
Deep Transfer Learning and
Time-Frequency
Characteristics-Based Identification
Method for Structural Seismic
Response
Wenjie Liao1, Xingyu Chen1, Xinzheng Lu2*, Yuli Huang2 and Yuan Tian2

1Beijing Engineering Research Center of Steel and Concrete Composite Structures, Tsinghua University, Beijing, China, 2Key
Laboratory of Civil Engineering Safety and Durability of Ministry of Education, Tsinghua University, Beijing, China

The cost of dedicated sensors has hampered the collection of the high-quality seismic
response data required for real-time health monitoring and damage assessment. The
emergence of crowdsensing technology, where a large number of mobile devices
collectively share data and extract information of common interest, may help remove
such obstacles and mitigate the seismic hazard. The present study proposes a
crowdsensing-oriented vibration acquisition and identification method based on
time–frequency characteristics and deep transfer learning. It can distinguish the
responses during an earthquake event from vibration under serviceability conditions.
The core classification process is performed using a combination of wavelet transforms
and deep transfer networks. The latter were pre-trained using finite element models
calibrated with the monitored seismic responses of the structures. The validation study
confirmed the superior identification accuracy of the proposed method.
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INTRODUCTION

The earthquake-induced damage and collapse of buildings and infrastructure have caused enormous
economic losses and casualties. The structural seismic response is critical to understand the behaviors
of structures during earthquakes and mitigate seismic disasters. Real-time seismic damage
assessment (Lu et al., 2019a; Xu et al., 2020a; Xu et al., 2020b), structural seismic damage
diagnosis (Ye et al., 2019; Patel et al., 2020), and the updating of finite element models (Foti
2015; Lin et al., 2020) are in high demand for structural seismic response data. Hence, there is an
essential need to monitor the seismic responses of structures (Carnimeo et al., 2015a; Foti et al.,
2017). Presently, professional and high-performance sensors are primarily adopted in seismic
response acquisition. However, the coverage and quantity of city-scale monitoring data are
seriously restricted by the high cost of installing and maintaining sensors (Lynch, 2006; Shirzad-
Ghaleroudkhani et al., 2020). To this end, high-efficiency and economical methods are required for
the acquisition of structural seismic responses on a city-scale.

With the development of crowdsensing and telecommunication technology, conventional data
acquisition in structural health monitoring has been changed and reshaped. For instance,
environmental vibrations can easily be collected and uploaded to the cloud by smartphones
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equipped with a linear acceleration sensor and the corresponding
APP (Ma et al., 2014; Kong et al., 2016; Boubiche et al., 2019; Patel
et al., 2020; Shrestha and Dang, 2020a; Shrestha et al., 2020b).
Crowdsensing has been adopted in earthquake early warning
systems (Kong et al., 2016). Therefore, crowdsensing could also
be adopted in seismic response acquisition. However, unlike the
vibrations collected by professional sensors, most of the
smartphone-collected data are human movement-induced
vibrations (Ma et al., 2014), and structural seismic responses
are rare. Furthermore, it is challenging to automatically and
effectively distinguish the acquired structural seismic responses
from normal vibrations based on the amplitude and frequency
characteristics. Hence, a high-performance seismic response
identification method is required to enhance the data quality
and application efficiency.

Deep neural networks are effective in extracting in-depth data
characteristics and their subsequent identification (Krizhevsky
et al., 2017; Carnimeo et al., 2015b; Wang et al., 2019; Nath and
Behzadan, 2020). Thus, they have been widely adopted in
vibration identification and prediction studies (Tang et al.,
2019; Lu et al., 2020). Moreover, time–frequency characteristic
extraction by a wavelet transform can significantly improve the
vibration identification accuracy of deep neural networks (Lu
et al., 2020). However, the quantity of structural seismic response
data is significantly smaller than that of normal vibrations due to
the low occurrence frequency of earthquakes and the sparseness
of structural monitoring networks. Simultaneously, the
significantly imbalanced sample data can degrade the feature
extraction and classification ability of deep neural networks.
Therefore, feature-based deep transfer learning was adopted to
address the problems induced by imbalanced data in this study
(Liu et al., 2011; Wang, 2020). Finite element simulation was used
to create structural seismic response data to enrich the dataset.
The simulated vibration-trained neural networks were then
adopted to identify the real monitored structural seismic
responses. Additionally, model-based deep transfer learning for
big-data classification was adopted for a more effective
classification (Zhao et al., 2011; Wang, 2020). Consequently,
the combination of time–frequency characteristics and deep
transfer learning could provide the potential to identify the
structural seismic responses from the enormous amount of
normal vibrations collected by crowdsensing.

A novel identification method for structural seismic responses
is proposed based on deep transfer neural networks with the
time–frequency domain characteristic input. The remainder of
this paper is structured as follows. Structural Seismic Response
Identification Method describes the framework of the method,
and Vibration Acquisition, Extraction of Vibration
Characteristics, Training and Evaluation of Deep Transfer
Neural Networks, Case Studies show the implementation steps
based on this framework. Vibration Acquisition shows how the
normal vibrations acquired by smartphones and simulated
structural seismic responses obtained by finite element analysis
are used to create the corresponding raw vibration dataset.
Extraction of Vibration Characteristics presents the
time–frequency characteristics of the raw vibrations obtained
by the wavelet transform. Training and Evaluation of Deep

Transfer Neural Networks illustrates how deep transfer neural
networks can be trained to identify vibrations based on the
characteristics, and the corresponding performance is
evaluated by the validation accuracy and loss. Case Studies
outlines how real monitored structural seismic responses were
used to validate the accuracy and generalization of the proposed
model, indicating that the VGG19 model with the
time–frequency characteristic matrix input had the best
performance. Finally, Conclusion summarizes the contributions
and provides suggestions for future studies.

STRUCTURAL SEISMIC RESPONSE
IDENTIFICATION METHOD

In this study, smartphones were adopted as sensors to collect
normal vibrations and determine structural seismic responses.
The proposed vibration identification method was studied based
on the collected data. The most significant characteristic of the
method is the coupling of the time–frequency domain
characteristics and deep transfer learning. The method
includes three main modules: the primary extractor, deep
extractor, and classifier (Figure 1A). In the primary extractor
module, the wavelet transform is used to extract the initial
vibration characteristics and output the corresponding
time–frequency characteristic matrix. In the deep extractor
module, the VGG19, InceptionV3, and ResNetV2 networks are
used for in-depth feature extraction. Moreover, the classifier
module uses a simple neural network based on the in-depth
features for classification.

As shown in Figure 1B, the implementation of the proposed
vibration identification method consists of five crucial steps, as
follows.

Step 1: Data acquisition and dataset establishment. The
datasets were composed of two types of vibrations: normal
vibrations and structural seismic responses. Normal vibrations
could easily be collected using smartphones equipped with
linear accelerators during daily usage. In comparison,
structural seismic responses are rarely obtained with
smartphones because of the low occurrence frequency of
earthquakes. Hence, the structural seismic responses were
primarily provided by coupling finite element analysis
results and white noise, which were equivalent to the
structural seismic responses collected by smartphones.
Additionally, this work adopted the real monitored
structural vibrations supplied by CESMD as supplementary
test datasets (CESMD, 2020).
Step 2: Initial vibration feature extraction. The initial
time–frequency domain characteristics were obtained by the
wavelet transform of 1D time-series vibrations and stored as
characteristic coefficient matrices, as the inputs of deep neural
networks.
Step 3: Training the deep neural networks. The initial feature
matrices were input, and the different pre-trained network
models, VGG19, InceptionV3, and ResNetV2 (Simonyan and
Zisserman, 2014; Szegedy et al., 2016; He et al., 2016a, He et al.,
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2016b), were trained in the fine-tuning mode. The in-depth
features were efficiently extracted using these high-
performance networks, and their performances were also
compared.
Step 4: Evaluation of trained network models. The training and
validation performances of the different network models were
evaluated based on their accuracy and loss values.
Subsequently, their test performances were assessed by the
confusion matrix (Foody, 2002), using classification accuracy
as the primary metric.
Step 5: Application of the vibration identification method.
Based on the evaluation results, the trained models with the
best performances were adopted to identify the real monitored
structural seismic responses, as illustrated in Figure 1A. The
CESMD test dataset was adopted to validate the real
identification performance.

VIBRATION ACQUISITION

Normal vibrations can easily be collected using smartphones,
while the collection of real monitored structural seismic
responses is relatively limited, causing the dataset imbalance
problem. In such imbalanced datasets, the spatial feature
distribution difference between the normal vibrations and

seismic responses is indistinctive, which makes it difficult for a
neural network to fit a hyperplane separating various vibrations.
Hence, this study used the feature-based deep transfer learning
method to address the data imbalance problem (Liu et al., 2011;
Wang, 2020). In the transfer learning method, the simulated and
monitored structural seismic responses are in the source and
target domains, respectively. The finite element analysis results
were used to train deep neural networks. Subsequently, these
trained network models could be adopted to identify real
monitored structural seismic responses. Additionally, the
time–frequency domain characteristics of the simulated and
real monitored structural seismic responses were highly
consistent, which was fundamental to transfer learning.

Real Monitored Vibration Acquisition
The real monitored vibrations were composed of the normal
vibrations collected by smartphones and monitored structural
seismic responses provided by CESMD. In this work, the normal
vibrations were acquired by smartphones equipped with a linear
accelerator and the corresponding SensorRecord App with a
sampling frequency of 100 Hz. The smartphone types were
HUAWEI Honor V20 and MI 5. The specification of
accelerometer is summarized as follows. Part number:
LSM6DS3 and ICG-20660; sensitivity: 0.061–0.488 mg;
resolution: 2 mg; operational range: ±2–±16 g; and noise level:
1–6 mg (InvenSense Inc., 2016; STMicroelectronics, 2017;

FIGURE 1 | Time–frequency characteristics and deep neural network-based vibration identification method: (A) structural seismic response identification method
and (B) detailed implementation of proposed method.
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Shrestha et al., 2020b). The normal vibrations were primarily
collected in daily life and sufficiently representative, including
indoor and outdoor movements, rest, and phone operations.

Acquisition and Modification of Simulated
Vibrations
The simulated structural seismic responses had to be sufficiently
typical, with different structural types and structural heights.
Therefore, this study adopted typical structural models
designed by various Chinese architectural design institutes.
Moreover, the designed structures included concrete frame,
concrete shear wall, concrete frame-core tube, steel frame, and
steel frame-braced core tube structures, with structural heights
varying from 23 to 167 m. The 3D and plan views of the five

models are shown in Figure 2 (CABR et al., 2018). As introduced
by CABR et al. (2018), these models were designed and optimized
based on the corresponding design codes, with characteristics
similar to those of buildings in the real world. The dynamic
characteristics of the designs are listed in Table 1. The
fundamental periods were in the range of 1–6 s, covering the
primary dynamic characteristic range of typical structures in
China. In addition to the essential model information already
provided, more design information was provided in the study by
CABR et al. (2018).

The SAP 2000 software and nonlinear time history analysis
method were adopted for the finite element analysis. In the finite
element models, the lumped-hinge model was adopted for the
beam and column elements. The brace model was adopted for the
brace elements. The thin shell model was used for the shearwall

FIGURE 2 | Five typical structures: (A) 3D view and (B) plan view.

TABLE 1 | Dynamic characteristics of typical structures.

Structural type Period (s) Height (stories)

1st order 2nd order 3rd order

Concrete frame structure 1.420 1.393 1.216 33 m (7)
Concrete shearwall structure 1.412 1.349 1.186 60 m (20)
Concrete frame-core tube structure 2.308 2.298 2.078 98 m (24)
Steel frame structure 2.138 2.085 1.868 23 m (6)
Steel frame-braced core tube structure 5.904 5.403 4.399 167 m (37)
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and floor elements (Lu et al., 2019b). Furthermore, approximately
4,000 earthquake groundmotions selected from the PEER ground
motion database (Pacific Earthquake Engineering Research
Center, 2006) were adopted for the seismic analysis, with
earthquake intensities of 3–8. Lu et al. (2019b) indicated that
the adopted modeling and analysis method could accurately
simulate the nonlinear seismic response.

After the nonlinear time history analysis, the simulated
structural seismic response (i.e., the floor acceleration) of a
story was output and stored. Kong et al. (2016) indicated that
smartphones started to slide when the horizontal accelerations
reached a specific threshold (approximately 0.3 g), and
smartphone-slide had the effect of clipping the peak
amplitudes. Moreover, in Time–Frequency Characteristic
Extraction by Wavelet Transform, the statistical results of the
monitored structure responses show that approximately 80% of
vibration peak amplitudes do not exceed 0.3 g. Therefore, in most
cases, the relative movement between the ground (or desk) and
the smartphone was small, and could be neglected (Kong et al.,
2016). Hence, the simulated floor accelerations were used as the
equivalent structural seismic responses collected by a
smartphone, with a quantity equal to approximately 18,000.

Because the energy of earthquake ground motions is mainly
concentrated within 40 s, the redundant vibration signals were
dropped to ensure that the useful information was more obvious
and effectively improve the vibration identification performance.
This study used the short-term energy method (Zheng et al.,
2001) to intercept the effective signal parts. As shown in
Figure 3A, the maximum energy point was regarded as the
center, and the signals from 20 s before and after the center
were adopted. The short-term energy could be calculated using
Eq. 1, and the intercepting vibrations are shown in Figure 3.
Subsequently, each intercepted vibration was coupled with a
randomly selected 40 s of white noise to ensure that the
vibrations were random and realistic. Notably, white noise was
collected from a smartphone by placing it on solid ground
without any environmental vibration disturbance.

En � ∑
∞

m�−∞
[x(m)w(m)]2, (1)

where w(m) denotes the window function, which was a 1 s long
quadratic window in this study, and x(m) is the signal function.

EXTRACTION OF VIBRATION
CHARACTERISTICS
Time–Frequency Characteristic Extraction
by Wavelet Transform
Consequently, approximately 20,000 normal vibrations and
18,000 simulated structural seismic responses were collected in
this study. Subsequently, the data were randomly split into
training, validation, and test datasets, with a proportion of 8:2:
1. Moreover, approximately 130 real monitored structural seismic
responses of CESMD were adopted for further tests. Wavelet
transform was used to extract the initial time–frequency domain
characteristics of the vibrations (Lu et al., 2020). In the wavelet
transform analysis, the complex Gaussian wavelet (cgau8) and
128 scale were used, and the corresponding analysis results were
in the frequency domain range of 0.78–50 Hz, with a time domain
range of 40 s. Figures 4A,B show the time–frequency domain
analysis results for typical normal vibrations. Figures 4C,D
depict the characteristics of the coupled vibrations of the
simulated seismic responses and smartphone-white noise.
Figures 4E,F illustrate the characteristics of the coupled
vibrations of the real monitored structural seismic responses
and smartphone-white noise.

As seen in the time–frequency analysis results shown in
Figure 4, the intensities of the normal vibrations were
relatively discrete in the time domain. In contrast, a significant
vibration energy concentration was found in the time domain of
the seismic response. A frequency feature comparison showed
that the high-frequency components of the normal vibrations

FIGURE 3 | Time-domain characteristics: (A) intercepting vibration based on short-term energy method and (B) typical structural seismic response and normal
vibration.
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were significantly higher than those of the structural seismic
responses.

Furthermore, Figure 5 shows the characteristic comparison
between the statistical analysis results of 18,000 simulated- and
130 monitored-structural seismic responses. Figure 5A
demonstrates the probability distribution of fundamental
frequencies, and Figure 5B shows the probability distribution
of peak accelerations. As shown in Figure 5A, the time–frequency
domain characteristics of the simulated and monitored structural
seismic responses were highly consistent. Characteristics
consistency is the basis of the feature-based transfer learning

method. Additionally, the peak acceleration probability
distribution between simulated- and monitored-seismic
responses is different (Figure 5B). The main reason is that the
adopted CESMD data is from the structures under strong ground
motions, and the corresponding peak amplitudes are larger than
those of the simulated structural response. Moreover, the
statistics of the monitored structural seismic response indicate
that approximately 80% of maximum floor accelerations are less
than 0.3 g.

Notably, although this work shows the time–frequency
domain characteristics in images (Figure 4), the characteristic

FIGURE 4 | Time–frequency domain characteristics of vibrations: (A–B) normal vibrations with low amplitude and high amplitude, (C–D) simulated structural
seismic responses with low amplitude and high amplitude, and (E–F) real monitored structural seismic responses with low amplitude and high amplitude.
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matrices were used in the neural network training. The physical
meanings of characteristic matrices and images are almost the
same, but the matrices contained more detailed information than
the images.

Deep Transfer Neural Networks
In big-data classification, convolutional neural networks (CNNs)
with a simple architecture have difficulty extracting high-
dimensional abstract data features and cause the under-fitting

problem. Therefore, to achieve more effective data feature
extraction and classification, model-based transfer learning was
adopted in this study. Previous studies indicated that the bottom-
layer features do not appear to be specific to a particular dataset or
task, but are general to many datasets and tasks. In contrast, the
top layer features are more specific (Yosinski et al., 2014). The
fine-tuning training method was used in this study to conduct
model-based transfer learning. The bottom transferred layers of
the pre-trained deep neural networks were frozen for general

FIGURE 5 |Characteristic comparison between simulated seismic responses andmonitored seismic responses. (A) Vibration fundamental frequency comparison,
(B) Peak amplitude comparison.

FIGURE 6 | Architectures of typical deep neural networks: (A) VGG19; (B)ResNet50V2. ResNetV2 comprises different depth networkmodels, where ResNet50V2
has 50 layers; and (C) InceptionV3.
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feature extraction, and the top layers were fine-tuned to extract
specific features in this task. The fine-tuning transfer learning
method could effectively utilize the advantages of pre-trained
networks to accelerate the training and enhance the classification
performance.

Widely adopted pre-trained deep neural networks such as
VGG19 (Simonyan and Zisserman, 2014), InceptionV3 (Szegedy
et al., 2016), and ResNetV2 (He et al., 2016a; He et al., 2016b)
have exhibited excellent feature extraction and classification
capabilities in open-source datasets. Hence, the VGG19,
InceptionV3, and ResNetV2 pre-trained networks were
adopted, and the corresponding network architectures are
shown in Figure 6.

TRAINING AND EVALUATION OF DEEP
TRANSFER NEURAL NETWORKS

Training and Evaluation Methods
Based on the study of Lu et al. (2020), using time–frequency
domain characteristic matrices as the neural network input can
assist in obtaining an excellent performance. Hence,
characteristic matrices were adopted in this study. The neural
network model for vibration identification primarily adopted
the widely used pre-trained models (i.e., VGG19, InceptionV3,
and ResNetV2), whose architectures are shown in Figure 6. In
addition, conventional networks with simple architectures
(i.e., CNN2D) were used as comparison cases. CNN2D was
built using the Keras sequential architecture, and composed of 6
convolutional layers +6 batch normalization layers +6 pooling
layers +3 dropout layers (dropout ratio � 0.5). By comparing
their vibration identification performances, this study
attempted to identify the optimal networks with high
efficiency and high accuracy. Furthermore, the training
platform adopted Python 3.6, equipped with the deep
learning framework of TensorFlow1.15 and Keras2.2.5
(Chollet, 2018; Keras, 2020).

Additionally, reasonable evaluation metrics were essential in
this study to better understand and compare the performances of
the different network models. The training accuracy, training
loss, validation accuracy, and validation loss in the last 10 epochs
during the training process were adopted to evaluate the network
models (Lu et al., 2020), and the corresponding metric Perf could
be calculated using Eq. 2. The method considered the training
and validation performance comprehensively and was mainly
used for training assessment, where a high Perf value
corresponded to a high performance.

Perf � μtrain ×
1

losstrain
× acctrain + μvalid ×

1

lossvalid
× accvalid, (2)

where μtrain and μvalid are the weights of the training and
validation results, respectively, with μtrain � 0.1 and μvalid � 0.9
because the validation results had significant importance. In
addition, losstrain and lossvalid were the mean losses of the last
10 epochs of the training and validation results, respectively; and
acctrain and accvalid were the mean accuracies of the last 10 epochs
of the training and validation results, respectively.

Training and Evaluation Results
The detailed training processes for a simple deep neural
network (i.e., CNN2D) and the deep transfer neural
networks (i.e., VGG19, InceptionV3, and ResNetV2) are
demonstrated in Figure 7, in which the training results are
illustrated by dashed lines, and the validation results are shown
by solid lines. As Figure 7A demonstrates, the training and
validation accuracy of CNN2D was maintained at
approximately 65%. Simultaneously, the loss of CNN2D
could not be effectively optimized during the entire training
process. The poor performance of CNN2D meant that simple
networks barely extract the in-depth features and classify them
for numerous vibrations. In contrast to CNN2D, the training
performances of the deep transfer neural networks were
excellent, with powerful feature extraction capabilities and
high training accuracy. However, only the validation results
of the VGG19 networks were comparable to the training
results. Compared to the training results, the validation
accuracies of the InceptionV3 and ResNetV2 networks were
significantly lower, exhibiting obvious over-fitting.
Specifically, as shown in Figure 7A, the VGG19 network
had the highest training accuracy (equaling 0.93), with the
training accuracies of the ResNet50V2 and InceptionV3
networks slightly lower (equaling approximately 0.89). The
validation accuracy of the VGG19 network is shown by the
highest red solid line (equaling 0.94). In contrast, the
validation accuracies of the ResNet50V2 and InceptionV3
networks were much lower than their training accuracies
(both lower than 0.8). Similarly, as shown in Figure 7B, the
validation loss of the VGG19 network is shown by the decrease
in the solid red line. The validation losses of the ResNet50V2
and InceptionV3 networks could not be effectively optimized,
which was consistent with their poor validation accuracies in
Figure 7A.

Subsequently, the performance evaluation method shown in
Eq. 2 was utilized in this study. The performance comparison
between the conventional deep neural networks and deep
transfer neural networks is shown in Table 2. For big-data
classification, it is difficult for CNN2D to capture high-
dimensional and in-depth data features compared to deep
transfer neural networks. When the amount of data is too
large, a simple architectural CNN cannot fit the strong-
nonlinear spatial hyperplane to effectively classify different
data because of the small number of network parameters. In
comparison, neural networks with deeper and more
complicated architectures possess more parameters to
efficiently fit complex hyperplanes, with a higher
consumption of training time and cost. Using model-based
deep transfer learning, high-dimensional data features can be
effectively extracted with reasonable training costs, showing
significant advantages. The ResNet50V2 and InceptionV3
networks overfitted significantly because of their powerful
feature extraction ability compared to the relatively simple
binary classification work, which resulted in significant
validation and training performance differences. The network
architecture of the VGG19model is relatively simpler than those
of the ResNet50V2 and InceptionV3 networks (Figure 6) and is
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more advanced than that of the conventional CNN2D, which
helps the VGG19 model classify without over-fitting and under-
fitting. Consequently, the VGG19 deep transfer networks
performed the best for the binary classification of this study.

CASE STUDIES

As shown in Training and Evaluation of Deep Transfer Neural
Networks, various deep neural networks with different
network architectures and hyperparameters were trained
and validated. Nevertheless, during the model training
process, every time the model hyperparameters were
adjusted based on the model validation results to obtain a
better performance, this led to certain information from the
validation dataset leaking into the model (i.e., information
leak) (Chollet, 2018). Moreover, with repeated
hyperparameter adjustments, the training and validation
results could not effectively reflect the actual generalization
ability of the trained models. Therefore, totally independent
test datasets not involved in training and validation were
adopted to evaluate the model by testing its actual
classification performance and generalization ability.

Simulated Vibration Identification
First, the finite element simulated structural seismic responses
and smartphone-collected normal vibrations were used to test the
vibration identification performance. A confusion matrix was
adopted to evaluate the performances of the various models
(Foody, 2002; Shrestha and Dang, 2020a; Mangalathu and
Jeon, 2020). The corresponding identification results for the
different models are shown in Figure 8. Here, categories N
and S represent the normal vibrations and structural seismic
responses, respectively. Diagonal elements represent the number
of correctly classified items, and off-diagonal elements represent
the number of incorrect classifications. Taking Figure 8B as an
example, 1766 normal vibrations and 1,462 ground motions were
correctly classified by the trained VGG19 model. In addition, 63
normal vibrations were misjudged as structural seismic
responses, and 181 seismic responses were misclassified as
normal vibrations. In the test dataset, the sample proportions
of normal vibrations and structural seismic responses were
approximately 1:1, and the metric of accuracy was used to
effectively assess the classification performance. Moreover,
accuracy was defined as the ratio of correctly classified
samples to the total number of samples, as located in the third
row and third column (3, 3) of the confusion matrix.

As seen in the confusion matrix-based evaluation results for
the deep neural network models shown in Figure 8, the test
results were consistent with the training and validation results
discussed in Training and Evaluation of Deep Transfer Neural
Networks. The VGG19 network model performed the best, with
an overall accuracy of 93%, and the CNN2D, InceptionV3, and
ResNet50V2 network models performed poorly. Specifically, the
(3, 2) value of the confusion matrix in Figure 8B is the VGG19
model identification result for the real structural seismic
response, indicating that approximately 89% of the objective
structural seismic responses were correctly classified, which
was slightly lower than the overall accuracy of 93%. The
structural seismic response identification accuracy of the

FIGURE 7 | Detailed training process for deep neural networks: (A) training and validation accuracies of CNN2D, VGG19, ResNet50V2, and InceptionV3 network
models, and (B) training and validation losses of CNN2D, VGG19, ResNet50V2, and InceptionV3 network models.

TABLE 2 | Performance evaluation of conventional deep neural networks and
deep transfer neural networks.

Deep
neural
networks (DNN)

Conventional
DNN

Deep transfer learning

CNN2D VGG19 InceptionV3 ResNet50V2

losstrain 0.70 0.16 7.30 0.30
acctrain 0.63 0.93 0.88 0.89
lossvalid 0.68 0.13 7.30 1.86
accvalid 0.61 0.94 0.52 0.76
Perf 0.89 7.10 0.08 0.67

The bold values indicate that the VGG19 networks perform best.
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VGG19 model could still be improved in the future, by using
other information for assistance. In Figure 8A, the (3, 1) value of
the confusion matrix is the identification result of CNN2D for
normal vibrations, indicating that the main reason for the poor
CNN2D performance is that an enormous number of normal
vibrations were judged to be structural seismic responses. The
(3,2) values of the confusion matrix in Figures 8C,D are almost 0,
which show that the primary reason for the poor InceptionV3

and ResNet50V2 performances was the misclassification of most
of the structural seismic responses as normal vibrations.

In summary, the VGG19 network model could correctly
identify the vibrations. In contrast, the other network models
had incorrect identification performances. The CNN2D model
recognized most vibrations as structural seismic responses, and
the InceptionV3 and ResNet50V2 models classified all the
vibrations as normal vibrations. Subsequently, the real

FIGURE 8 | Confusion matrices of different deep neural network models: (A) CNN2D, (B) VGG19, (C) InceptionV3, and (D) ResNet50V2.

FIGURE 9 | Identification results for real monitored seismic responses: (A) confusion matrix of VGG19 model identification results, (B) wrong classifications for 6-
story hotel, (C) wrong classifications for 1-story library, and (D) wrong classifications for 7-story commercial office building.
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monitored structural seismic response vibrations were used as a
supplementary test dataset for further evaluation.

CESMD-Monitored Vibration Identification
The real monitored seismic responses of buildings were essential
for the test because feature-based transfer learning was adopted to
allow the simulated vibration-trained model to identify real
monitored vibrations. Hence, approximately 130 monitored
vibrations provided by CESMD were used for the test in this
study. The data came from nine buildings with steel and concrete
structures, including a 4-story hospital, 6-story and 8-story hotels,
and 10-story, 13-story, and 22-story office buildings. The short-
term energy method was used to intercept the effective vibrations
over a period of 40 s, after which these effective vibrations were
coupled with smartphone-white noise. Because the CESMD data
were collected by professional sensors with high accuracy and low
noise, coupling the smartphone-white noise with the monitored
data ensured that the test datasets simulated the actual collection
environment.

The previously discussed identification results for the
simulated vibrations proved that only the VGG19 model could
accurately identify the structural seismic responses. Therefore,
the test study using the real monitored vibrations was conducted
only for the VGG19 model, and the identification results are
shown in Figure 9A. The identification accuracy of the VGG19
model reached 96%, which was slightly higher than that when
identifying the simulated vibrations. Notably, the most important
metric was the identification accuracy for the structural seismic
responses in this study, namely the recall ratio of the confusion
matrix (3, 2) in Figure 9A. The recall ratio reached 90.7%, which
was similar to the value of the confusion matrix (3, 2) in
Figure 8B (recall ratio � 89%). Simultaneously, the value of
the confusion matrix (3, 1) in Figure 9A reaches 96.7%,
indicating that the VGG19 model did not arbitrarily identify
normal vibrations as structural seismic responses and collect
them. Consequently, the test results for the VGG19 model
revealed the efficiency of vibration identification and the
reliability of the application. However, they also showed that
the performance of the proposed method needs further
improvement in the future.

Moreover, the incorrectly identified structural seismic
responses were filtered and analyzed to reveal the primary
reason for the identification error. The time–frequency
characteristic metrics of the incorrectly identified seismic
responses were plotted in the corresponding wavelet transform
images, as shown in Figures 9B–D. The analysis revealed that the
incorrect classifications came from the vibrations of the 6-story
hotel, 1-story library, and 7-story commercial office, indicating
that the identification errors were not directly associated with the
structural height and function. Additionally, from the perspective
of the time–frequency domain characteristics, the high-frequency
components of the incorrect classifications were significant and
close to those of normal vibrations. The apparent high-frequency
components were different from the energy concentrations of the
structural seismic responses, confusing the trained VGG19model
and producing the incorrect classifications.

Smartphone-Monitored Vibration
Identification
Additionally, identification for smartphone-monitored structural
seismic responses was conducted. Notably, since the publicly
available smartphone-monitored structural seismic response was
limited, only three seismic responses from MyShake (Kong et al.,
2016; Patel et al., 2020) were adopted for the identification
analysis in this study. The time-series data and the
corresponding time–frequency domain characteristics are
demonstrated in Figure 10. Obviously, the characteristics of
the three data are different, and the seismic response
amplitude in Figure 10E is small.

Subsequently, the best performed VGG19 model in CESMD-
Monitored Vibration Identification was adopted for vibration
identification, and it only incorrectly identified the seismic
response shown in Figure 10E. The primary reason is that the
seismic response’s amplitude was so small that the identification
system misjudged it as a normal vibration. Overall, the results of
smartphone-monitored vibration identification have proven the
effectiveness of the proposed method, and more smartphone-
monitored data will be used for validation in the future.

In summary, based on tests of four deep neural network
models, the performance of the VGG19 model was excellent and
stable, while those of the CNN2D, InceptionV3, and
ResNet50V2 models were relatively poor. Simultaneously, the
vibration identification results for the simulated and real
monitored structural seismic responses were consistent,
proving the high consistency of the time–frequency
characteristics between the simulated and monitored
vibrations, and the rationality of the feature-based deep
transfer learning method. Therefore, the VGG19 neural
network model with the wavelet coefficient matrix input is
recommended to identify structural seismic responses.
Additionally, it is worth noting the following limitations of
the proposed method 1) when the noise of the monitored
vibration is large (approximately >6 mg), or the seismic
response is small (approximately <6 mg), the identification
system may misjudge; 2) when the horizontal accelerations
exceed approximately 0.3 g, smartphone’s slip may cut off the
peak amplitudes of smartphone-monitored vibration (Kong
et al., 2016). Future studies will be conducted to overcome
these limitations.

CONCLUSION

A novel identification method for structural seismic responses
was proposed in this paper. It adopts deep transfer learning and
the input of time–frequency domain characteristics. The method
is composed of the primary extractor, deep extractor, and
classifier modules. The primary extractor adopts wavelet
transform analysis; the deep extractor uses deep transfer
neural networks; and the classifier utilizes a simple neural
network to conduct the final classification. The detailed
conclusions are as follows.
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(1) It was difficult to adopt real monitored structural seismic
responses in vibration identification training because of their
small quantity; therefore, transfer learning was utilized, and
simulated seismic responses were used to enrich the datasets.
In feature-based transfer learning, the source domain
consisted of the responses simulated by finite element
analysis, and the target domain consisted of the real
monitored seismic responses. Moreover, their
time–frequency domain characteristics were highly
consistent, supporting feature-based transfer learning. The
test results also proved the consistency and rationality of the
adopted transfer learning method.

(2) The fine-tuning transfer learning method was adopted to
address the big-data classification problem of normal

vibrations and simulated structural seismic responses,
because it is difficult to use simple deep neural networks
to extract and classify vibration features. The pre-trained
VGG19 network model could effectively perform the
vibration identification. In contrast, the InceptionV3
and ResNetV2 network models seriously overfitted
because their network architectures were too
complicated for the binary classification problem in
this study.

(3) The VGG19 network model performed outstandingly in the
training, validation, and test processes, with an accuracy
above 90%, when using the time–frequency characteristic
matrices as the input. Hence, the combination of the
characteristic matrix input and the VGG19 model is

FIGURE 10 | Three smartphone-monitored structural vibrations. (A–B) Time-series data and time–frequency characteristics of structural seismic response for
training MyShake model (Kong et al., 2016), (C–D) Time-series data and time–frequency characteristics of the structural seismic response of a 24-story building (Patel
et al., 2020), (E–F) Time-series data and time–frequency characteristics of the structural seismic response of an 8-story building (Patel et al., 2020).
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recommended to identify structural seismic responses.
Moreover, large vibration noises and small seismic
responses may lead to unsuccessful identification, and
excessive horizontal accelerations may cause
smartphone’s slip and inaccurate recording of the
vibration. Further improvements need to be made in the
future.
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