum when footstep-impact locations
are close to quarter-span and three-quarter-span of the corridor.
The trend of these σ values follows the deformed shapes governed
by the fundamental modes of the floor slab, as shown in Figure 2.
In Figure 3B, average σ values of the recorded signals by sensors
S5, S6 and S8 result in similar magnitude levels for all footstep
locations, while locations of these sensors are scattered on the
mid-span of the floor. This demonstrates the influence of the
structure on vibration measurements, since the locations of
sensors S5, S6, and S8 belong to a region presenting similar
floor rigidity (see Figure 2).

Moreover, average standard deviation (σ) values of the
footstep events recorded by sensors S5, S6, and S8 (see
Figure 3B) have lower magnitudes (up to 64% less) compared
with signals recorded by Sensor S7 (see Figure 3A). These
discrepancies arise from the close distances between footstep-
impact locations and the location of Sensor S7 compared with
other sensors. Similar results are observed for measurements
recorded at Sensor S2 and compared with sensors S1, S3 and
S4 (see Figure 1B).

In addition, comparing event signals induced by footsteps at
locations #1, #2 and #3 and recorded by sensors S5 and S7,
standard deviation (σ) values present a significant discrepancy in
magnitudes while these impact locations are at equal distances to
sensors (see Figure 3). This disparity in magnitudes between
sensors S5 and S7 arises from the varying rigidity of the floor slab
between the corridor and the offices due to difference in boundary
conditions and presence of separation walls (see Figure 1). Low-
frequency components of recorded footstep-impact signals are
thus affected by the structural behavior of the floor slab as well as
non-structural elements such as separation walls. This
necessitates a model-based approach for occupant-localization.
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Relationship Between Signal Magnitudes
and Occupant Locations
Standard deviation (σ) values of processed signals generated by
footstep impacts captured at sensors S2 and S7 from Case-Study 1
(see Figure 1B) are illustrated in Figure 4. The σ values are
presented as a function of the distance between footstep impacts
to sensor locations. In Figure 4, footstep impacts are from an
occupant walking along Trajectory #1 (a and b) and Trajectory #2
(c and d). Circles and squares represent the mean σ values of
detected footstep-event signals. Bars represent the variability of
10 measurements defined as one standard deviation.

Footstep-event signals are decomposed using CWT and
reconstructed using IWT at frequency ranges of 20–40 Hz as
shown in Figures 4A,C. High-frequency components of event
signals are extracted at a frequency range of 150–200 Hz as shown
in Figure 4B,D. This high-frequency range is chosen based on the

given bandwidth of the vibration sensors (see Description
section). It has been shown empirically by Drira et al. (2019b)
that the amplitudes of footstep-impact signals in this frequency
range have the best sensitivity to footstep-impact locations for
this case study.

Standard deviation (σ) values assessed for low-frequency
components of impact signals, as shown in Figure 4A, present
a decreasing monotonic trend for footstep impacts (following
Trajectory #1) that are adjacent to the locations of sensors S2 and
S7 (see Figure 1B). An increasing trend to a maximum is
observed for footstep impacts that are distant from the
locations of sensors S2 and S7. This change in the trend of σ
values arises from the presence of a column as a support
condition in the middle of the walking trajectory (see
Trajectory #1 in Figure 1B). The occurrence of an impact
load at a mid-span region of the floor slab generates a
displacement of the adjacent region of the floor slab. This can

FIGURE 3 | Standard deviation (σ) values of footstep-impact signals in terms of velocity spaced at 70 cm. Footstep impacts are from a walking occupant following
Trajectory #1 on the floor of Case Study 1 (see Figure 1B). (A) σ of footstep-impact signals recorded by sensors S2 and S7. (B) σ of footstep-impact signals recorded by
sensors S5, S6 and S8.

FIGURE 4 | Standard deviation (σ) values of processed signals generated by footstep impacts captured at sensors S2 and S7 from Case-Study 1 (see Figure 1B).
Footstep impacts are from a walking occupant following Trajectory #1 (A, B) and Trajectory #2 (C, D). Signals are decomposed and reconstructed at frequency ranges
of 20–40 Hz (A, C) and 150–200 Hz for (B, D).
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also be explained by the first bending mode of the floor slab, as
shown in Figure 2A.

Similarly, standard deviation (σ) values that are assessed for
low-frequency components of impact signals as shown in
Figure 4C reveal a non-monotonic relationship between
distances from footstep-impact locations (following Trajectory
#2) to Sensor S2 (see Figure 1B). Footstep impacts that define
maximum σ values are 2 and 8 m away from Sensor S2. These
fluctuations in the resulting trend are due to the excitation of the
fundamental modes related to the corridor and the offices (see
Figure 2) when an occupant walks between offices. Thus,
structural behavior of the slab is found to have significant
influence on floor vibrations induced by footstep impacts. The
structural behavior varies spatially due to changes in fundamental
mode governing the response of the varying rigidity of the floor
slab. This justifies the necessity for model-based approaches for
occupant localization.

Standard deviation (σ) values that are assessed for high
frequency components of impact signals reveal a monotonic
relationship between distances from footstep-impact locations
(following trajectories #1 and #2) to sensors S2 and S7, as shown
in Figures 4B,D. High frequency components of footstep-impact
signals are found to not follow the behavior of the floor slab. Thus,
the high frequency components of recorded signals are not
significantly affected by global structural behavior. However,
from a distance of 2 m and above, the overall trend resulting
from σ values at high-frequency ranges contains several
fluctuations. Wave propagation induced by footstep impacts
inside offices is subjected to obstructions such as walls, vertical
beams and furniture that affect local modes (i.e. high frequency
modes). Therefore, high-frequency components of measured
floor-vibration response are not always useful for occupant
localization.

It is concluded that low-frequency components of impact
signals are dominated by global structural effects and high-
frequency components of impact signals are dominated by
impact positions and local structural effects. Therefore, in this
situation, a combination of information from low and high
frequency components are taken into account for occupant
localization using a structural-model-based approach.

CASE-STUDY 2

Description
An analysis of vibration measurements from multiple people
walking individually is carried out on a second full-scale case
study, as described in Figure 5. The analysis of these
measurements is used to demonstrate once more the need for
model-based approaches for occupant-localization applications.
The relationship between signal magnitudes of detected footstep
events and occupant locations is also evaluated using this case
study. The application of model-based occupant-localization
strategies explained in Model-Based Methodologies for
Occupant Localization section are carried out.

The floor of the Case-Study 2 is a reinforced-concrete slab
located in the same multi-story building as Case-Study 1 (see

Figure 1). This case study covers a surface of approximately
100 m2. The reinforced-concrete slab rests on a steel frame
composed of five H-beams and 12 I-beams and is supported
by six steel columns, as shown in Figure 5. The east end and
upper half of the west end of the slab are connected to the
remaining part of the structure (giving continuity of the floor
slab). A non-structural wall made of plasterboard is above the
structure on the east end. The lower half of the west end and the
south end of the slab are connected to prefabricated reinforced
concrete walls. The remaining parts of the slab are joined to
masonry walls.

The floor slab of Case-study 2 was instrumented with the same
vibration sensors as used for the floor of Case-Study 1 (see
Description section). Similar to Case-Study 1, the floor
vibrations in terms of velocity were recorded with a sampling
rate of 1000 Hz. In Figure 5A, eight vibration sensors following
three configurations were used to record ambient vibrations.
Ambient vibrations were recorded for 20 min for each set of
sensors. In an initial commissioning stage, these measurements
were used to perform modal analysis of the floor slab during the
commissioning stage. Sensor S8, placed at mid-span of the floor
(see Figure 5A), was used as a reference to assess the fundamental
mode shapes. Sensor layouts, as shown in Figure 5A, were chosen
to cover the entire floor space in order to provide good estimates
of bending mode shapes.

In Figure 5B, sensor locations that were used to measure
footstep-induced floor vibrations are shown. Measurements were
carried out from five people walking individually along a fixed
trajectory. Information related to occupant weights are presented
in Table 1 where occupants O1 to O5 weights ranged from 58 to
92 Kg. Occupants walked along fixed footstep-impact locations
(28 locations separated by 75 cm as step length) and at fixed
speeds.

The test for each occupant walking was repeated with two
types of shoes (hard-and-soft soled shoes) and five speeds.
Walking speeds (in terms of steps per second) were 1.4; 1.6;
1.8; 2 and 2.2 Hz. Measurements were repeated on average
14 times for each occupant wearing a particular shoe type and
walking at a fixed speed. For each impact location an average of
700 measurements were recorded. These measurements are used
to analyze the relationship between footstep-impact locations and
signal characteristics. They are also used to quantify the inter- and
intra-subject variability in walking-gaits.

Additional vibration measurements recorded by all sensors
(one sensor per ∼10 m2), as presented in Figure 5B, were used for
the application of model-based occupant-localization strategy
explained in Model-Based Methodologies for Occupant
Localization section. Localization resulting using EDMF
were compared with other model-based approches such as
residual minimization (RM) explained in Model-Based
Methodologies for Occupant Localization section. In
practice, vibration sensors can be fixed underneath the
floor slab, where they do not impair building functionality.
Measurements were from the same occupants (see Table 1)
walking individually along the same trajectory (see
Figure 5B). Each occupant walked at the same speed levels
(1.4; 1.6; 1.8; 2 and 2.2 Hz) leading to 25 walking tests.
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Modal Analysis
Ambient vibrations recorded using the sensor configuration
shown in Figure 5A are processed using FDD approach as
explained in Model Analysis section to extract the fundamental
bendingmodes of the floor slab of Case-Study 2. Themodes of the
floor slab with most energy contribution to vertical bending have
frequencies between 15 and 40 Hz. Estimates of the fundamental
bending modes of the structure are at frequencies 15.5 and 24 Hz.
The deformed-shape patterns that correspond to the first and
second modes of the floor slab are presented in Figure 6.

In Figure 6, diamonds, circles and squares represent deformed-
shape amplitudes at positions defined by sensor-configurations #1
to #3 (see Figure 5A). The amplitude of the deformed shape at each
sensor location is normalized by the deformed-shape amplitude,
given by the reference Sensor S8 (see Figure 5A). Boxes indicate
the locations of steel columns. Empty circles represent the reference
amplitudes at each sensor location. Dashed lines indicate the
continuity of the floor slab as well as the separation walls (see
Figure 5). Lines represent the reinforced concrete walls.

The first mode-shape of the floor slab is governed by the
bending mode at 15.5 Hz, as shown in Figure 6A. The south part
of the slab has lower amplitudes compared to the north part, due
to the connection of the slab to reinforced concrete walls (see
Figure 6). In Figure 6A, the maximum deformed-shape
amplitude regarding the first mode is located at quarter-span
of the floor slab. The second mode-shape of the slab is governed
by the bending mode at 24 Hz, as shown in Figure 6B. Maximum
deformed-shape amplitude regarding the second mode is located
at mid-span of the floor slab.

The deformed shape amplitudes are compared with recorded
footstep-induced floor vibration at various locations to understand

the effect of the structural behavior as presented in the following
sections. The frequency band (15–40 Hz) of the floor slab with
most energy contribution to vertical bending is used to process the
signal for the assessment of the walking gait variability (see
Variability in Walking Gaits section) and for the model-based
localization (see Model-Based Occupant Localization section).

Influence of Structural Behavior on Floor
Vibrations
Measurements from five occupants walking individually on the
floor of Case-Study 2 (see Figure 5B) are also used to
demonstrate the influence of structural behavior on floor
vibrations. An average of 700 footstep-impact signals are
recorded for each impact location defining the tested trajectory
(see Figure 5B). Footstep impacts at 24 possible locations, as
shown in Figure 5B, are involved in this analysis.

Similar to Case-Study 1, the standard deviation (σ) values of
extracted footstep-impact signals at several sensors are used to
characterize the detected footstep-events (see Eq. 6). The σ values
of footstep-event signals, as a function of impact locations, are
shown in Figure 7. Footstep-induced floor vibrations are

FIGURE 5 | Case-Study 2. (A) In an initial commissioning stage, three sensor configurations used to record ambient vibrations for modal analysis during the
commissioning stage. (B) Sensor configuration used to study the influence of the structure on recorded footstep-induced floor vibrations and for the application of
model-based occupant localization approaches.

TABLE 1 | Occupant characteristics.

Occupant Weight (Kg)

O1 92
O2 70
O3 87
O4 67
O5 58
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decomposed using CWT and reconstructed using IWT at a
frequency range of 15–40 Hz.

In Figure 7, bars represent the variability of recorded footstep-
impact signals defined as one standard deviation. Circles
correspond to the mean values for each impact location. In
Figure 7A, σ values are for footstep-impact signals that are
recorded by sensors S2 and S6. These sensors are horizontally
placed at quarter-spans of the floor (see Figure 5B). In Figure 7B,
σ values are for footstep-impact signals that are recorded by
sensors S4 and S8. These sensors are horizontally placed at mid-
span of the floor slab (see Figure 5B).

In Figure 7, the scatter between repeated footstep impacts at
the same location is significant. The observed scatter results from
the inter- and intra-subject variability in walking gaits. Also, this
variability is increased for footstep impacts that are close to sensor
locations.

In Figure 7A, the average standard deviation (σ) values of
processed footstep-impact signals recorded at sensors S2 and S6
reveal an increasing trend to a maximum when footstep locations
are close to quarter-span of the floor slab (impact locations #4
and #21). As seen in Figure 6A, sensors S2 and S6 are placed at
quarter-span of the floor slab, where maximum deformed-shape
amplitudes of the first bending mode of the slab are ascertained.

Thus, the trend of σ values of the impact signals corresponds to the
mode shape governed by the first fundamental mode of the
floor slab.

Also, in Figure 7A, the average standard deviation (σ) values
of footstep-event signals recorded by Sensor S2 for impact
locations #1 to #10 have higher magnitudes compared with
those recorded by Sensor S6. Since sensors S2 and S6 are
located symmetrically at quarter-span of the floor and define
equal distances to footstep-impact locations #1 to #10, the
difference in amplitudes arises from the varying rigidity of the
floor slab (see Figure 6A).

Amplitudes of footstep-impact signals recorded for impact
locations #1 to #11 have higher magnitudes (up to 50%)
compared with those induced by footstep-impacts at locations
#14 to #24, as shown in Figure 7A. This disparity arises from the
close distance between the footstep-impact locations #14 to #24
and the non-structural walls (see Figure 5).

In Figure 7B, average standard deviation (σ) values of
processed footstep-impact signals, recorded at sensors S4 and
S8, reveal an increasing trend for footstep-impact locations
that are close to the north end of the floor slab (impact
locations #1 and #24). Moreover, average σ values of
processed footstep-impact signals define local maxima at

FIGURE 7 | Standard deviation (σ) values of footstep-impact signals in terms of velocity. Footstep impacts are from walking occupants following the tested
trajectory on the floor of Case Study 2 (see Figure 5B). (A) σ values of processed footstep-impact signals recorded by sensors S2 and S6. (B) σ values of processed
footstep-impact signals recorded by sensors S4 and S8.

FIGURE 6 | Normalized deformed-shape amplitudes that correspond to the first and second modes of the floor slab of Case-Study 2.
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footstep locations close to mid-span of the floor slab (impact
locations #8 and #18). Since sensors S4 and S8 are located at
mid-span of the seminar room, the trend of the resulting σ
values is determined by the structural behavior of the second
mode shape, as shown in Figure 6B.

This analysis reveals that signals are affected by structural
behavior. Therefore, knowledge of structural behavior from
physics-based models is necessary to interpret measurements
for occupant localization.

Relationship Between Signal Magnitudes
and Occupant Locations
Standard deviation (σ) values of processed signals generated
by footstep impacts captured at sensors S2, S4 and S7 placed on
the floor of Case-Study 2 (see Figure 5B) are illustrated in
Figure 8. The σ values are presented as a function of the
distance between footstep impacts and sensor locations. In
Figure 8, recorded footstep-impact signals from five
occupants walking individually along the tested trajectory, as
shown in Figure 5B, are involved for this analysis. Extracted
signals are decomposed using CWT and reconstructed using
IWT at frequency ranges of 15–40 Hz (a, c and e) and of
150–200 Hz (b, d and f). In Figure 8 circles represent the
mean σ values. Bars represent the variability of repeated
measurements at each footstep location defined as one σ.

Dashed lines represent three-standard deviation values of
ambient vibrations filtered at the same frequency ranges.

For low-frequency components of the recorded footstep-
impact signals, as shown in Figure 8A, standard deviation (σ)
values define a monotonic relationship between distances from
footstep impacts to the location of Sensor S2. Similarly, in
Figure 8C, σ values of processed footstep-event signals
recorded at Sensor S4 present a decreasing trend with respect
to distances between impacts and sensor location. However,
distant footstep impacts from sensor locations, as observed in
Figure 8C, lead to non-monotonic variations in standard
deviation values.

The decreasing trends of standard deviation (σ) values
observed at sensors S2 and S4 can be explained by their
locations on the floor slab. Sensors S2 and S4 are placed at
floor regions where maximum deformed-shape amplitudes of the
first and second modes of the slab are defined. These trends can
be explained by the absence of support conditions along the tested
trajectory (see Figure 5B).

However, standard deviation (σ) values that are assessed for
footstep-event signals recorded by Sensor S7 do not define a
decaying trend with respect to distances between impacts and
sensor location, as shown in Figure 8E. Significant fluctuations
are observed over the σ values of signals recorded by Sensor S7. In
Figure 8E, footstep-impact locations adjacent to Sensor S7 do not
lead to response (signals) with the highest amplitudes. This is due

FIGURE 8 | Standard deviation (σ) values of processed signals generated by footstep impacts captured at sensors S2, S4 and S7 from Case-Study 2 (see
Figure 5B). Footstep impacts are fromwalking occupants following the tested trajectory individually. Signals are decomposed and reconstructed at frequency ranges of
15–40 Hz (A, E) and of 150–200 Hz (B, F).
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to the position of Sensor S7 on the floor slab with respect to
similar rigidity regions, as shown in Figure 6. Also, footstep-
impact locations close to the separation walls (see Figure 5B) may
influence measurements.

Standard deviation (σ) values that are assessed for high-
frequency components of footstep-event signals reveal a non-
monotonic relationship between distances from impacts to the
locations of sensors S2 and S4, as shown in Figures 8B,D. In
Figure 8F, the σ values of high-frequency components of
footstep-event signals recorded at Sensor S7 define a decaying
trend with respect to distances from impacts and sensor location.
However, the trends in σ values as shown in Figures 8B,D,F
contain significant fluctuations. Also, most of average σ values are
below the baseline level of ambient vibrations that is filtered at the
same high frequency range (see Figures 8B,D,F). These
fluctuations can be explained by the presence of structural and
non-structural elements such as supporting beams, columns,
walls and furniture that can affect local modes at high-
frequency ranges.

Through these observations, it is concluded that high-
frequency components of recorded signals are not significantly
affected by global structural behavior. However, high-frequency
components of footstep-event signals are sensitive to the presence
of noise and to local structural effects (local modes). Thus, the use
of high-frequency signal components only is not appropriate for
occupant localization (see Model-Based Occupant Localization
section).

Variability in Walking Gaits
Floor vibrations induced by a footstep impact depend on the
walking-gait pattern of an occupant. This leads to significant
variability in measured vibrations, as observed in Figure 7, since
occupants walk with different styles. A natural variability in
walking gaits can be from the same person and between
individuals (i.e. inter- and intra-subject variability). Variability
in walking gaits arises from sources such as individual anatomy,
walking speed, shoe type, health and mood (Gage et al., 1995;
Racic et al., 2009; Pan et al., 2015).

In order to have a reliable estimate of the inter- and intra-
subject variability in walking gaits, repeated measurements from
five occupants (∼700 footstep-event signals for each impact
location), walking at various speeds and wearing two types of
shoes, have been conducted on the floor of Case-study 2 (see
Description section). Recorded footstep-event signals at several
impact locations (locations #2, #4, #6, #8, #10, #12, #13, #15, #17,
#19, #21 and #23 shown in Figure 5B) are used to estimate the
walking-gait variability. Footstep-event signals are decomposed
using CWT and reconstructed using IWT at the frequency range
of 15–40 Hz. This results in an increase in the SNR of the event
signals. Estimates of relative variability in gaits with and without
prior information from walking tests are presented in Figure 9.

In Figure 9A, the walking-gait variability is estimated based on
comparing the standard deviation, σ values (see Eq. 6) of
processed event signals from the same footstep-impact
location induced by an occupant wearing a particular type of
shoe and walking at a particular speed with their mean σ values.
Statistics that are computed individually for each occupant at
each impact location and each sensor location are combined.
Regarding prior information from walking tests, the resulting
statistics lead to the estimation of the inherent change in walking
gaits between occupants without accounting for external factors
such as walking speeds and type of shoes.

Without considering prior information from walking tests,
assessing the relative uncertainty involves an extensive study of
inter- and intra-subject variability. This relative variability is
estimated based on comparing standard deviation (σ) values of
processed event signals from the same footstep-impact location
induced by all occupants (walking at various speeds and shoe
types) with their mean σ value, as shown in Figure 9B. Statistics
that are computed individually for each impact location and each
sensor location are combined.

A uniform distribution is assumed to define the walking-gait
variabilities due to the lack of precise information about the
probability distribution. Bounds corresponding to the 99th
percentile of the distribution of the resulting statistics are used
to define a uniform distribution for the gait variabilities, as shown

FIGURE 9 | Relative walking-gait variability assessed using measurements from occupants walking on the floor of Case-Study 2 (see Figure 5B).
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by the dashed lines in Figure 9. Based on prior information from
walking tests, the variability in walking gaits without accounting
for external factors is bounded between approximately −72% and
+54% as shown in Figure 9A. Thus, repeated walking tests by
single occupants on the same locations leads to significant
variability in walking gaits. Moreover, this inter-subject
variability in walking gaits, where external factors such as
walking speed and shoe type are fixed, define an aleatory
uncertainty. The aleatory uncertainty, as defined in Model-
Based Methodologies for Occupant Localization section, is
intrinsic to the randomness of a phenomena which is repeated
walks at same impact locations. This uncertainty is assumed to be
irreducible.

Without using prior information from walking tests, the inter-
and intra-subject variability in walking gaits is found to be
bounded between −137 and 77%, as shown in Figure 9B. It
can be observed in Figure 9 that including the variability
contribution from all occupants as well as from external
factors such as walking speeds and types of shoes leads to a
significant increase of approximately 70% in the walking-gait
variability. Therefore, variability in walking gaits from the same
person and between individuals is significantly affected by the
walking speeds and types of shoes. Moreover, this inter- and
intra-subject variability define an epistemic uncertainty. This
uncertainty arises from lack of knowledge of external factors
that affect the way occupants walk. The epistemic uncertainty, as
defined in Model-Based Methodologies for Occupant Localization
section, are reducible with appropriate additional information.

An extensive evaluation of the variability in walking gaits is
carried out separately for each occupant (see Table 2) walking at
five speeds and wearing soft- and hard-soled shoes, as presented
in Table 2. Walking speeds vary between 1.4 and 2.2 Hz. In
Table 2, minimum and maximum bounds corresponding to the
99th percentile of the distribution of the resulting statistics are
used to define a uniform distribution for each relative variability.

Significant variability in walking gaits is observed between
occupants, walking at various speeds, as shown in Table 2. A
similar interpretation is observed between occupants while
wearing soft-and-hard soled shoes. It has been found that a

change in shoes from soft to hard soles leads to an increase of
up to 30% of the variability of the recorded floor-signal
amplitudes induced by occupants O1, O2, O3 and O5.
However, for Occupant O4, a change in the shoe type during
the walking tests, from hard to soft soles, leads to a decrease of
23% of the recorded amplitudes. This can be explained by the
mood of the Occupant O4. During the walking tests, Occupant
O4 appeared more comfortable while wearing soft-soled shoes
instead of hard ones, while for other occupants no such effects
were observed.

Moreover, significant variability in gaits is observed in Table 2
for each individual resulting in a change in the walking speed. It is
found that the lowest uncertainties are found for event signals
from all occupants walking at moderate speeds including 1.6 and
1.8 Hz. Walking at slow and fast speeds (1.4 and 2.2 Hz) leads to
an average increase in the walking-gait variability of 22 and 30%
respectively for all occupants. To sum up, significant variability is
observed in measured responses at sensor locations for footsteps
at the same location. The variability is from two sources. One is
the inherent variability in gait of an individual. The other source
of uncertainty is variability in gait between multiple individuals.

Model-Based Occupant Localization
Model-based occupant localization is carried out using EDMF
(see Error-Domain Model Falsification (EDMF) section).
Localization results are compared with those obtained using
RM (see Residual Minimization (RM) section). Occupant
localization using EDMF and RM is performed independently
for each detected footstep-event signal. These approaches involve
incorporating physics-based models (i.e. model predictions) in
the interpretation of extracted footstep-event signals. Unlike RM,
EDMF accommodates systematic errors and model bias to
identify a population of possible locations denoted as
candidate-location set (CLS) as explained in Error-Domain
Model Falsification (EDMF) section. Using EDMF, model
instances that contradict footstep-induced floor vibration
measurements are rejected. The precisions of the resulting
CLSs from the falsification process are then enhanced using a
sequential analysis that incorporates information about previous

TABLE 2 | Relative variability in walking gaits evaluated for each occupant, wearing soft- and hard-soled shoes, and walking at five different speeds on the floor of Case-
Study 2 (see Figure 5B). WF is walking frequency.

WF (Hz) 1.4 1.6 1.8 2 2.2

Min Max Min Max Min Max Min Max Min Max

Hard-soled shoes
O1 (%) −55 45 −43 32 −50 39 −48 36 −66 42
O2 (%) −54 35 −43 37 −54 37 −47 42 −42 44
O3 (%) −103 56 −52 46 −81 53 −72 48 −65 52
O4 (%) −87 61 −55 54 −56 46 −71 45 −91 52
O5 (%) −87 45 −55 47 −55 50 −54 54 −56 57

Soft-soled shoes
O1 (%) −60 52 −62 62 −64 44 −36 40 −69 48
O2 (%) −50 54 −57 54 −57 48 −58 46 −75 42
O3 (%) −84 52 −49 45 −57 54 −93 63 −96 57
O4 (%) −57 49 −38 47 −44 44 −48 41 −60 50
O5 (%) −74 50 −63 48 −66 52 −84 59 −146 75
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footsteps (see Error-Domain Model Falsification (EDMF)
section). Using RM, estimates of occupant locations (i.e.
candidate locations, CLs) are ascertained by comparing
simulated footstep impacts at possible locations with measured
footstep-event signals.

Occupant localization using EDMF and RM are tested on
measured floor vibrations induced by five occupants (see
Table 1). Each occupant walks individually along a fixed
trajectory (see Figure 5B) at five speeds within a range of
1.4–2.2 Hz (see Description section). These measurements are
not involved in the uncertainty estimation (see Variability in
Walking Gaits section). Each occupant walks at five speed levels
(1.4; 1.6; 1.8; 2 and 2.2 Hz). In this application, the type of shoes
during these walking tests is not fixed.

Model Predictions
The first step in model-based occupant localization is generating
footstep-impact simulations using a finite element model of the
floor slab. Footstep-impact simulations have been carried out
using a finite element model of the floor of Case-Study 2 (see
Figure 5B). The dynamic response induced by a footstep-impact
load model has been computed using a linear model
superposition in ANSYS (APDL, 2010).

Shell (SHELL181) and beam (BEAM188) elements were used
to build the finite element model of the floor slab. The shell
elements were used to model the reinforced concrete slab, where
the elastic modulus for concrete was taken to be 35 GPa. The
beam elements were used to model the steel frame underneath the
floor slab (see Figure 5), where the elastic modulus for steel was
taken to be 210 GPa. Shell and beam elements were assumed to be
fully connected (i.e. share the same nodes). The steel columns
were assumed to be simple supports (see Figure 5).

Due to incomplete knowledge of boundary conditions of the
floor slab, the separation walls (see Figure 5) were modeled using
translational zeros-length springs in the vertical direction

(COMBIN14). Four spring elements were used to design the
boundary conditions in the finite elements including: 1) the
masonry walls at the upper half of the west end of the slab; 2)
reinforced concrete walls at the lower half of the west end and the
south end of the slab; 3) plasterboard walls at the east end of the
slab; and 4) the masonry wall that is connected to a concrete
staircase at the north end of the slab (see Figure 5).

Stiffness values of these springs were estimated based on a
prior sensitivity analysis. Latin-hypercube sampling approach
(Stein, 1987) was used to generate 500 spring-stiffness values
from sufficiently small to sufficiently large. Values of each spring
element were varied at a time using modal analysis simulations.
This analysis resulted in an s-shaped function of the fundamental
frequency as a function of each spring stiffness. The spring
stiffnesses were assumed to be equal to values that are
between freely supported and completely fixed. The stiffness
values between freely supported and completely fixed of all
spring elements were 316 N/mm, 631 N/mm, 1259 N/mm and
200 N/mm respectively.

The finite element model was subjected to a load model that
approximated a typical vertical footstep-impact force (i.e. vertical
ground-reaction force) in the time domain, as illustrated in
Figure 10. Footstep-impact simulations were generated
repeatedly at a grid of possible locations that define two-thirds
of the floor slab (see Figure 5). Since measurement tests were
conducted for occupants walking at a predefined step length of
75 cm, the distance between two possible locations was taken to
be equal to be 37.5 cm. This led to 432 possible locations.

The vertical ground reaction force is composed of three phases
including the heel phase, the heel-to-toe phase and the toe-off
phase as explained in detail by Racic et al. (2009). The heel phase
starts with an initial heel-contact (IHC) phase as shown in
Figure 10. This phase is characterized by a brief duration,
denoted as T1, during which an abrupt transfer of the
bodyweight to the ground is achieved. This force is denoted as
F1. Subsequently, the heel phase ends with a full heel-contact
(FHC) phase whose duration is denoted as T2. During this phase,
the foot is in full contact with the ground until the ground-
reaction force reaches a maximum, denoted as F3. F2 refers to the
attenuation in magnitudes within the heel phase.

Afterward, the heel phase is followed by the heel-to-toe
phase, during which the bodyweight is supported by the
stance foot. T3 refers to the duration of this phase. During
the heel-to-toe phase, the opposite foot leaves the ground for the
next footstep impact. At the same time, the heel of the stance

FIGURE 10 | Vertical footstep-impact load model.

TABLE 3 | Average parameter values for footstep-impact load function.

Footstep-load function parameter Parameter value

F1 Initial heel-contact force (Kg) 30
F2 Initial-to-full heel-contact force (Kg) 22.5
F3 Full heel-contact force (Kg) 93.7
F4 Heel-to-toe contact force (Kg) 70.3
F5 Toe contact force (Kg) 86.3
T1 Initial heel-contact duration (s) 0.025
T2 Full heel-contact duration (s) 0.12
T3 Heel-to-toe contact duration (s) 0.45
T Footstep-contact duration (s) 0.8
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foot starts to rise from the floor surface, which explains the
descending trend that defines a minimummagnitude denoted as
F4. The heel-to-toe phase ends when the foot contact is
completely transferred to toes, and the opposite foot heel is
in contact with the floor surface. These movements define an
ascending trend to a maximum magnitude denoted as F5.
Finally, the toe-off phase refers to the rising of the stance
foot. During this phase, denoted as T4, the ground-reaction
force presents a decreasing trend to zero.

The footstep-impact load function (fload), as defined in
Eq. 7, is constructed using four sine functions and a cosine
function to represent the vertical ground-reaction force
described in Figure 10. In Eq. 7, forces F1 to F4 and
durations T1 to T3 define the load function parameters
described in Figure 10. The IHC phase is defined by the
first sine function. The second sine function refers to the
attenuation between IHC and FHC phases. Based on prior
analysis of measurements of vertical ground-reaction forces
from multiple occupants (Falbriard, 2019) the duration of the
second sine function is estimated to be equal to one quarter of
the Duration T2. The remaining part of the FHC phase is
defined by the third sine function as shown in Eq. 7. The heel-
to-toe phase is defined by the cosine function in Eq. 7. In this
part, a linear function is involved to link the Forces F3 and F5.
The last sine function is used to define the toe-off phase where
T presents the duration of the vertical ground reaction force.

fload �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 sin(2πt
T1

) if t ∈ [0 .. T1] s

F2 + F1 − F2
2

(1 + sin ( − 4π
T2

(t − T1 + 3T2
8

))) if t ∈ [T1 . . T1 + T2
4

]s
F2 + F3 − F2

2
(1 + sin ( 4π

3T2
(t − T1 + 7T2

8
))) if t ∈ [ T1 + T2

4
. .T1 + T2 ]s

F4 + F3 − F4
2

(1 + cos(2π
T3

(t − T1 − T2))) + (t − T1 − T2) F5 − F3
T3

if t ∈ [T1 + T2 . .T − T4 ] s
F5
2
(1 + sin ( − π

T3
(t − 5

2
( T − T4)))) if t ∈ [ T − T4 . . T ] s

(7)

Average parameter values defining forces F1 to F5 and
durations T1 to T3 that are used to apply the footstep-impact
load function (see Eq. 7) for simulations are presented in Table 3.
These values are determined based on prior analysis of measured
vertical ground-reaction forces from multiple occupants. These
measurements are provided by the Laboratory of Movement
Analysis and Measurement (EPFL, Switzerland) (Falbriard,
2019). 483 measurements have been recorded from 12
occupants walking on a pressure plate mounted on the
ground, with a sampling rate of 200 Hz. Occupants weigh
between 63 and 82 Kg and their heights vary between 165 and
186 cm.

Uncertainty Estimation
As noted in Error-Domain Model Falsification (EDMF)
section, EDMF explicitly accommodates uncertainties from
multiple sources to ensure accurate identification (see Eq. 3).
These uncertainties are from modeling and measurement
sources. Modeling uncertainties are typically related to the
imperfections of the finite element model, including idealized
boundary conditions and omissions.

The finite element model of the floor of Case-Study 2 (see
Model Predictions section) involves several simplifications
including the use of shell elements for the concrete slab, and
one-dimensional bar elements for the supporting beams. Also,
model simplification includes the use of translational springs
(rotation free) to model the plasterboard, masonry and reinforced
concrete walls (see Figure 5). The finite element model contains
omissions such as the room furniture, linoleum floor finishing
and connections (in the horizontal direction) between the floor
slab and the reinforced concrete walls (Pai et al., 2018; Drira et al.,
2019b; Reuland et al., 2019).

The resulting model prediction involves the simulation of
independent footstep impacts at a grid of possible locations
(single nodes). This results in excluding the contribution of
the opposite foot within the walking-gait pattern when the two
feet are in contact with the floor (toe-off phase in Figure 10).
Moreover, idealized footstep-impact load functions (with fixed
parameter values as shown in Table 3) can increase the modeling
uncertainties. Thus, uncertainty from model simplifications and
omissions are biased and estimated to be uniformly distributed
between −15% to +25% based on engineering judgement and
previous work (Pai et al., 2018; Drira et al., 2019b; Reuland et al.,
2019).

The heel phase is the most important stage within the walking-
gait pattern (Racic et al. 2009). Since the frequency of the heel
phase (1/duration) of the applied load function operates with
low-frequency components (see Table 3), low-frequency
components of simulated footstep-event signals are highly
affected (Drira et al., 2019b). Thus, simulated velocity
amplitudes are over-estimated with a bias. This has led to
additional model uncertainties of −30–0%.

Similar to modeling errors, measurements are prone to
uncertainties from multiple sources, mainly the variability in
walking gaits (see Variability in Walking Gaits section) and to a
lesser extent the sensor resolution and precision (∼2% according
to the sensor manufacturer). For the sake of simplicity, the
variability in walking gaits due to factors other than walking
speeds and types of shoes are accounted for as a major
contributor to the measurement uncertainty, as shown in
Figure 9A.

For each detected footstep event, modeling and measurement
uncertainties are subsequently combined using Monte-Carlo
sampling with one million samples (see Eq. 4). With respect
to EDMF as shown in Eq. 5, localization thresholds are then
ascertained based on the combined uncertainty with a target
reliability of localization of 95%.

Occupant Locations
Prior to the application of model-based occupant-
localization, the measured and simulated footstep-impact
signals are decomposed using CWT and reconstructed
using IWT at a frequency of 15–40 Hz (see Model Analysis
section). This frequency range contains the modes of the floor
slab with most energy contribution to vertical bending.
Standard deviation (σ) of the filtered signals, as shown in
Eq. 6, is used as a metric for the model-based occupant
localization strategies. In this application, footstep-induced
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floor vibrations are recorded using eight sensors as shown in
Figure 5B.

In Figure 11, CLSs of few footstep events for all occupants
(O1–O5) walking along a fixed trajectory (see Figure 5B). For the
results shown in Figure 11, occupants have been walking at
speeds of 1.4 Hz (O4), 1.6 Hz (O1 and O3), 1.8 Hz (O5) and 2 Hz
(O2). Also, Occupants O1, O2 and O3 has been wearing soft-
soled shoes, while the other occupants have been wearing hard-
soled shoes. In Figure 11, footstep events are at locations #4, #9,
#13, #15, and #22 (see Figure 5B). CLSs resulting from EDMF
and a sequential analysis (see Error-Domain Model Falsification
(EDMF) and Sequential Analysis Sections) are shown in
Figure 11A, and are compared with CLs that are obtained
using RM (see Residual Minimization (RM) Section) as shown
in Figure 11B.

In Figure 11, CLSs and CLs are represented with squares,
while falsified locations are represented with dots. Real impact
locations for all footstep events, as shown in Figure 11, are
represented with crosses. Dashed lines represent the separation
walls and black boxes represent the steel columns. Finally,
diamonds represent sensor locations.

Accurate occupant localization of a detected footstep event is
achieved when at least one candidate location is within a radius
from the correct location defined by the distance between two
consecutive footsteps. In this application, the step length is
predefined as 0.75 cm (see Model Predictions section). The
tolerance of plus-or-minus one footstep-location in the
determination of the localization accuracy is assumed because
the initial location set (432 possible locations) does not coincide
necessarily with the real impact locations during measurement

tests. This allows a better estimate of the localization accuracy for
detected footstep events at impact locations #11 and #14, where
the occupants change their walking direction (see Figure 5B).

It can be observed in Figure 11 that EDMF provides accurate
localization results (accuracy of 100%) compared with those
obtained using RM (accuracy of 28%). For footstep events
induced by all occupants the CLSs provided by EDMF contain
the true impact locations, as shown by crosses in Figure 11A.
However, only CLs of seven footstep events (out of 25)—at
Location #4 for occupants O1, O2 and O5, Location #9 for
occupants O3, O4 and O5, and Location #15 for Occupant
O4—result in accurate localization using RM, as shown in
Figure 11B. The CLs of the remaining footstep events provided
by RM result in inaccurate localization. Therefore, incorporating
uncertainties from multiple sources in the interpretation of
footstep-induced floor vibrations using EDMF provides more
accurate localization results compared with RM.

The average accuracy of localization results that are obtained
from EDMF and RM for each participant are presented in
Table 4. The average accuracy for each occupant is
ascertained based on localization results generated from the 24
detected footstep events that define the walking trajectory (see
Figure 5B). For each occupant the walking trajectory is repeated
at five speed levels (1.4, 1.6, 1.8, 2 and 2.2 Hz).

Regarding the five walking tests (including 24 footstep events each)
recorded from each occupant, the average localiaztion accuracy using
EDMF varies approximately between 91 and 100% as shown in
Table 4, whereas the average accuracy of the localization results
obtained using RM varies approximatively between 11 and 23%.
Moreover, the average accuracy for all occupants resulting from

FIGURE 11 | Candidate-location sets (CLSs) and candidate locations (CLs) that correspond to footstep events from occupants O1 to O5 walking at locations #4,
#9, #13, #15 and #22 on the floor of Case-Study 2 (see Figure 5B). CLSs that are obtained using EDMF and a sequential analysis (A) are more accurate than CLs
obtained using RM (B).
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EDMF is approximately 95%, compared with RM where the average
accuracy does not exceed 16%. It is found from the results shown in
Table 4 that model-based occupant localization is significantly more
reliable when using EDMF than RM.

According to Figure 11 and Table 4, occupant localization
using EDMF results in low precision, while RM provides a single
response defining a single location. Localization precision refers
to the percentage of falsified locations from all possible locations
(432 possible locations). The precisions of CLSs that correspond
to all footstep events is approximately 46%. This is because EDMF
incorporates systematic uncertainties and model bias (see Error-
Domain Model Falsification (EDMF) section), to sacrifice
precision for accuracy compared with RM.

Therefore, incorporating systematic uncertainties and model
bias helps achieve accurate model-based localization (EDMF)
with relatively low precision. RM, which does not take into
account uncertainties from multiple sources explicitly, provides
inaccurate occupant localization.

SUMMARY AND DISCUSSION

An empirical analysis of measured floor vibrations from two case
studies has been carried out to study the influence of structural
behavior on footstep-impact signals. It has been found from
Case-Study 1 that the low-frequency components of recorded
footstep-event signals from a single occupant walking at
moderate speed are affected by the structural behavior of the
floor slab. The trend of the standard deviation (σ) values of the
measured footstep-impact signals follows significantly the shapes
of the fundamental vertical bending modes of the floor slab. The
analysis has also shown that the non-structural elements such as
separation walls affect the amplitudes of signals that are induced
by footstep impacts. Thus, a monotonic relationship of the
distance from footstep impacts to the sensor locations is not
always present.

The analysis of extensive floor-vibration measurements
from five occupants walking at five walking speeds and
wearing two types of shoes on the floor of Case-Study 2
have led to the same interpretations provided by Case-Study
1. The low-frequency components of recorded signals are
affected by the structural behavior of the floor slab as well
as by the presence of separation walls. Also, a monotonic
relationship between sensor signal characteristics and the
distance from footstep impacts to sensor locations can exist
only when both footstep impacts and sensor locations belong
to regions of floor slab that have similar rigidities. Therefore,
information on structural behavior from physics-based models

is necessary to interpret measured footstep-induced floor
vibrations for occupant localization.

The high-frequency components of recorded footstep-impact
signals from the floors of Case-Studies 1 and 2 are not
significantly affected by global structural behavior. A
monotonic relationship between signal characteristics and the
distance from footstep impacts to sensor locations has been
highlighted for high-frequency components of footstep-impact
signals recorded from the floor of Case-Study 1. However, from a
distance of 2 m and above, the overall trend resulting from σ
values of footstep-impact signals (from both case studies)
processed at high-frequency ranges contains several
fluctuations. These fluctuations are due to the presence of
multiple obstructions such as walls, vertical beams, and
furniture that can affect the high-frequency components of the
propagated waves induced by footstep impacts. These
obstructions, and to a lesser external signal sources such as
electrical devices and outside traffic, affects local structural
response at high-frequency ranges. Thus, the use of high-
frequency components is not appropriate for model-free
localization even though there is a monotonic relationship
between signal magnitude and distance.

Measured footstep-impact signals from the floor of Case-Study 2
reflect significant variability in walking gaits. The walking-gait
variability is observed in the measured responses at sensor
locations for footsteps at the same location. The uncertainty is
from two sources. One is the inherent variability in gait of an
individual. The other source of uncertainty is variability in gait
between multiple individuals. Moreover, it has been found that
external factors such as changes in walking speed or type of shoes
significantly increase the variability in gaits. Quantification of
uncertainties from these two sources using independent data helps
achieve accurate model-based localization using EDMF (see
Figure 11A and Table 4).

The incorporation of physics-basedmodels in the interpretation of
footstep-induced floor vibration for occupant localization is carried
out on measured vibrations from Case-Study 2. Two model-based
strategies including EDMF and RM are applied for the localization of
single occupants. This has shown that EDMF provides significantly
more accurate results compared with localization results obtained by
RM. Unlike RM, EDMF explicitly accommodates systematic errors
and model bias to provide accurate localization.

The application of EDMF and a sequential analysis on
footstep-event signals from five occupants walking at five
speed levels have led to an average precision of the
localization results of approximately 46%. Accounting for
external factors in the estimation of the variability in walking
gaits leads to an increase of the combined uncertainty, which
affects localization precision. Thus, a data analysis of recorded
floor vibrations from multiple occupants can help understand
footstep-contact dynamics that may be useful to provide better
estimations of measurement uncertainties. These data analyses
have the potential to increase localization precision using EDMF.

Rearranging sensors to locations close to boundaries may be useful
to decrease in the number of CLSs. Increasing knowledge of the
behavior of the slab near supports thus has the potential to enhance
localization precision. Optimal sensor placement studies could help to

TABLE 4 | Accuracy of occupant localization results using EDMF compared with
those from RM.

O1 O2 O3 O4 O5 Average

EDMF (%) Accuracy (%) 98 100 91 91 93 95
Precision (%) 39 39 53 49 48 46

RM (%) Accuracy (%) 11 13 23 16 21 17
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do this using, for example, the joint entropy of footstep impacts
(Bertola et al., 2020).

CONCLUSIONS

In this paper, observations offloor vibrations from two case studies are
carried out to evaluate the influence of the structural behavior on
measured footstep-impact signals. Applications of model-based
strategies (using EDMF and RM) for the localization of multiple
occupants walking individually are compared. The conclusions are as
follows:

• Low-frequency components of recorded signals are affected
by structural behavior. Therefore, information on structural
behavior from physics-based models is necessary to
interpret measurements for occupant localization.

• High-frequency components of recorded signals are not
significantly affected by global structural behavior. However,
the use of only high-frequency components is not appropriate
formodel-free localization because high-frequency components
are sensitive to the presence of local structural effects (i.e. local
modes) as well as other factors, such as furniture.

• Incorporating systematic uncertainties and model bias helps
achieve accurate occupant based localization using model
falsification (EDMF).

• Residual minimization (RM) provides inaccurate occupant
localization since uncertainty bias from multiple sources is
neglected.
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