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The potential for using MgO and SiO2, recovered from olivine, was investigated for use as a
cementitious binder system. The MgO to SiO2 proportion for the binder was fixed at 1:1.
The nature of the hydration products were characterized using a variety of techniques
including isothermal calorimetry, XRD, FTIR, and SEM. The primary binding component of
the paste was determined to be magnesium silicate hydrate (M-S-H). The recovered silica
exhibited faster reactivity compared to commercially available silica fume. Compressive
strengths in excess of 20MPa were obtained using the materials recovered from olivine.
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INTRODUCTION

Considerable research has been conducted investigating the potential use of MgO-SiO2 binder
systems (Zhang et al., 2011, Zhang et al., 2014; Tran and Scott, 2017; Shah and Scott, 2019; Bhagath
Singh et al., 2020). The poorly crystalline magnesium silicate hydrates (M-S-H) formed by the
reaction between MgO and reactive silica sources provides binding characteristics similar to calcium
silicate hydrates (C-S-H) formed in the pozzolanic reaction of supplementary cementitious materials
with calcium hydroxide. The structural form of the two are somewhat different with C-S-H typically
having a dreierketten structure whereas M-S-H has a layered silicate structure similar to clay
minerals (Bernard et al., 2017). The specific characteristics of the M-S-H is affected by the physical
and chemical properties of the constituent raw materials (MgO and SiO2), mix design and curing
conditions (Jia et al., 2017; Tran and Scott, 2017; Abdel-Gawwad et al., 2018; Li et al., 2018; Sonat and
Unluer, 2019; Dhakal et al., 2021; Shah and Scott, 2021b). MgO-SiO2 binders have shown potential
for applications in: waste immobilization/encapsulation where a lower pH (< 10.5) environment is
required; as refractory castables because of high melting temperature; and as building materials due
to excellent mechanical properties (Zhang et al., 2012, Zhang et al., 2014;Walling et al., 2015;Walling
and Provis, 2016; Tran and Scott, 2017).

The MgO required for such a binder system is typically obtained from the calcination of
magnesite (MgCO3) in a temperature range of 700–1000°C. The reserves of magnesite are
sporadically distributed around the world with the majority of the deposits located in a small
numbers of countries. The identified total reserves of magnesite is around 13 billion tonnes while the
annual global production of Portland cement (PC) is ∼3 billion tonnes (Shand, 2006; UN
Environment et al., 2018). If MgO-SiO2 binder are to be used on a large scale and as a potential
substitute for PC, it is essential to look for alternate sources of magnesium oxide. In addition, most of
the studies investigated MgO-SiO2 binders, use either silica fume or micro-silica as the reactive SiO2

source (Jin and Al-Tabbaa, 2014; Zhang et al., 2014; Tran and Scott, 2017). The quantities of these
SiO2 sources are limited and most are already being used in the conventional cement industry. The
use of fly ash and slag alongside MgO has also been reported. However, the low reactivity of fly ash
and the presence of CaO in slag limits the effectiveness of the binder (Vandeperre et al., 2008; Jia
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et al., 2017; Tran, 2019). Alternatively, the use of calcined clay and
rice husk ash as SiO2 source has also been reported (Sonat and
Unluer, 2019; Shah and Scott, 2021b, 2021a).

Ultramafic magnesium silicate minerals are abundantly
available worldwide with reserves of over 10 trillion tonnes
(Pacheco-Torgal et al., 2018). The use of magnesium silicate
minerals has been proposed as one potential option for carbon
sequestration. The sequestration of CO2 using magnesium silicate
minerals and production of MgO, as a potential commercial
binder, is currently limited by the availability of an energy
efficient industrial process (Matter and Kelemen, 2009; Sanna
et al., 2013, 2014; Vlasopoulos and Cheeseman, 2013; Walling
and Provis, 2016; Gartner and Sui, 2018; UN Environment et al.,
2018). Magnesium silicate minerals could however serve as an
ideal feedstock to produce MgO-SiO2 binders, if the MgO and
SiO2 could be extracted efficiently. Unlike magnesite for MgO or
limestone for PC that releases chemical CO2 in raw materials
during calcination, magnesium silicate minerals do not have any
inherent CO2 associated with them. Therefore, it possesses the
potential to be a truly carbon negative binder. The cement
industry accounts for approximately 8% of global CO2

emissions (Kajaste and Hurme, 2016; Gartner and Sui, 2018),
and the successful development of a method to extract oxides
from magnesium silicate minerals would bring significant
benefits.

The authors have recently demonstrated an energy-efficient
method that could be used to separate MgO and SiO2 from
olivine, a form of magnesium silicate minerals (Scott et al., 2021).
The process uses a combination of acid digestion and electrolysis
techniques for the successful extraction of oxides. The binding
characteristics of the extracted oxides however have not been
investigated yet. In this proof of concept study, the efficacy of the
oxides extracted from olivine used to produce aMgO-SiO2 binder
system are investigated. The MgO-SiO2 binder characteristics are
determined using a range of techniques including isothermal
calorimetry, XRD, FTIR, and compressive strength.

EXTRACTION METHOD

Ground olivine with an average particle size of 30 um was used in
the study. The olivine was mixed with 2 M HCl in a ratio of 1:10
(%W/V) in a beaker and placed on a hot plate at a temperature of
60°C and stirred continuously. After 2 h of digestion, the solution
was left to stand for one hour and subsequently decanted to
remove any unreacted olivine. The decanted solution primarily
consists of silica, magnesium, iron, and chloride ions as
confirmed by ICP-MS testing. The components were
individually separated by increasing the pH in steps. Firstly,
magnesium hydroxide (0.2% w/v) was added in the decanted
solution to raise the pH to >3.1. The increase in pH results in
condensation and polymerization of silicic acid (Si(OH)4)
forming silica gel (Besbes et al., 2009). The silica formed
through this process is analogues to the sol-gel method used
to extract nano-silica from sodium metasilicate (Gorrepati et al.,
2010; Katoueizadeh et al., 2020). The polymerized silica was
filtered out and repeatedly washed with water to remove any

excess acid or chloride salts. Thereafter, 2 M NaOH was added in
the filtered solution to raise the pH to 6.5 to 7. The increase in pH
leads to precipitation of iron hydroxide, which was subsequently
removed through either filtration or centrifugation. The filtered
solution was electrolyzed to form magnesium hydroxide at the
cathode. Approximately 35 g of Mg(OH)2 was obtained from
100 g of olivine, of which 1 g was added during the silica
precipitation stage. Hydrogen gas (cathode) and chlorine gas
(anode) could be recovered to produce HCl for reuse in the
digestion process. The developed process could result in
significant CO2 savings, even if fossil fuels were used as the
energy source, as no chemical CO2 is released in the process. In
the final stage of the binder component production, the Mg(OH)2
obtained from electrolysis was calcined at 500°C for 1 h to
produce MgO.

The silica (RS) and MgO (RM) recovered from olivine using
the extraction procedure was assessed for its binder
characteristics. The performance of MgO-SiO2 binder prepared
from the recovered material was compared with commercially
available MgO and silica fume using: isothermal calorimetry,
XRD, FTIR, and SEM.

MATERIALS AND EXPERIMENTS

Olivine used for extraction of MgO and SiO2 was sourced from
Red Hills, New Zealand. Commercial MgO (CM) and Silica fume
(SF) were obtained from Sibelco Australia and Sika New Zealand,
respectively. The chemical composition of the olivine, recovered
and commercial MgO and SiO2 are given in Table 1. The high
LOI of recovered silica is associated with the loss of water
molecules trapped in polymerized silica network (Raza et al.,
2018). Figure 1 shows the XRD patterns of the rawmaterials. The
recovered and commercial MgO show similar characteristics with
minor peaks of uncalcined brucite. The recovered silica has an
amorphous hump analogous to the commercial silica fume with
minor impurities of unreacted olivine (lizardite and forsterite).

The MgO-SiO2 binders were prepared by mixing MgO and
SiO2 at 1:1 ratio by mass. The composition of the mixes
investigated are presented in Table 2. Paste samples were
prepared at a water to binder (w/b) ratio of one. This
produced mixes with consistent workability and allowed the
intrinsic hydration behaviour of the materials to be
determined without the influence of any external agents such
as superplasticiser.

Approximately 20 g of paste sample was placed in an
isothermal calorimeter maintained at 20°C (Calmetrix I-Cal
Flex) to measure the heat evolved during hydration in
different mixes. The heat values were recorded every 5 min for
72 h. The remaining paste was poured into PVC vials (Diameter
20 mm, Height 100 mm) and cured until the age of testing in a
room maintained at 20°C.

Paste samples were taken from the PVC vials after 3, 7, and
28 days for hydration study. The samples were subsequently
stored in isopropanol for 7 days to arrest hydration followed
by 3 days vacuum drying. The dried samples were ground with a
mortar and pestle and used for further analysis. XRD scans were
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carried out in a range of 5 to 70° using Rigaku SmartLab
Diffractometer (40 kV, 30 mA) installed with CuKα
radiation. The FTIR spectra were obtained in the range of
4000–400 cm−1 with a resolution of 4 cm−1 using Bruker
Spectrometer Alpha II. The spectrum obtained was based
on an average of 25 scans. The morphology of hydration
products of the different mixes at 28 days were characterized
using scanning electron microscopy. The vacuum dried
fractured samples were coated with carbon prior to
imagining using a JEOL 6400 in secondary electron mode
with an accelerating voltage of 15 kV.

Mortar samples were also prepared for the mixes to determine
compressive strength. A binder to sand ratio of 1:3 was kept
constant for all the mixes. The recovered materials were found to
have a very high water demand similar to silica fume. The water
to binder ratio and superplasticizer addition therefore was varied
to obtain consistent spread, using the drop table, of
approximately 110 ± 10 mm between the mixes, similar to
ASTM C109, (2010). 50 × 50 × 50 mm cube samples were
cast and placed in an environmental controlled room
maintained at a temperature of 20°C and 60% relative
humidity for 24 h. The samples were then wrapped in plastic
and stored at 20oC until the age of testing.

RESULTS AND DISCUSSION

Heat Evolution
Figure 2 shows the cumulative heat evolved from the hydration
reaction of different mixes over a period of 72 h measured using
isothermal calorimetry. The amount of heat released gives an
indication of the extent of reaction between MgO and SiO2. A
distinct variation in the peak heat evolved and rate of heat
evolution can be observed between mixes. Both the mixes with
recovered silica (RS) showed a faster and higher heat of hydration
compared to silica fume (SF) mixes. The total heat released for
CM-SF at the end of 72 h was less than the heat evolved fromCM-
RS mix in 24 h. This suggests a significantly higher reactivity
associated with RS as compared to SF. The RM-RS mix also had a
higher total than the RM-SF mix, although the difference was not
as great as observed between the CM-RS and CM-SF mixes. The
efficacy of recovered MgO (RM) was also compared with the
commercial MgO (CM). The heat released in RM-SF mix was
consistently higher than CM-SF mix throughout the testing.
Whilst the total heat evolved in RM-RS, mix was lower than
CM-RS mix, it was more than the commercial CM-SF mix. The
results show interesting behavior of the materials recovered from
olivine in MgO-SiO2 binder formulation.

Hydration Products
Qualitative XRD Analysis
The XRD scans of 7 days hydrated samples is shown in Figure 3.
Prominent peaks corresponding to brucite, formed on the
hydration of MgO, are visible in all the mixes. Although, a
distinct difference could be observed between the intensity of
peaks in SF and RS mixes. The lower or subdued intensity of the
brucite peaks in RS mixes indicates a rapid reaction of RS with
brucite to form M-S-H. Broad peaks indicative of amorphous
M-S-H (represented by grey bands in Figure 3) were evident in

TABLE 1 | Chemical composition of raw materials (%/100 g).

% CM RM SF RS

SiO2 2.11 0.19 94.85 63.18
Al2O3 0.15 0.16 0.57 0.23
Fe2O3 0.35 11.45 0.33 4.65
CaO 2.8 0.5 0.27 0.57
MgO 84.16 81.66 0.47 13.92
Na2O <0.01 <0.01 0.33 0.03
K2O <0.01 <0.01 0.76 0.06
LOI 10.66 5.63 1.94 16.37
SSA (m2/g) 37 23 17 93

FIGURE 1 | XRD patterns of raw materials (P: Periclase, B: Brucite, L:
Lizardite, F: Forsterite).

TABLE 2 | Mix design proportion.

Notation Commercial MgO Silica Fume Recovered MgO Recovered Silica

CM-SF 0.50 0.50
RM-SF - 0.50 0.50 -
CM-RS 0.50 - - 0.50
RM-RS - - 0.50 0.50
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the recovered silica mixes confirming the above postulation
(Tonelli et al., 2016; Tran and Scott, 2017; Zhang et al., 2018).
The observations are in line with the isothermal calorimetry
results, which also showed the highest energy for RS mixes. The
higher reactivity of RS is primarily attributed to a high specific
surface area. Studies have reported the silica recovered through
the sol-gel method is amorphous in nature and possess
characteristics of nano-silica (Lieftink and Geus, 1998;
Gorrepati et al., 2010; Rahman and Padavettan, 2012). The
CM-SF mix displays the highest intensity of unreacted MgO
peaks of all the mixes suggesting an overall lower degree of
hydration. The slower reaction of SF to form M-S-H in the

CM-SF mix may keep the pore solution saturated with
magnesium ions, which might slow down the further
dissolution of MgO. In the case of the CM-RS mix, the
consumption of brucite by RS would create a need for more
magnesium ions in the pore solution, which in turn prompts the
further dissolution of MgO. This concept is verified from the
absence of unreacted MgO peak in CM-RS mix and presence of
any observable M-S-H peaks in CM-SF mix. The miniscule peak
of unreacted MgO in RM-SF mix suggests a faster dissolution of
RM as compared to CM consistent with higher heat evolution in
calorimetry. In addition, the lower peak intensities of brucite and
more prominent broad peak corresponding to M-S-H in the RM-
SF mix suggests a faster reaction of the brucite with silica to form
M-S-H in the binder system. This is an interesting observation,
which needs further investigation.

Figure 4 shows the XRD patterns of 28 days hydrated samples.
With the increase in the hydration age, the broad peaks
corresponding to M-S-H are even more evident particularly in
the RM-RS mix with no residual brucite or MgO peaks. Even for
the RM-SF mix, the M-S-H peaks are noticeable at 28 days as
compared to CM-SF mix where the M-S-H peaks are still not
clear. This observation confirms that the materials recovered
from olivine could be effectively used to produce MgO-SiO2

binder. The presence of peaks corresponding to brucite in all the
mixes (except RM-RS) indicates the reaction was incomplete and
would continue to undergo a transition with time.

FTIR Analysis
The FTIR spectra of 7 and 28 days hydrated samples are shown in
Figures 5, 6, respectively. The band at ∼3700 and ∼1650 cm−1 are
associated with asymmetrical stretching and bending vibrations
of O-H bonds, respectively, indicating presence of brucite
(Tonelli et al., 2016; Bernard et al., 2019). This confirms that

FIGURE 3 | XRD patterns of 7 days hydrated samples (P: Periclase, B:
Brucite, L: Lizardite, grey bands correspond to M-S-H).

FIGURE 2 | Energy released on hydration (J/100 g of binder).

FIGURE 4 | XRD patterns of 28 days hydrated samples (P: Periclase, B:
Brucite, L: Lizardite, grey bands correspond to M-S-H).
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the recovered MgO from olivine is reactive and forms brucite
similar to commercial MgO. The broad band between ∼3600 and
∼3200 cm−1 is characteristically associated with Mg-OH
stretching due to the presence of M-S-H phase (Jin and Al-
Tabbaa, 2014; Tonelli et al., 2016). A distinctive difference is
observed at 7 days between SF and RS mixes in this region. The
faster reactivity of RS results in the formation of M-S-H, which
can be established from the visible band at ∼3600 to ∼3200 cm−1.
However, the absence of this band for SF mixes indicates a lower

overall quantity of M-S-H at 7 days, which is consistent with the
XRD results where peaks corresponding to M-S-H were not as
definite. With progress in hydration, the band is clearly visible in
SF mixes at 28 days confirming the formation of M-S-H. The
intense bands in the region of ∼1250 to 1000 cm−1 are associated
with Si-O-Si vibrations (Brew and Glasser, 2005; Tonelli et al.,
2016; Abdel-Gawwad et al., 2018). The Si-O-Si internal vibrations
linked to unreacted silica are generally centered at the higher end
of the band. The RS mixes showed a band with the peak centered
at ∼1025 cm−1 corresponding to bending vibrations of Si-O-Si in
M-S-H. The SF mixes at 7 days displayed peaks centered at
∼1100 cm−1, which are a result of the lower reactivity of the
SF to form M-S-H. At 28 days, the peak for SF mixes aligns with
RS mixes indicating formation of M-S-H. The disappearance of
the peak at ∼800 cm−1 associated with Si-O-Si internal vibrations
of unreacted silica from 7 to 28 days for SF mixes confirms
conversion to M-S-H (Abdel-Gawwad et al., 2018; Bhagath
Singh et al., 2020). Similar changes corresponding to the peak
shift on continued hydration have been reported for MgO-SiO2

binder system (Brew and Glasser, 2005; Bhagath Singh et al.,
2020). The observation of Mg-OH band in RMmixes and change
in Si-O-Si band position confirms that the products recovered
from olivine have the potential to produce M-S-H on hydration.

Microstructure
Figure 7 shows the SEM images of 28 days hydrated samples of all
the mixes. Homogenous and well-distributed precipitation of
hydration products was observed throughout the
microstructure. The gel like characteristics of the hydration
products in the microstructure suggests the presence of an
M-S-H phase. The precipitation of M-S-H surrounding the
spherical SF particles can be clearly seen in both the CM and
RMmixes. The existence of spherical SF particles implies that the
reaction is incomplete and would continue over time. A dense
microstructure was observed for the recovered silica mixes. The
XRD and FTIR results showed the proportion of M-S-H formed
in RS mixes was likely to be higher than in the SF mixes. The
similarity between the hydrated microstructures of commercial
MgO and SiO2 and the recovered materials from olivine confirms
the ability of olivine to act as the raw materials for the production
of MgO-SiO2 binders.

Compressive Strength
The compressive strength of mortar samples measured at 3, 7,
and 28 days is provided in Table 3. A higher w/b ratio was needed
for mixes containing recovered materials due to their higher
specific surface area and resulting water demand. Due to the
difference in the w/b ratio between the mixes, a direct comparison
of the performance is not possible. However, an indication of the
material characteristics could be established. The 3 days
compressive strength of CM + RS mix was ∼60% higher than
CM + SF mix even with a higher w/b ratio. The faster reactivity of
the RS as compared to SF could have resulted in the rapid
formation of M-S-H, the main strength-imparting phase. This
is consistent with the calorimetry results where a higher total heat
was observed in CM + RS mix as compared to CM + SF mix.
Higher compressive strengths were also observed even after

FIGURE 6 | FTIR spectra of 28 days hydrated samples.

FIGURE 5 | FTIR spectra of 7 days hydrated samples.
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7 days. The XRD and FTIR results of the 7 days hydrated CM-RS
mix distinctly showed the formation of M-S-H and its
corresponding effect is clearly visible from the strength values.
At later ages (28 days), the slower reacting SF continued to form
M-S-H, resulting in an increase in strength. The difference in
strength at 28 days between CM-SF and CM-RS mix is likely due
to the difference in w/b ratio. The RM-RS mix also showed ∼20%
higher strength as compared to CM-SF mix at 3 days even with a
50% higher w/b ratio. The continual strength gain with age
indicates continuous formation of hydration products. The
strength development characteristics displayed by RM-RS mix
validates the possibility of producing MgO-SiO2 binder using
magnesium silicate minerals.

The mechanical performance of the binder system was affected
by the physical and chemical features of the raw materials and the
mix design. The porosity of themortar was not directly measured in
this investigation due to the limited amount of recovered material.
The similar spread values for the different mixes provides some
indication of the workability but variations in w/b ratio will also

contribute to differences in the volume of capillary pores. Further
work is necessary to accurately quantify both the fresh and
hardened properties (including: porosity, permeability, resistivity)
of the mortar or concrete. An improvement in the mechanical
performance of the binder from recovered materials is likely with
use of water-reducing admixtures, improved mixing, and
improvement in the recovery process.

Sustainability Assessment
The production of Portland cement typically requires
approximately 3 GJ of energy and releases a total of 830 kg of
CO2, per tonne of clinker for a modern kiln (Gartner and Sui
2018). The majority of the CO2 is released from the calcination
of limestone. In comparison the production of 1 tonne of MgO
from olivine requires ∼9.3 GJ/tonne, however every tonne of
MgO is also accompanied by 1.27 tonnes of reactive silica. While
a MgO:SiO2 ratio of 1:1 was used in this work, Tran and Scott
(2017) have shown effective binder systems can be produced
with MgO:SiO2 ratios form 0.4 to 0.6 for commercially available
MgO, frommagnesite, and silica fume. The energy demand for a
binder using all of the recovered MgO and silica at a ratio of 0.44
would be ∼4.1 GJ/tonne. While the total energy is higher for the
MgO-silica binder system there is no chemical CO2 produced in
the manufacturing process. The CO2 generated from the
production of the binder therefore will depend upon the
source of electricity. If green energy is used then the
associated CO2 is essentially zero. In a more realistic

TABLE 3 | Summary of compressive strength (MPa) of mixes.

CM-SF (W/B: 0.50) CM-RS (W/B: 0.58) RM-RS (W/B: 0.75)

3 Days 13.7 21.9 16.5
7 Days 30.1 31.4 21.6
28 Days 49.1 36.0 22.0

FIGURE 7 | SEM images of 28 days hydrated samples.
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situation where a mixed energy system is used such as California
with ∼50% fossil fuels and CO2 emissions of 62.5 kg/GJ, the total
CO2 emissions for the MgO-SiO2 binder are 255 kg/tonne,
which is considerably less than that for Portland cement.

CONCLUSION

This study investigated the hydration andmicrostructure features
of MgO-SiO2 binders produced using materials recovered from
olivine. The characteristics of the binder produced were compared
with binders made using commercially available materials. The major
findings from the study can be summarized as follows:

• The recovered MgO and SiO2 both showed a greater reactivity
compared to commercial counterparts. The use of recovered
silica in particular helped in enhancing the rate of hydration.

• The formation of M-S-H during hydration was confirmed in
binder produced using the recovered materials.

• A comparable compressive strength performance of the CM-
RS mix and CM-SF mix was observed. 28 days mortar
strength in excess of 20 MPa were obtained with the
recovered materials in the RM-RS mix.

The results confirm that is possible to produce MgO-SiO2

binders from magnesium silicate minerals with
comparable results to more commonly available commercial
materials.
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