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Metaheuristic optimization algorithms are strongly present in the literature on discrete
optimization. They typically 1) use stochastic operators, making each run unique, and 2)
often have algorithmic control parameters that have an unpredictable impact on
convergence. Although both 1) and 2) affect algorithm performance, the effect of the
control parameters is mostly disregarded in the literature on structural optimization, making
it difficult to formulate general conclusions. In this article, a new method is presented to
assess the performance of a metaheuristic algorithm in relation to its control parameter
values. A Monte Carlo simulation is conducted in which several independent runs of the
algorithm are performed with random control parameter values. In each run, a measure of
performance is recorded. The resulting dataset is limited to the runs that performed best.
The frequency of each parameter value occurring in this subset reveals which values are
responsible for good performance. Importance sampling techniques are used to ensure
that inferences from the simulation are sufficiently accurate. The new performance
assessment method is demonstrated for the genetic algorithm in MATLAB R2018b,
applied to seven common structural optimization test problems, where it successfully
detects unimportant parameters (for the problems at hand) while identifying well-
performing values for the important parameters. For two of the test problems, a better
solution is found than the best solution reported so far in the literature.

Keywords: stochastic optimization, genetic algorithm, statistical analysis, parameter tuning, algorithm
configuration, hyperparameter optimization, monte carlo simulation

1 INTRODUCTION

Metaheuristic algorithms are widespread in the literature on discrete and combinatorial
optimization. They operate by applying stochastic (as opposed to deterministic) operators to
explore the design space and to guide the search toward optimal designs, implying the need for
statistical techniques to properly assess their performance. Nowadays, formal statistical analysis is
considered a prerequisite for papers on non-deterministic optimization algorithms (Le Riche and
Haftka, 2012; Haftka, 2016).
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Metaheuristic algorithms are typically controlled by a number
of algorithmic parameters, which can be modified to tune the
search procedure to the optimization problem at hand. These
parameters are referred to as control parameters in this article.
The performance of a metaheuristic algorithm depends on three
factors: 1) the specific optimization problem at hand, 2) the values
of the control parameters, and 3) the random variability inherent
to stochastic algorithms.

In the structural optimization community, it is common
practice to benchmark newly proposed algorithms against one
or more reference algorithms in order to assess their
performance. Such benchmark studies are usually based on a
simulation in whichmultiple optimization runs are performed (to
compensate for the effect of the random seed) on a series of
representative test problems (to compensate for the effect of the
optimization problem). However, the effect of the control
parameters is mostly ignored: their values are either chosen by
intuition or convention, taken from other studies, or motivated
by ad hoc experimentation, usually limited to changing one
parameter value at a time (Chiarandini et al., 2007). From that
moment on they remain fixed, although Bartz-Beielstein (2006)
has shown that conclusions regarding algorithm performance do
not necessarily apply to other parameter values.

Considering the wide range of metaheuristic algorithms
currently in use, it is important to be able to assess their
performance in an objective manner. For example, in a
benchmarking context it would be fair to tune the control
parameter values of all algorithms under consideration—using
comparable resources—before moving on to the actual
comparison (Eiben and Smit, 2011). Moreover, data on
optimal control parameter values across multiple studies might
reveal search strategies that work particularly well for a specific
kind of optimization problem. In this regard, Hooker (1995)
made the distinction between competitive and scientific testing,
which, in the context of metaheuristic algorithms, is still very
relevant today. Besides finding out which algorithm is better
(competitive testing), it is important to investigate why this is the
case (scientific testing). Hooker describes the former as “anti-
intellectual,” as he believes that the emphasis on competition does
not contribute to the sort of insight that will lead to the
development of better algorithms in the long run.

Various methods exist to assess the performance of
metaheuristic algorithms, including performance profiles
(Dolan and Moré, 2002), data profiles (Moré and Wild, 2009),
a probabilistic performance metric based on the effect size in
statistics (Gomes et al., 2018) and statistical analysis methods by
e.g. Charalampakis and Tsiatas (2019) and Georgioudakis and
Plevris (2020). However, these methods are rarely used in a
structural optimization context and there is no consensus on
which method to use instead. A common approach is to perform
several independent runs of the algorithm and to summarize the
results using descriptive statistics, but the number of different
runs and the statistics reported vary from study to study.

There is a trend in metaheuristic optimization to either reduce
the number of (external) control parameters, as for example in
the Newton metaheuristic algorithm by Gholizadeh et al. (2020),
or to develop algorithms that update their parameters on-the-go,

although these often have fixed parameters as well (Hutter et al.,
2009b). Whether this is beneficial depends on the robustness of
the algorithm with respect to the control parameters. An
algorithm with many control parameters, whose values have
little effect on performance or can be easily selected using
rules of thumb, may still be preferable to an algorithm with
few control parameters that need careful tuning. Therefore, a
good performance assessment method should integrate the
sensitivity of the algorithm with respect to its control
parameter configuration.

This article presents a new method, designed to assess the
performance of a metaheuristic algorithm in relation to the values
of its control parameters. The scope is limited to control
parameters whose values are constant throughout the
optimization. The method is based on Monte Carlo simulation.
The general idea is to perform multiple optimization runs, where
the values of the control parameters vary randomly. From the
resulting dataset, a subset of well-performing runs (e.g. the 10%
best) is studied. The occurrence frequency of the various parameter
values in this subset indicates which parameter values give rise to
good performance. The threshold for “good” performance is
gradually tightened, making the results more relevant, but also
less accurate, as the well-performing subset will contain fewer
samples. An adaptive importance sampling technique is used to
sample good parameter values more often, ensuring sufficient
accuracy throughout the procedure.

The proposed method is mathematically rigorous and has the
advantage of being able to process any number of control parameters,
both numerical and categorical, at the same time, presenting the
results in a visual and intuitive way. It is intended as a tool to help
developers of metaheuristic algorithms to test and benchmark their
algorithm. Four possible applications are given below.

• The method can be used to investigate the sensitivity of an
algorithm with respect to the control parameters. It
identifies parameters that do not have a significant effect
on performance and detects well-performing parameter
values for the important parameters, helping developers
to focus on the relevant parts of their algorithm.

• The method can also be used to select appropriate default
values for the control parameters of a new algorithm, similar
to the way in which the optimal and the default matlab
values are compared for the genetic algorithm in Section 4.

• The method records the probability of achieving different
levels of performance when parameter values are randomly
selected from a set of user-defined “reasonable” options. The
results can be compared with other algorithms to make
statements about the overall performance in case no good
parameter values would be known and the parameter
configuration would be chosen arbitrarily.

• As a by-product, the method may generate new benchmark
results for the community, as evidenced by the
improvement over the best known solution for two of the
test cases in Section 4.

The remainder of the article is structured as follows. Section 2
gives an outline of the state of the art on parameter tuning
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methods, providing an overview of ways to account for the
influence of the control parameters. Section 3 presents the
problem definition and describes the proposed methodology.
Section 4 presents two numerical experiments, based on the
genetic algorithm that is built into matlab, for seven test problems
that are commonly used in the structural optimization literature.
Section 5 provides final conclusions.

2 STATE OF THE ART IN PARAMETER
TUNING

Automated parameter tuning is a well-studied problem in the
field of computational intelligence and machine learning. The
following paragraphs summarize the state of the art.

2.1 Early Work
Research on the influence of control parameters started not long
after the introduction of genetic algorithms and was initially
mainly theoretical. Examples include Bäck and Schwefel (1993)
and Rechenberg (1973). However, such theoretical models were
either overly complex or required severe simplifications, making
them of limited use in practical settings (Myers and Hancock,
2001). It became customary to study the effect of the control
parameters through experimentation, using empirical models to
test different parameter settings. Some authors, such as De Jong
(1975), attempted to formulate universally valid control
parameter configurations, until the No Free Lunch theorems
(Wolpert and Macready, 1997) shattered the illusion of finding
parameter values that are universally applicable.

2.2 Meta-Optimization
Alternatively, automatic tuning methods have been studied that
tune the parameters for a single specific problem. A popular
example is meta-optimization, which follows from the
observation that choosing control parameters for maximal
performance is an optimization problem in itself. In the meta-
level problem, the control parameters are the design variables, and
the performance of the algorithm is the objective function (often
called the performance landscape). Depending on the nature of the
control parameters, the meta-level problem is a mixed variable
stochastic optimization problem that can be solved for example by
iterated local search (ParamILS by Hutter et al. (2009b)) or by
another metaheuristic algorithm (Nannen and Eiben, 2007;
Ansótegui et al., 2009). The meta-optimizer can be applied
either directly to the performance landscape (Grefenstette, 1986)
or to a surrogate model of it (Audet and Orban, 2004).

2.3 Design of Experiments, Model-Based
Optimization and Machine Learning
A popular class of tuning methods is based on the principles of
Design of Experiments (DOE), which aims to maximize the
information obtained from experiments in highly empirical fields
of science such as biology and psychology. Common approaches
include factorial designs, coupled with analysis of variance or
regression analysis, e.g. Adenso-Diaz and Laguna (2006), Coy

et al. (2001) and Rardin and Uzsoy (2001). The DOE
methodology was later replaced by the Design and Analysis of
Computer Experiments (DACE) methodology (Sacks et al., 1989),
specifically created for deterministic computer algorithms (Bartz-
Beielstein et al., 2004). Bartz-Beielstein et al. (2005) introduced
Sequential Parameter Optimization (SPO), which uses Kriging
techniques to build a predictive model of the performance
landscape based on an increasing number of observations that
are selected through an expected improvement criterion. Hutter
et al. (2009a), Hutter et al. (2010) gave suggestions to further
improve the method. Hutter et al. (2011) later introduced
Sequential Model-based Algorithm Configuration (SMAC),
extending model-based approaches to categorical parameters and
sets of multiple problem instances using random forests (collections
of regression trees). Independently, Dobslaw (2010) combined the
DOE methodology with artificial neural networks as a basis for a
parameter tuning framework.

2.4 Model-free Algorithm Configuration
In a separate line of work, statistical hypothesis testing has been
used to compare different control parameter settings, for example
in Czarn et al. (2004), Castillo-Valdivieso et al. (2002) and Xu et al.
(1998). In this approach, evidence is gathered on the basis of
experimental runs to test whether the considered parameter
settings show a difference in performance that is significant
enough to be distinguishable from stochastic noise.
Nevertheless, the number of experimental runs that is required
for sufficient statistical accuracy is often quite large (Yuan and
Gallagher, 2007). Birattari et al. (2002) presented an efficient
alternative with the F-Race algorithm, which progressively tests
a number of (predefined) parameter configurations on one ormore
benchmark problems and eliminates inferior ones as soon as
significance arises. Balaprakash et al. (2007) presented two
improvement strategies for the F-Race algorithm, called
sampling design and iterative refinement, and Yuan and
Gallagher (2007) proposed a combination of F-Race and meta-
optimization. More recently, López-Ibáñez et al. (2016) presented
the irace package, offering iterated racing with a restart mechanism
to prevent premature convergence and elitist racing to ensure that
the best parameter configurations are tested most thoroughly. Li
et al. (2017) introduced Hyperband, formulating the parameter
tuning problem as an infinite-armed bandit problem, adaptively
allocating more resources to promising parameter configurations
in order to enhance random search. Falkner et al. (2018) combined
Hyperband with Bayesian optimization in the BOHB (Bayesian
optimization and Hyperband) method.

2.5 Parameter Tuning in Structural
Optimization
In a structural optimization context, research into parameter
tuning has received little attention so far. However, there have
been several studies on parameter control, where parameter values
are updated during the optimization process. For a general
overview of parameter control methods, the reader is referred to
Karafotias et al. (2015). Examples of parameter control applied to
structural optimization include Hasançebi (2008) for evolutionary
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strategies, Hasançebi et al. (2009) for harmony search, Nickabadi
et al. (2011) for particle swarm optimization and Kaveh and
Farhoudi (2011) for metaheuristic algorithms in general.

The present authors have recently proposed a new parameter
tuning method for structural optimization (Dillen et al., 2018).
The method uses Monte Carlo simulation to estimate the
distribution of performance of a metaheuristic algorithm
under the condition that control parameter x has value y.
Although this method is able to correctly reflect the effect of
the dominant control parameters, it has difficulty in coping with
effects that are due to parameter interactions: if a particular value
of one control parameter only performs well in combination with
a particular value of another control parameter, this will not be
detected by the method.

3 PROBLEM DEFINITION AND
METHODOLOGY

3.1 List of Symbols
Table 1 presents an overview of the symbols that are used in the
text. By convention, vectors are represented by bold characters. A

function X(θ) of θ that is denoted by an upper-case letter
represents a random variable. The lower-case equivalent x
represents a specific value of X. A hat means that the variable
x̂ is an estimate of x. Finally, the subscript k or superscript (k)
means that the variable is computed on the basis of the samples
from the kth stage in the simulation.

3.2 General Approach
The following paragraphs establish a solid mathematical basis for
the performance assessment problem and continue with the
derivation of a Monte Carlo estimator and an importance
sampling estimator for the statistic of interest. Next, the
relevant properties of ratio estimators are briefly discussed.
After that, the characteristics of a good importance sampling
distribution are described. Finally, a method is given to iteratively
update the importance sampling distribution based on adaptive
importance sampling.

3.3 Problem Definition
To model the uncertainty in the simulation, we introduce a
probability space (Ω,S,Pr), where Ω represents the sample
space, S the set of events, and Pr a probability measure that
assigns probabilities to the events (Kolmogorov, 1956). The
elements θ of Ω are considered to be selected by the true
randomness that underlies all natural processes. Each element
θ corresponds to a unique state of the random problem.

Suppose we want to assess the performance of a metaheuristic
algorithm A on an optimization problem P. The outcome of a
single run of the algorithm depends on the parameter
configuration p � (p1, p2, . . . , pn)T , and a random component
H(θ) that is inherent to the class of metaheuristic algorithms1.
Each component of the parameter configuration vector p
represents the value of a single control parameter. In this
study, the value of p is considered to be a realization of an
n-variate random vector P(θ), where

θ1P(θ) � (P1(θ), P2(θ), . . . , Pn(θ))T : Ω→Rn, (1)

is a function that maps the sample space Ω to the set of
n-dimensional real vectors Rn. Each component Pi(θ) of P(θ)
is a univariate discrete random variable, whose range RPi �
{pi,1 , pi,2 , . . . , pi,ni} is the set of ni possible values that the
corresponding control parameter can take. If the parameter is
continuous, it is assumed to be discretized in a finite number of
representative values.2 For the sake of readability, the event that

TABLE 1 | List of symbols.

Symbol Meaning

R Set of real numbers
Rn Set of n-dimensional real vectors
A Algorithm under consideration
P Optimization problem under consideration
(Ω,S,Pr) Probability space
Ω Sample space
S Event space
Pr Probability measure
θ Coordinate in the random dimension
P(θ) Control parameter configuration vector
RP Range of P
n Number of control parameters
ni Number of values for control parameter Pi

pi,j jth value for control parameter Pi

Sij Event that Pi � pi,j

H(θ) Random component of the algorithm A
RH Range of H
M(θ) Performance measure
FM(m) Cumulative distribution function of M
F−1
M (m) Inverse distribution function of M

m* Performance threshold value
rij Statistic of interest Pr(Sij

∣∣∣∣M ≤m*)
1 Indicator function
E Mathematical expectation operator
μ Mean
σ Standard deviation
V Variance
s2x Sample variance of x
s2xy Sample covariance between x and y
f(p, h) Joint probability distribution of P and H
q(p, h) Proposal distribution of P and H
w(p, h) Importance weight
N Sample size
Wk Adaptive importance sampling weight factor
k Stage in the simulation
K Number of stages in the simulation

1In a computer implementation, the random behavior of the algorithm will be
determined by the seed that initializes the pseudorandom number generator. In
this case, H(θ) is the function that maps each elementary event θ to a specific seed
number h. Depending on the software, the number of possibilities for the random
seed can be finite or infinite. Throughout this study, we assume that the number of
possible seeds is either finite or countably infinite, in which case H(θ) is a discrete
random variable. The case where H(θ) is continuous is similar, but it requires
integrals instead of sums.
2The current methodology is based on discrete random variables. The use of
continuous variables in combination with kernel density estimation may be
interesting for further research, but it is beyond the scope of this article.
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Pi(θ) � pi,j will be referred to as Sij ∈ S in the sections that follow,
for all i � 1, 2, . . . , n and j � 1, 2, . . . , ni.

In order to proceed with the assessment, an appropriate
performance measure is required. This is typically a scalar that
is a function of either the objective function value, the number of
function evaluations, or a combination of both, see e.g. Eiben and
Smit (2011). Let “perf(·)” be the function that determines the
performance measure, and write M � perf(A(P,H),P), where a
low value of M corresponds to good performance. In the case
where both the algorithm A and the optimization problem P are
given, the performance measure is denoted more briefly as M �
perf(P,H).

We proceed by defining the statistic of interest, which we call
rij. The objective is to perform multiple independent runs of the
algorithm with random values for the control parameters, and to
study the distribution of parameter values in the subset of results
where performance is good. Let m* denote the threshold for
“good” performance. The statistic of interest rij is formally
defined as the probability that parameter Pi has value pi,j in
the case where performance is better than the threshold valuem*.
It is computed using Bayes’ theorem:

rij ≡ Pr(Sij∣∣∣∣M ≤m*), (2)

� Pr(M ≤m*
∣∣∣∣Sij)Pr(Sij)

Pr(M ≤m*) . (3)

This equation can be interpreted as a Bayesian inference
problem, where an initial guess for good control parameter
values Pr(Sij) (the prior) is updated on the basis of data from
a simulation Pr(M ≤m*

∣∣∣∣Sij) (the likelihood) to obtain a better
understanding of the distribution of parameter values in case of
good performance Pr(Sij

∣∣∣∣M ≤m*) (the posterior). If there would
be any prior knowledge on good parameter values (e.g., from
previous experiments) it can be included in the prior distribution.
In the absence of such knowledge, one can simply use a uniform
prior distribution that makes all parameter values equally likely,
following the principle of indifference (Jaynes, 2003). This is
equivalent to simple random sampling.

3.4 Monte Carlo Estimator
We proceed by deriving a Monte Carlo estimator for the
denominator Pr(M ≤m*) in Eq. 3. Let fP(p) and fH(h) denote
the probability mass functions of P andH, respectively. Assuming
both variables are statistically independent, their joint probability
mass function f (p, h) is given by

f (p, h) � fP(p) × fH(h). (4)

with RH and RP denoting the range of H and P, the denominator
in Eq. 3 can be written as

Pr(M ≤m*) � ∑
h ∈ RH

∑
p ∈ RP

1m≤m*(m) f (p, h), (5)

where m � perf(p, h) and 1m≤m*(m) is the indicator function
that equals 1 when m≤m* and 0 otherwise. The right-hand side
of Eq. 5 corresponds to the definition of the expected value of
1m≤m*(M), making it equivalent to

Pr(M ≤m*) � Ef {1m≤m*(M)}, (6)

where Ef denotes mathematical expectation with respect to
f (p, h). It is not possible to evaluate this expression directly,
but it is possible to construct a Monte Carlo estimate of the form

μ̂den � Êf {1m≤m*(M)}, (7)

� 1
N

∑N
l�1

1m≤m*(Ml), (8)

whereMl � perf(Pl,Hl) and {(Pl,Hl) : l � 1, 2, . . . ,N} is a set of
N independent and identically distributed (i.i.d.) samples drawn
from f (Hammersley and Handscomb, 1964). The Monte Carlo
estimator is unbiased and asymptotically normally distributed,
with mean value μden � Ef {1m≤m*(M)} and variance

σ2
den �

1
N
(Ef {1m≤m*(M)2} − Ef {1m≤m*(M)}2), (9)

� 1
N
(μden − μ2den). (10)

The relative accuracy of the estimator is given by its coefficient
of variation (c.o.v.), which is defined as the standard deviation
relative to the mean:

c.o.v. � σden

μden
�

�����������
1
N
( 1
μden

− 1)√
. (11)

For different sets of samples, the value of the Monte Carlo
estimate μ̂den will fluctuate around its true value μden, and its
accuracy will increase as the size of the sample set increases.
However, when μden is small (which is the case when the
performance threshold m* is strict) the c.o.v. will be large,
requiring a large number of samples to obtain sufficient
accuracy.

3.5 Importance Sampling
The accuracy of the estimator can be improved by importance
sampling, a variance reduction technique in which samples are
drawn from a probability distribution other than the original
distribution. The term “importance sampling” derives from the
idea that it is better to concentrate the samples where they are
most important to the target function, rather than spreading
them out evenly (Hammersley and Handscomb, 1964). The
mismatch between the original and the new sampling
distribution is corrected by assigning importance weights to
the individual samples, in order to avoid bias in inferences
based on the simulation.

Let g(p, h) denote the new sampling distribution (usually called
the proposal distribution) and w(p, h) � f (p, h)/g(p, h) the
importance weights. Eq. 5 can be modified in the following way:

Pr(M ≤m*) � ∑
h ∈ RH

∑
p ∈ RP

1m≤m*(m) f (p, h)
g(p, h) g(p, h), (12)

� Eg{1m≤m*(M)w(P,H)}, (13)

as long as g(p, h)> 0 when 1m≤m*(m) f (p, h)≠ 0. The associated
importance sampling estimator is:
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μ̂IS,den �
1
N

∑N
l�1

1m≤m*(Ml)w(Pl,Hl), (14)

with (Pl,Hl) this time drawn i.i.d. from g (Owen and Zhou, 2000).
As before, the estimator is unbiased and asymptotically normally
distributed, with the same mean value μIS,den � μden as the regular
Monte Carlo estimator, and variance

σ2
IS,den �

1
N
(Eg{1m≤m*(M)2w(P,H)2} − μ2den), (15)

� 1
N
(Ef {1m≤m*(M)w(P,H)} − μ2den), (16)

where the expectation E is first taken with respect to g and then
with respect to f. The expressions for the variance of the regular
and the importance sampling estimator are identical except for
the factor w in Eq. 16. In order for the variance of the
importance sampling estimator to be lower, the proposal
distribution g should be chosen such that w is on average
smaller than one whenever 1m≤m*(M) � 1. The problem of
choosing a good proposal distribution is not trivial and will
be addressed in Section 3.7.

3.6 Ratio Estimator
From the previous Section we have obtained an unbiased
estimator for the denominator of the statistic of interest in Eq.
3. The estimator for the numerator Pr(M ≤m*

∣∣∣∣Sij)Pr(Sij) can be
derived analogously. Using the definition of conditional
probability, it is reformulated as

Pr(M ≤m*
∣∣∣∣Sij)Pr(Sij) � Pr(M ≤m*∩Sij). (17)

This is further elaborated as follows:

Pr(M ≤m*∩Sij) � ∑
h ∈ RH

∑
p ∈ RP

1m≤m*(m)1Sij(p)f (p, h), (18)

where 1Sij(p) equals 1 when Pi � pi,j and 0 otherwise. The
associated importance sampling estimator is computed as

μ̂IS,num � 1
N

∑N
l�1

1m≤m*(Ml)1Sij(Pl)w(Pl,Hl), (19)

with (Pl,Hl) again drawn i.i.d. from g. Combining the
estimators for the numerator and denominator yields
estimators r̂ij for the statistic of interest rij, for all i �
1, 2, . . . , n and j � 1, 2, . . . ni. As these new estimators are
computed as the ratio of the means of two random variables,
they are usually called ratio estimators. The ratio estimators for
the statistic of interest are defined as:

r̂ij � μ̂IS,num
μ̂IS,den

. (20)

The estimators are well-defined everywhere except when
μ̂IS,den � 0, in which case no samples fall in the well-
performing region, meaning that either the sample size N
should be increased or the performance threshold m* should
be relaxed. Two areas of concern remain: 1) ratio estimators are
biased, and 2) there is no exact formula to compute the variance

of a ratio estimator, which we would like to know in order to
formulate confidence bounds.

3.6.1 Bias Correction
Ratio estimators are biased, even if the estimators in the
numerator and denominator are not. Methods that correct for
this bias are readily available, examples of which include Beale’s
estimator (Beale, 1962) and the jackknife estimator (Choquet
et al., 1999). However, the bias will asymptotically approach 0 as
N→∞, making ratio estimators approximately unbiased for
large sample sizes (Ogliore et al., 2011). Based on the
numerical experiments in this study, it was concluded that the
bias is not decisive, motivating the use of uncorrected ratio
estimators in the following.

3.6.2 Variance Approximation
There is no exact expression for the variance of a ratio estimator. The
following approximation is commonly used (Stuart and Ord, 1994):

V̂(r̂ij) � 1
N
[s2num
μ̂2den

− 2
μ̂nums

2
num,den

μ̂3den
+ μ̂2nums

2
den

μ̂4den
], (21)

where s2num and s2den denote the sample variance of the data points
in the numerator and the denominator, respectively, and s2num,den
is the sample covariance. The sample variance and covariance are
computed as

s2num � 1
N − 1

∑N
l�1

(Xij,l − μ̂num)2, (22)

s2den �
1

N − 1
∑N
l�1

(Yl − μ̂den)2, (23)

and

s2num,den �
1

N − 1
∑N
l�1
(Xij,l − μ̂num)(Yl − μ̂den), (24)

where Xij,l � 1m≤m*(Ml) 1Sij(Pl)w(Pl,Hl) and Yl �
1m≤m*(Ml)w(Pl,Hl) denote the sample values in the
numerator and denominator, for all sample points l �
1, 2, . . . ,N .

3.7 Choosing an Appropriate Proposal
Distribution
The effectiveness of the importance sampling approach depends
directly on the choice of proposal distribution. The proposal
distribution will be chosen to minimize the variance of the
estimator in the denominator, as this is the same for all
parameter/value combinations. Let the true value of the
denominator be denoted by μ. The theoretical optimum for
the proposal distribution is

g*(p, h) � 1m≤m*(m)f (p, h)/μ, (25)

which gives σ2IS � 0 and makes the importance sampling
estimator in Eq. 14 exact (Hammersley and Handscomb,
1964). When restated as
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g*(p, h) � { f (p, h)/μ form≤m*

0 elsewhere
, (26)

it becomes clear that the optimal proposal distribution hasmass only
at those values (p, h) for which the performance measure m �
perf(p, h) falls below the thresholdm*. Unfortunately, this equation
can not be used in practice, since it is not known in advance which
parameter configurations p give rise to good performance. The
equation does however state that a good proposal distribution must
be similar to 1m≤m*(m) f (p, h), which equals the integrand in Eq. 5.
In other words, the samples that are generated early on in the
simulation can be used to construct increasingly better
approximations to the optimal proposal distribution, which is the
core concept of adaptive importance sampling (Cornuet et al., 2012).

The optimal proposal distribution g*(p, h) has mass only in
the region of good performance. Good approximations to g*(p, h)
will favor good control parameter values over bad ones.
Consequently, the proposal distribution g(p, h) should be a
probability mass function that is uniform in the dimension of
h and has relatively more mass near good parameter
configurations p. Since the dataset from the Monte Carlo
simulation will in general not contain a sample point for all
possible vectors in RP, a way is needed to fill in the absent data.
One way would be to compute g(p, h) through multivariate
kernel density estimation, but the resulting distribution would
depend heavily on the chosen bandwidth. Instead, g(p, h) is
approximated as the product of the (univariate) marginal
distributions of its components, an approach due to Lepage
(1978):

g(p, h) � gP(p)fH(h), (27)

� ⎛⎝∏n
i�1

gPi(p)⎞⎠fH(h). (28)

In this equation, gPi(p) is the probability of the value p being
sampled for control parameter Pi(θ), which is computed as

gPi(p) � {max(r̂ij, gmin) for p � pi,j ∈ RPi

0 elsewhere
, (29)

with r̂ij the estimator from Eq. 20, calculated from previous
samples, and gmin a small lower bound that prevents gPi(p) from
becoming zero in the range of Pi. A high value of gmin makes the
proposal distribution deviate more from the optimum, slowing
down convergence, but a low value of gmin might cause
disproportionately high importance weights when a parameter
value that is considered bad performs much better than suggested
by the proposal distribution (which is an estimate), affecting the
variance estimate. In this study, a lower bound of gmin � 0.03 is
used. Due to the introduction of gmin it is possible that∑p ∈ RPi

gPi(p) becomes greater than 1, in which case gPi(p)
should be properly normalized.

The proposal distribution is used to compute the importance
weights for the individual samples. The value of the importance
weight w(p, h) represents the probability of the observed control
parameter configuration p being sampled from f, relative to the
same configuration being sampled from g:

w(p, h) � f (p, h)
g(p, h) � fP(p)fH(h)

gP(p)fH(h) � ∏n
i�1

fPi(p)
gPi(p). (30)

The factors fH(h) in the numerator and the denominator
cancel each other out. If a given parameter value is twice as likely
to be sampled from g as compared to f, the sample’s contribution
to the estimator will be halved. As a result, the mean value of the
estimator remains the same, but its variance decreases.

3.8 Updating the Proposal Distribution
Several updating schemes may be adopted for the proposal
distribution g. It can be updated every time a sample is drawn,
but then the samples will not be i.i.d., whichmeans that no variance
estimates can be computed. Alternatively, the simulation can be
subdivided into multiple stages, where g is updated at the end of
each stage. In the initial stage, the proposal distribution g is equal to
the original distribution f. From then on, g is computed based on
the samples in all previous stages. Within each stage k, the samples
are i.i.d., and can be used to calculate in-stage estimates r̂(k)ij for the
statistic of interest, as well as estimates for the variance V̂(r̂(k)ij ).
The accuracy of the in-stage estimates grows with k, due to the
proposal distribution becoming increasingly better.

This article uses a variant of the latter approach, as it allows the
performance threshold value m* to be updated according to a
continuation scheme. In the first stage of the simulation, there is no
threshold on performance. In the stages that follow, the threshold is
gradually tightened, making the results more and more relevant as
the simulation progresses. Although this approach causes the
statistic of interest (and thus the optimal proposal distribution)
to vary from stage to stage, the samples from the initial stages will
still provide a solid basis for calculating g later in the simulation, as
long as m* does not change too abruptly.

Themethodproceeds as follows. First, let r̂(k)ij,m* denote the estimator
corresponding to the performance threshold valuem*, computed from
the samples in stage k. The kth value in the continuation scheme form*

is indicated by mk. In the first stage of the simulation, samples are
drawn from f, which are used to compute the estimates r̂ij,m1 (for all
parameter/value combinations) along with estimates for the variance.
Samples continue to be drawn until all estimators have a variance
lower than some predefined threshold:

max
i

max
j
V̂(r̂ij,m1)≤ σ2

max, (31)

after which the first stage is completed. Next, the samples from
stage 1 are used to compute a rough estimate r̂ij,m2, which is
plugged into Eq. 29 to obtain the proposal distribution for the
second stage. In the second stage, additional samples are drawn
from the new proposal distribution to improve the estimate r̂ij,m2,
which is now computed as the weighted sum of the in-stage
estimates in stages 1 and 2:

r̂ij,m2 � ∑K
k�1

Wkr̂
(k)
ij,m2

, (32)

where K � 2 denotes the index of the current stage, and Wk are
weight factors that satisfy ∑K

k�1Wk � 1. The variance of the
resulting estimator is approximated by
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V̂(r̂ij,m2) � ∑K
k�1

W2
k V̂(r̂(k)ij,m2

), (33)

(Owen and Zhou, 1999). As soon as this estimate is sufficiently
accurate, a rough estimate r̂ij,m3 is computed from the samples in
stages 1 and 2, which in turn is used to obtain the proposal
distribution for stage 3, and so on, until all stages have been
completed.

The continuation scheme for the performance threshold is based
on percentile values, wheremk equals the value of the performance
measure that corresponds to the αk-th performance percentile (of
the initial probability distribution f), with αk the kth element from
the set {100, 50, 20, 10, 5, 2, 1}. Following this approach, in the first
stage all algorithm runs are considered, in the second stage only the
50% best-performing runs are considered, then the 20% best-
performing runs, and so on. The performance percentile values
are computed from the samples in the simulation as
mk � F−1

M (αk/100) � inf {m : FM(m)≥ αk/100}, where FM(m) �∑ K
k�1Wk F

(k)
M (m) is the cumulative distribution function of M,

which is calculated according to Eq. 14, and F−1
M (α) is the

generalized inverse distribution function of M for any α ∈ [0, 1].
The optimal way to combine the in-stage estimates is to use

weight factors Wk equal to

Wk �
1/V(r̂(k)

ij
)∑K

h�11/V(r̂(h)ij
) , (34)

which will minimize the variance of the final estimator (Owen
and Zhou 1999). However, the true variance of the in-stage
estimates is unknown, and plugging in approximations might
introduce bias. Instead, Owen and Zhou (1999) recommend to
use the square root rule, a deterministic weighting scheme
with weight factors proportional to

�
k

√
, for which

performance is nearly optimal when the number of samples
is the same in all stages. For the case where the number of
samples is different in each stage, we propose the following
variant:

Wk �
�
k

√
Nk∑K

h�1
��
h

√
Nh

, (35)

in which Nk represents the number of samples in stage k. The
efficiency of this weighting scheme is comparable to the
original square root rule, as is shown in Supplementary
Appendix SA. When the estimators r̂ij are undefined, the
corresponding stage is disregarded. This typically occurs at
the beginning of a stage, where the denominator in Eq. 20 is
zero. Additionally, the variance approximation of the
estimator V̂(r̂ij) might be undefined for poorly performing
parameter values, as these will have little or no samples in the
well-performing region. Stages that end prematurely due to
inaccurate variance approximations are avoided by the
stopping criterion in Eq. 31, which uses the maximum
variance across all parameter/value combinations, including
the well-performing ones where variance approximations are
more important and where they will be accurate.

4 NUMERICAL EXPERIMENTS AND
DISCUSSION

As a test case, the newmethod is used to assess the performance of
the genetic algorithm (GA) that comes with matlab R2018b. We
consider six control parameters in total: four parameters specific
to the GA (PopulationSize, EliteCountFraction,
CrossoverFraction, and FitnessScalingFcn), one penalty
parameter κ that determines the degree to which infeasible
designs are penalized (following the approach by Rajeev and
Krishnamoorthy (1992), see Supplementary Appendix SB)) and
one Dummy parameter that has no effect and serves as a
reference. Note that it is not required to know how the
control parameters work in order to interpret the results,
which is one of the strengths of the method. The GA starts by
randomly creating an initial population (which is not necessarily
feasible) and stops when the relative change of the objective
function value over the last 50 generations becomes smaller than
the tolerance value of 10−6 (both are default values), or when a
user-defined limit on number of function evaluations is exceeded.
If the final solution is feasible, the performance measure is taken
as the objective function value reported by the algorithm. If the
final solution is infeasible, the performance measure is set to
infinity, preventing the run from being included among the well-
performing results.

As test cases, we consider seven discrete truss sizing
optimization problems for which the objective is to minimize
structural weight. These are the 10-, 15-, 25-, 47-, 52-, 72-, and
200-bar truss problem, all of which have been used as test cases in
the literature before, e.g. in Rajeev and Krishnamoorthy (1992),
Camp and Bichon (2004), Lee et al. (2005), Ho-Huu et al. (2016),
and Degertekin et al. (2019). Their respective problem
formulations are given in Supplementary Appendix SB. All
problems are subjected to constraints on member stresses and
nodal displacements.

In the following subsections, three numerical experiments are
discussed. The first experiment investigates whether well-
performing values for the control parameters depend on the
computational budget that is given to the GA, which corresponds
to the maximum number of function evaluations (structural
analyses) it is allowed to perform within a single run. The
second experiment compares the best-performing control
parameter values for similar optimization problems of
different sizes, and investigates whether any trends can be
observed. In both experiments, the estimators r̂ij are accurate
up to σmax � 0.025. The third and final experiment compares the
performance of the GA with default and optimized parameter
values.

4.1 Impact of the Computational Budget
The first experiment investigates the impact of the computational
budget of the GA when applied to the 10-bar truss problem.
Three Monte Carlo simulations are performed, in which the
algorithm is given a computational budget of 104, 105, and 106

function evaluations. The results are presented as heat maps in
Figures 1–3. Each heat map represents the sequence of
probability distributions, corresponding to the different stages
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in the simulation, for a single control parameter. The rows of
the heat map show the distribution of control parameter values
within a single stage, where the top 1% of results (highlighted in
red) will be most representative of the optimum. The mode of
this distribution (darkest in color) is the parameter value that
occurs most often in this subset. The parameter value that is
most likely to give good performance has the highest
probability of occurring in the well-performing subset, the
value that is second most likely has the second highest
probability, and so on. When applicable, the matlab default
values are shown in bold.3 The width of the 95% confidence
interval equals four times the standard deviation σmax � 0.025
of the estimators—assuming that the sample is large enough for
asymptotic normality to hold. If the confidence intervals of
two bars are non-overlapping, the difference is statistically
significant, but the converse is not necessarily true (McGill
et al., 1978).

The results for the low-budget case (104 function evaluations)
are shown in Figure 1. The GA finds the best known solution to
the problem in 2% of runs, making the results for the top 1 and
2% identical. The best-performing value for the PopulationSize
is 50, which corresponds to a maximum of 200 generations. The
best-performing EliteCountFraction (the fraction of good
designs that is maintained between generations) is
somewhere in the range of 0.1–0.2, and the best-performing
value for the CrossoverFraction is 0.6. All probability
distributions in the top 1% appear to be unimodal, with the
mode of the distribution for the PopulationSize being the most

distinct. The distribution of values for the penalty parameter has
a sharp peak near κ � 1.1, which is in line with findings by e.g.
Richardson et al. (1989) who argue that penalties that are too
low unjustly promote infeasible designs, whereas penalties that
are too high discard useful information from designs that are
only slightly infeasible. No significant conclusions can be drawn
for FitnessScalingFcn, although the second and fourth options
seem to perform slightly better than the others, or for the
Dummy parameter, which is to expected as it has no effect
on the GA. The variability still present here shows the extent to
which the algorithm has converged, illustrating the difference
between control parameters that do have an effect and those that
do not.

For the medium-budget case (105 function evaluations) in
Figure 2, the best-performing value for the PopulationSize is 500,
which again corresponds to a maximum of 200 generations. The
mode of the other parameter value distributions is similar to the
low-budget case, but the variance is generally larger: the best-
performing values are the same, but the GA is less sensitive to the
control parameters. The same goes for the high-budget case (106

function evaluations) in Figure 3, where it is better to use a
PopulationSize of 1,000 (and maybe larger), which still allows the
algorithm to run for up to 1,000 generations. Unsurprisingly, a
clear trade-off is observed between the size of the population on
the one hand and the maximum number of generations on the
other. Furthermore, the results confirm that the impact of the
control parameters is largest when the computation budget is
small and less pronounced otherwise, in line with classic
(theoretical) proofs that many metaheuristic algorithms are
guaranteed to find the global optimum if one lets them run
indefinitely (Rudolph, 1994).

It should be noted that parameter dependencies cannot be
read directly from the figures. However, the relevant
dependencies (those that give rise to good performance) are
implicitly included in the well-performing subset of results
from the Monte Carlo simulation. Limiting inferences to this

FIGURE 1 | Distribution of control parameter values for the 10-bar truss test problem, where each run of the algorithm has a relatively low budget of 104 function
evaluations. The performance of the GA is significantly affected by the control parameter values.

3The EliteCountFraction is used to control the number of “elite” individuals in the
GA (the value of EliteCount), which is computed as EliteCountFraction ×
PopulationSize, rounded to the nearest integer smaller than PopulationSize. The
matlab default value for the EliteCount is 0.05 × PopulationSize for continuous
problems and 0.05 × default PopulationSize for discrete problems. However, in this
paper, the EliteCount is expressed as a fraction of the actual PopulationSize,
indicating 0.05 as the default EliteCountFraction value.
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subset prevents unimportant parameter interactions from
obscuring the conclusions.

The performance threshold values mk in each stage k of the
low-, medium- and high-budget case are shown in Table 2. The
best design obtained during the experiment has an objective
function value of 5490.74 lb, equaling the best known solution
to this problem in the literature. For the low-budget case, the GA
will achieve this objective function value in 2% of runs, when
parameter values are randomly drawn from f. For the medium-
budget case, the GA will achieve this value in 10% of runs, and for
the high-budget case even in 20% of runs, showing that the GA is
quite robust for its control parameters (for this problem) if the
computational budget is large enough. The results in Table 2 can
be used to compare the GA with other algorithms once a set of

plausible parameter values is defined, which of course is still
somewhat subjective.

4.2 Comparison Between Multiple Test
Problems
The second experiment compares the best-performing control
parameter values for all seven test problems and aims to
determine whether any general conclusions can be drawn. In
all test problems, the GA is limited to 105 function evaluations per
run. The results for the 10-bar truss problem have already been
presented in Figure 2. The results for the 25-, 52-, 47-, and 200-
bar truss problems are shown in Figures 4–7, in order of
increasing number of design variables. The Dummy parameter

FIGURE 2 | Distribution of control parameter values for the 10-bar truss test problem, where each run of the algorithm has a medium budget of 105 function
evaluations. The performance of the GA is less affected by the control parameter values.

FIGURE3 |Distribution of control parameter values for the 10-bar truss test problem, where each run of the algorithm has a high budget of 106 function evaluations.
Apart from a few extremes, the effect of the control parameter values is less important.
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is omitted. At the end of the section, the results for the complete
set of test problems are analyzed for trends regarding well-
performing parameter values.

The best-performing value for the PopulationSize varies
between 200 and 1,000 for the different test problems. The
best-performing value for the EliteCountFraction ranges from
0.1 to 0.5. The best-performing value for the CrossoverFraction
ranges from 0.4 to 1. The results for the FitnessScalingFcn are
inconclusive, although the third option (“fitscalingtop”)
consistently performs worse. For the small-scale problems (25-
bar truss and 52-bar truss) the performance is higher with high
values for the penalty parameter κ, while for the large-scale

TABLE 2 | Performance threshold values in stage k for a low, medium and high
computational budget.

k αk(%) mk (lb)

Low Medium High

1 100 ∞ ∞ ∞
2 50 7070.39 6579.39 6346.60
3 20 5757.17 5504.85 5490.74
4 10 5634.45 5490.74 5490.74
5 5 5533.74 5490.74 5490.74
6 2 5490.74 5490.74 5490.74
7 1 5490.74 5490.74 5490.74
— Best 5490.74 5490.74 5490.74

FIGURE 4 | Distribution of control parameter values for the 25-bar truss test problem (8 design variables). The GA is limited to 105 function evaluations within a
single run. The default value for the PopulationSize is 80, which is not present among the options.

FIGURE 5 | Distribution of control parameter values for the 52-bar truss test problem (12 design variables).
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problems (47-bar truss and 200-bar truss) no significant
difference can be observed.

For the 25-bar truss and 52-bar truss problems, the best
objective function value from the simulation (484.85 lb and
1902.61 kg) is equal to the best solution in the literature. For
the 47-bar truss and 200-bar truss problems, the best objective
function value from the simulation (2372.15 and 27276.47 lb) is, to
the authors’ best knowledge, slightly better than the best known
solution in the literature (2376.02 and 27282.57 lb, associated
design variables are given in Supplementary Appendix SB).
With enhanced control parameter values, the GA has succeeded
in improving the best known solution to the last two (well-studied)
test problems, providing the community with new benchmark
results while demonstrating the strength of the proposed method.

The number of sample runs and objective function evaluations
performed in this experiment are listed in Table 3. They are of the
same order of magnitude as reported for existing parameter
tuning methods (Montero et al., 2014), depending on the
accuracy of the estimates and the computational budget of the
algorithm. Nevertheless, the computing power required to make
the assessment is high. Investing such effort may be particularly
relevant for optimizing parameters for a set of similar problems,
for finding new benchmark results (optimal solutions) for the test
problems, or for looking for general trends in important
parameters and well-performing parameter values for specific
types of optimization problems, such as discrete truss sizing
optimization problems. The latter is investigated in the next
paragraph.

FIGURE 6 | Distribution of control parameter values for the 47-bar truss test problem (27 design variables).

FIGURE 7 | Distribution of control parameter values for the 200-bar truss test problem (29 design variables).
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Figure 8 summarizes the top 1% parameter value distributions of
all problems in the test set, shown in order of increasing problem size
(number of discrete solutions in the design space). Some trends do
seem to emerge. The best-performing value for the PopulationSize
decreases with the problem size, while the function evaluation limit
remains constant, corresponding to an increasing number of allowable
generations. The best-performing values for the EliteCountFraction
and the CrossoverFraction generally increase with the problem size,
although often multiple options perform similarly (e.g.
CrossoverFraction equal to 0.6, 0.8 or 1 for the 52-bar truss
problem or EliteCountFraction equal to 0.2 or 0.5 for the 200-bar
truss problem). The results for FitnessScalingFcn are not statistically
significant, but the second option (“fitscalingprop”) consistently
performs well and the third option (“fitscalingtop”) always
performs poorly. Good values for κ cannot be predicted based on
the size of the optimization problem alone, although its effect is less
important when the problem size is large. Robust parameter values
(i.e. values that perform well for all test problems) are 200 for the
PopulationSize, 0.2 for the EliteCountFraction and 0.6 or 0.8 for the
CrossoverFraction. Robust values for FitnessScalingFcn are
“fitscalingrank” (the default value) and “fitscalingprop.” Finally, a
high value for κ is always a safe choice.

The conclusions for the second experiment are as follows. For all
test problems, the impact of the PopulationSize, the
EliteCountFraction and the CrossoverFraction is significant, and
the mode of the corresponding parameter value distribution

becomes clearer as the problem size increases (with a fixed
computational budget). Similar to the first experiment, the
impact of the control parameters is larger when the
computational budget is small. The best-performing value for the
EliteCountFraction is consistently higher than the default value in
MATLAB. The best-performing value for the CrossoverFraction varies,
and seems to be proportional to the problem size. The best-
performing value for the PopulationSize depends on the problem
size and on the computational budget of the algorithm. The best-
performing control parameter values found by the proposedmethod
do not always match the default values in matlab.

4.3 Default vs. Optimized Control Parameter
Values
The best-performing control parameter values found in the previous
subsection are generally not the default values in matlab. Hence, the
performance of the GA with default parameter values (listed in
Table 4) is compared to the performance of the algorithm with
optimized control parameter values (well-performing values from
the previous subsection, listed in Table 5).

The results of the comparison are summarized in Figure 9,
using (custom) box plots. Each box plot represents 100
independent runs of the GA, with random starting points and
a computational budget of 105 function evaluations. Infeasible
solutions are given an objective function value of infinity. If (part
of) a box plot is cut off at the top of the figure, it means that the
corresponding objective function value goes to infinity.

The figure shows that the performance of the GA with optimized
control parameter values is better than the performance with default
values in almost all possible areas. For the 10-, 15-, 25- 52-, and 72-
bar truss problems, the GA matches the best known solution in the
literate in at least 90% of runs, and even in 100% of runs for the 15-
and 25-bar truss problems, performing significantly better than with
default control parameter values. For the 47-bar truss problem, the

TABLE 3 | Summary of the computations for the 4 test problems, expressed as
the number of sample runs and number of objective function evaluations
(throughout the simulation).

25-bar 52-bar 47-bar 200-bar

#Sample runs 5,642 8,279 9,780 9,265
#F-evals (×106) 245.0 495.2 639.7 580.5

FIGURE 8 |Comparison of the top 1% parameter value distributions for all optimization problems in the test set. The results are ordered according to the number of
discrete solutions in the design space (the problem size).
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best result in the simulation (2377.5 lb) is slightly less good than the
best result in the literature (2372.2 lb in this article, 2376.0 lb
otherwise), but again the performance of the algorithm is
considerably better than with default parameter values. For the
200-bar truss, the extremes of performance are amplified: the
minimum, 10-th percentile and median objective function values
are a lot better with optimized parameter values, although the

algorithm more often converges to an infeasible design. With
default control parameter values, at least one infeasible design is
present among the results for 6 out of 7 test problems, compared to 3
out of 7 test problems in the case of optimized control parameter
values.

5 CONCLUSIONS

A method has been developed to assess the performance of a
metaheuristic algorithm in relation to the values of the control
parameters. It is based on Monte Carlo sampling of independent
algorithm runs and uses importance sampling as a variance
reduction technique. The method is demonstrated using the
genetic algorithm (GA) built into MATLAB for seven representative
discrete truss sizing optimization problems that are commonly used
in structural optimization literature. The method successfully
captured the sensitivity of the GA with respect to the control
parameters, identifying relevant parameters whose values need
careful tuning as well as parameters that have little impact for
the problems at hand. For the important control parameters, well-
performing values are identified that consistently outperform the
default matlab values for the benchmark problems considered.

The results in this study indicate that the impact of the control
parameters is largest when the limit on the number of function
evaluations is low. When the limit on the number of function
evaluations is high, the algorithm becomes more robust to the
values of its control parameters, affirming that longer computing
times can (partially) compensate for poor parameter value choices.

The method described in this study can be used in a variety of
ways. Information on the sensitivity of an optimization algorithm

TABLE 4 | Default values for the control parameters. Their names are abbreviated
as follows: PopulationSize (PS), EliteCountFraction (ECF), CrossoverFraction
(CF), FitnessScalingFcn (FSF), and penalty parameter κ.

Problem PS ECF CF FSF κ

10-bar 100 0.05 0.8 Fitscalingrank 10
15-bar 100 0.05 0.8 Fitscalingrank 10
25-bar 80 0.05 0.8 Fitscalingrank 10
47-bar 100 0.05 0.8 Fitscalingrank 10
52-bar 100 0.05 0.8 Fitscalingrank 10
72-bar 100 0.05 0.8 Fitscalingrank 10
200-bar 100 0.05 0.8 Fitscalingrank 10

TABLE 5 | Optimized values for the control parameters.

Problem PS ECF CF FSF κ

10-bar 500 0.1 0.4 Fitscalingprop 20
15-bar 500 0.2 0.6 Fitscalingprop 20
25-bar 1,000 0.1 0.4 Fitscalingprop 20
47-bar 200 0.2 0.8 Fitscalingprop 20
52-bar 200 0.2 1.0 Fitscalingprop 20
72-bar 500 0.2 0.6 Fitscalingprop 20
200-bar 200 0.5 0.8 Fitscalingprop 20

FIGURE 9 | Summary of results of the GA when applied to the truss test problems, with default (def.) and optimized (opt.) control parameter values. The system
(bottom whisker, box bottom, middle, top, top whisker) denotes the (minimum, 10-th percentile, median, 90-th percentile, maximum) objective function value in 100
independent runs of the GA.
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with respect to its control parameters can help developers to focus on
the relevant part of their algorithm. In addition, the method can be
used to select appropriate default values for the control parameters
based on a representative set of test problems. The performance
percentiles resulting from the simulation can be used to compare the
algorithm with other metaheuristic algorithms. Finally, the Monte
Carlo simulation may provide the academic community with new
benchmark results, as illustrated by the improvements over the best
designs reported so far in the literature for the 47-bar truss and the
200-bar truss test problems (found in Section 4 of this article).

Using the method to find good control parameter values is
computationally expensive, as it requires several optimization runs
to be performed. Therefore, it may be worthwhile to look for general
guidelines regarding control parameter values that perform well. The
results of all seven test problems have been compared to look for
dependencies between well-performing parameter values and the
number of discrete solutions in the design space. Robust parameter
values (values that perform reasonably well for all problems in the test
set) have been identified. For the test problems considered, it is found
that the best-performing value for the PopulationSize of the GA
heavily depends on the size of the optimization problem, and on the
maximum number of function evaluations in a single run of the
algorithm. Furthermore, it is found that the best-performing value for
the EliteCountFraction is consistently higher than the default setting,
and that the best-performing value for the CrossoverFraction is
roughly proportional to the size of the design space.
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