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Within the Space@Sea project, funded by the Horizon 2020 program, a concept for

a floating island was developed. The main idea is to create space in the offshore

environment, which can be used to harvest renewable energy, grow food or build a

maritime transport and logistic hub. The island is designed as an assembly of platforms,

which are connected by ropes and fenders. These connection elements are considered

critical, as they have to carry extreme loads in the severe offshore environment. At the

same time, any failure in the connecting elements might put the entire platform structure

at risk. This paper presents a feasibility study for the fault detection in the connection

elements using Extended Kalman filters. For various test cases, typical parameters of

the connecting elements are estimated from motion data of the structure. Thus, the

technique reveals changes in the connections. For various test cases, it is shown that

fault detection is possible. Not only a failure of a single connecting rope but also multiple

faults in the system can be detected.

Keywords: extended Kalman filter, fault detection, offshore, floating islands, multi body dynamics,

Pierson-Moskowitz power spectrum

1. INTRODUCTION

The Space@Sea project was launched in November 2017, as part of the EU innovation and research
program Horizon 2020. The aim of this project was to develop a durable and sustainable solution
for the creation of space in marine environments using flexible floating islands. For this purpose,
a modular system consisting of floating multi-function platforms was developed. Initially, four use
cases were defined: (1) A transport and logistics hub, (2) a facility for generating electricity from
renewable sources, (3) a structure for aquaculture to produce food (Schultz-Zehden et al., 2018)
and (4) a permanent habitat for people. The implementation of floating modular platforms as an
additional terminal of a port is described in Souravlias et al. (2020). The easy implementation of
a combination of several of these use cases was a key goal of the project and therefore, a major
focus was put on the modularity of the platform system. Modularity was also a key factor for
construction and maintenance of the system to allow for an easy connection and separation of
individual elements (Flikkema and Waals, 2019). Figure 1 shows a possible platform arrangement
of a setting with 25 platforms with mooring elements at the corner platform elements. The corner
platforms are marked with “C,” the edge platforms with “E” and the platforms inside of the platform
arrangement with “I.”
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FIGURE 1 | Platform arrangement of 25 connected platforms and eight mooring lines.

Environmental factors like wind and waves may cause
significant forces on the platforms and in the connection
elements. These forces essentially limit the number of possible
locations, where it is safe to install such a platform structure.
To keep the number of possible locations high, it is necessary to
design the platform system for unshielded offshore areas. This
means that the connection elements must be able to withstand
very high forces. To guarantee the reliability of the platform
arrangement and to decrease service costs, it is advantageous to
detect potential faults in the platform connection elements as
soon as possible. In this paper the pretensioned ropes, consisting
of synthetic fibers, are assumed to be the critical elements of the
system, as there are only three ropes and at least twelve fenders
per side of a platform. Some advantages of synthetic fiber ropes
are the lower weight, hence they are easier to install and need
no grease, more detailed advantages are listed in Foster (2002).
Decisions on the replacement of ropes are based upon visual
inspections and the count of load cycles (Oland et al., 2017).
Often visual inspection is only feasible by dismounting the ropes.
Offshore rope surveying can be of high risk for investigators and
require plenty of manpower. This is the case in the platform
arrangement, where ropes run through pipes inside the modules,
the rope dismantlement is dangerous and requires huge effort
when carried out offshore.

The main damage mechanisms for fiber ropes are abrasion,
creep, UV radiation, tensile fatigue, heating, compression fatigue,
and shock (Oland et al., 2017). Rope fiber damages and fatigue
affects the rope behavior like breaking strain, breaking stress, and
stiffness change (Beltran and Williamson, 2011). The weakening

of the platform connecting ropes lead to undesirable dynamic
behavior of the platform arrangement. Higher strain of defect
ropes leads to shocks and higher movement amplitudes of
the platforms, which can be a reason that the platforms can
no longer be used for the respective application. To avoid
this effect, continuous rope condition monitoring is of major
interest. Several condition monitor techniques for fiber ropes
used in mooring offshore applications as vibrational techniques,
magnetic resonance, conductive internal elements and fiber
optics are shown in Beltran andWilliamson (2011) and Gordelier
et al. (2020). Some monitoring techniques require sensors inside
the rope, therefore special rope design is necessary, which must
not influence the rope structure. Another way is to determine
physical rope values concluding rope faults. As the detailed
platform design is in concept phase, indirect rope condition
monitoring techniques are preferred. Therefore, the estimated
rope stiffness was chosen as the relevant parameter for condition
monitoring in this work.

There are studies which use fault detection techniques on
offshore mooring lines. Hassani et al. (2018) uses dynamic
hypothesis testing. Siréta and Zhang (2018) applies an artificial
neural network in order to detect mooring line faults on offshore
units based on GPS and motion sensors. Liu et al. (2020)
shows mooring lines fault detection of floating offshore wind
turbines using a wave-excited linearmodel based onKalman filter
algorithm for the JONSWAP spectrum. Kalman filter techniques
can detect changes in parameters, which cannot be measured
directly (Dan, 2006). The Kalman filter techniques has a wide
range of applications. An overview about industrial applications
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of the Kalman filter can be found in Auger et al. (2013),
applications of the Kalman filter for fault detection are shown
in Eykeren et al. (2012), Jesussek and Ellermann (2014), and
Ayaz (2015). Offshore applications of the extended Kalman filter
to structural dynamic systems are shown in Imai et al. (1989)
and Beltran and Williamson (2011), whereas hydrodynamic
coefficients matrices with non-linear drag and linear inertia
forces are identified for an offshore tower excited by wave
forces. An important huge field of application of the Kalman
filter technique in marine application is dynamic positioning.
Most modern marine vessels use motion control systems to
hold a certain position or to follow a desired path. Research
in this area includes the implementation of the Kalman filter
for ship motion and course keeping control systems, position
and heading regulation, path following and trajectory tracking.
A position and heading control system applying wave filtering
using Kalman filters and Kalman filter design for ship course-
keeping autopilots is shown in Perez (2010). The Application
of the extended Kalman filter for moving horizon estimation
for a marine dynamic positioning system is done by Zhao
and Su (2015). In Triantafyllou et al. (1983), a Kalman filter
is used for real time estimation of heave, pitch, roll, sway
and yaw motion for a VTOL aircraft landing is shown. More
applications of the Kalman filter for dynamic positioning can
be found in Balchen et al. (1980), Grimble et al. (1980), and
Alcocer et al. (2007).

As the platform arrangement shows a strongly non-linear
behavior, non-linear parameter identification methods are
considered. Many non-linear state observers were developed
during the last decades, some applications are shown in Garrido
et al. (2004), Lin and Betti (2004), Farza et al. (2009), and
Torres et al. (2015). One observer which is able to estimate states
and parameters of a non-linear dynamic system from indirect
measurements is the extended Kalman filter, which is based on
a standard Kalman filter observer used for linearized systems.
Mu et al. (2017) overcomes instability problems of the extended
Kalman filter due to real-time updating of the noise parameters.
Koh et al. (1991) presents a substructure approach for the
extended Kalman filter to estimate the stiffness and damping
coefficients of a structure. This paper is a feasibility study to
proof whether it is even possible to detect faults of dynamic
systems with a huge amount of degrees of freedom by applying
the extended Kalman filter algorithm. Therefore, these advanced
Kalman filter techniques are not further considered. The Kalman
filter provides estimates of unknown states and parameters in
the presence of uncertainties. The non-linear multi-body system
of the platform arrangement is known which is superimposed
by some uncertainties, the system input is generated by time
varying stochastic wave hight and the measurements is noisy.
Concerning these circumstances, the extended Kalman filter
observer is chosen for the rope stiffness estimation to detect
faulty ropes based on acceleration data measured at different
points of the platforms. With this method, faults in the rope
connection elements, e.g., cracks or ruptured strands, can be
detected as a change in the stiffness of the connection element.
The presented paper demonstrates, on the basis of a simulated

model, the possibility to estimate critical parameters using
acceleration data.

2. METHODOLOGY

2.1. Multi-Body Platform System Dynamics
A multi-body system is a mechanical system that consists of
coupled bodies, which undergo translational and rotational
displacements under the influence of forces and moments. In
multi-body models, the bodies have mass, but the connecting
elements are considered massless. These coupling elements can
either be force elements (e.g., springs or dampers) that connect
two points of two bodies and exert a force or a moment on
these bodies, or they can be binding elements (e.g., joints or
guides) that define the position of one body relative to another.
The focus of this analysis lies on the rigid body notations of the
platform elements.

2.2. Concept of the Platform System
The proposed design concept for Space@Sea uses synthetic
fiber ropes and elastomer fenders to connect the platform
elements and keep them in safe distance of one another. A first
conceptual test of a floating island, connected by ropes and
fenders, consisting of triangular platforms, was done by Waals
et al. (2018). Since the fields of applications for squared platforms
are higher, squared platforms are considered in this work. In
Figure 2 the arrangement of the synthetic fiber ropes, elastomer
fenders and mooring lines on four platform elements placed
on the corner of a platform array is shown. The platforms of
the system differ by the number of adjacent platforms. There
are interior platforms (I), with adjacent platforms on all sides,
platforms placed on the corner of the system (C), with two
adjacent platforms and edge platforms (E), with no adjacent
platform on one side. Considering the platform array with
25 platforms in Figure 1, there are nine platforms inside the
platform array, named interior platforms I1-I9, 12 edge platforms
with three adjacent platforms E1-E12 and four corner platforms
with two adjacent platforms C1-C4. The ropes are attached to
the side area of the corner and edge platforms where there are
no fenders. Acceleration sensors are situated on three different
positions. The two diagonally opposite sensors measure the
acceleration in x, y, and z direction, the third sensor measures
the acceleration in z direction. Different configurations of ropes
and fenders are possible. In this paper, we consider three fender
elements between adjacent platform elements and three ropes per
platform side. The twelve fenders per side, used at the Space@Sea
project shown in Figure 2 are grouped to give three sets with
four fenders.

The forces acting on the connection elements should be kept
at acceptable levels even in severe sea states. The stiffness of the
connection elements influences the forces significantly. As the
stiffness of a rope decreases linearly with its length, it is necessary
to use very long ropes, which go through the middle of the
platform elements in watertight steel pipes and are connected on
the exterior platform side area of the platform arrangement. In
this paper, the very low friction between the pipe and the rope is
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FIGURE 2 | Arrangement of the synthetic fiber ropes, elastomer fenders, and mooring lines on four platform elements placed on the corner of a platform array with

three acceleration sensors per platform.

neglected and the force in one rope is supposed to be constant
along its length.

The ropes will be pre-stressed to assure system stability.
Keeping tensile stress in the ropes at all times avoids heavy
shock. On the other hand, sufficient pretension also avoids
relative movement between the fender and the adjacent module.
The amount of necessary pretension depends on the expected
sea states at the platform location. The technical data of
the platform and the necessary parameters for the multibody
dynamic platform simulation are represented in Table 1.

To keep the whole platform system in place, mooring lines
are connected at the side area of the corner platforms, as shown
in Figures 1, 2. The mooring lines are linear springs in x and y
direction, which are fixed at the center of gravity at the corner
modules of the platform arrangement. They are not pretensioned
and cannot transmit compressive forces.

The platform elements have six degrees of freedom,
which results in 12 states. For the ith platform element
of an arrangement this gives the state vector x(i) =
[x ẋ y ẏ z ż ϕx ϕ̇x ϕy ϕ̇y ϕz ϕ̇z]

T
(i)
. The state vector consists of

the three position variables (x, y, z) and the three angles of
orientation (ϕx,ϕy,ϕz) shown in Figure 3 and the corresponding
translation and rotation velocities. For a complete platform
arrangement of npf platforms the number of states is given
by nst = 12 npf .

The measurement states of the ith platform are defined as
y(i) = [ẍ1 ÿ1 z̈1 ẍ2 ÿ2 z̈2 z̈3]

T
(i)

with seven accelerations of three

sensors measured in the platform coordinate system. For a
platform array of npf platforms with sensors attached to all
platforms there are nmeas = nse npf measured accelerations,
where nse is the number of measured accelerations per platform.

2.2.1. The Newton-Euler Method
Various methods can be used to create solvable systems of
equations for complex multi-body systems. The Newton-Euler
method was chosen for the simulation of the Space@Sea platform
system, because the forces in the connection elements, which
are of main interest, appear explicitly in the equations and do
not have to be calculated separately. The principles of linear
and angular momentum conservation are used to create the
differential equation system of the multi-body system. The
difficulty of that procedure is, that a free body diagram of every
body of the system is needed that is time-consuming for complex
multi-body systems and therefore another method for creating
the system of differential equations is mostly preferred to the
Newton-Euler method (Woernle, 2011). The multi-body system
examined in this paper is a modular system in which all elements
are identical. Figure 3 shows a single platform, placed inside the
platform array, with the forces andmoments acting on it. Starting
from this platform, the equations of motion are calculated from
Equation (15), which is also applied for the edge- and corner
platforms which only differ in having adjacent modules or not.
If there is no adjacent platform to a side, shown in Figure 2 for
an edge or a corner platform, fender forces of this side are set
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TABLE 1 | Simulation settings.

Symbol Definition Value Unit

npf Number of platform elements 25, 64 −
mpf Mass of a platform element 3862 · 103 kg

2pfx , 2pfy Inertia of a platform element around the x and y axis 663.29 · 106 kgm2

2pfz Inertia of a platform element around the z axis 1303.42 · 106 kgm2

dpf Thickness of a the platform element 6 m

u Gap between two platform elements without rope pretension 3 m

c Parallel distance between the ropes on a platform 15 m

ℓpf Side length of the platform 45 m

kr Stiffness of 1m rope 966 · 103 kN

kre Stiffness of mooring elements 20 · 103 kN/m

Fpre Pretension force of each rope 10 · 103 kN

kf Stiffness of a single fender (not grouped) 9768 kN/m

df Damping constant of a single fender (not grouped) 2627 kN s/m

ρw Density of seawater 1025.97 kg/m3

nr Number of ropes per platform side 3 −
nf Number of grouped fenders per platform side area 3 −
dvx , dvy Viscosity damping coefficient, x and y direction (Sigloch, 2005) 1.136 −

FIGURE 3 | Forces and moments acting on a single platform element with adjacent platforms on all sides and three fender per side area.

to zero. Also rope forces on this sides are not considered, hence
rope forces inside the platform are internal force. At the corner
platforms the mooring line forces are included. By applying

the Newton-Euler method, only a single free body diagram and
one set of differential equations is necessary to calculate the
mechanical behavior of the platform system.
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With the conservation of linear and angular momentum, six
differential equations per module can be set up. In order to
create a solvable system of differential equations, they must be set
up in a common global coordinate system. Therefore, rotation
matrices with cardan angles are used to rotate the relevant points
(e.g., anchoring points of the connecting elements) from the
respective local coordinate system into the global coordinate
system. Cardan angles are characterized by sequencing the
elementary rotations in order x-y-z. The elementary rotations
are in relation to the already rotated axis. Multiplying the three
rotation matrices of the elementary rotations results in the total
rotation matrix A (Woernle, 2011):

A =





cosϕy cosϕz − cosϕy sinϕz sinϕy

cosϕx sinϕz + sinϕx sinϕy cosϕz cosϕx cosϕz − sinϕx sinϕy sinϕz − sinϕx cosϕy

sinϕx sinϕz − cosϕx sinϕy sinϕz sinϕx cosϕz + cosϕx sinϕy sinϕz cosϕx cosϕy



 (1)

By performing a left-sided multiplication of the matrix A
with a position vector of any point on the platform, this
point is transformed into the global coordinate system and
can be used to set up the equations of linear and angular
momentum conservation. In this paper, the points of interest
are the anchoring points of the connecting elements fender and
ropes, because with these global coordinates the length of the
connecting elements are determined.

2.2.2. Forces and Moments Acting on the Platform
A single element, with the forces and moments acting on it,
is depicted in Figure 3. Forces which are acting between the
platform elements and the restraining of the corner elements to
the environment, are generated by the ropes, mooring elements,
and fenders. Under the assumption of linear elastic behavior, the
spring forces in the connection elements can be calculated by

Fc(r,f,m) = k δℓ r (2)

where k is the spring stiffness of the connection element, δℓ is
the difference of the current length compared to the length of the
relaxed element and r is the vector of the direction of the acting
force. The indices r, f , andm indicates whether a rope, fender, or
mooring line force is calculated. It is supposed that the mooring
elements do not change direction during simulation, they stay
parallel to the x and y axis of the global coordinates. In this
paper, the ropes and mooring elements can only transmit tensile
forces and the fenders can only transmit pressure forces. If δℓ is
positive at a fender connection or negative at a rope connection,
the respective force is set to zero. For the fenders, linear damping
is considered

Fdf = d vrel, (3)

where d = 4 df is the damping constant of the grouped fenders
and vrel is the relative velocity vector among the anchoring point
of the fender and the associated point on the adjacent module.
The associated point is the central support point of the fender on
the adjacent module at the resting state of the system, where there
are no external forces. Because of pretension and the resulting
friction forces, this point will not change while the system is

moving. The direction of the rope forces is determined from
the direction vector, which connects the two anchoring points of
the rope. The direction of the fender forces is determined with
the direction vector, which connects the anchoring point of the
fender and the associated point on the adjacent module.

Numerous external forces act on the multi-body system.
However, not all of them have the same order of magnitude. In
order to keep the complexity of the simulation low and therefore
guarantee fast computing speed, only the dominant forces are
considered. These are the buoyancy forces, gravitational force
and forces that result from the flow resistance. The buoyancy
force Fbz of the ith platform element in z direction is defined by

Fbz(i) = ℓ2pf g ρw

(

wav(i) +
dpf

2
− z(i)

)

(4)

where g is the gravitational acceleration, wav is the average wave
hight based on the platform area, which is explained in more
detail in section 2.2.3 and z is the z position of the respective
platform. In addition to the buoyancy force in the z direction,
the buoyancy moments Mbx and Mby have to be calculated,
which occur when the platform is rotating around the x or y axis.
Therefore, the buoyancy is no longer symmetrical. The buoyancy
momentMbx andMby of the ith platform are calculated with

Mbx(i) = −1

6
ℓ4pf ρw tanϕx(i) cosϕx(i) g (5)

Mby(i) = −1

6
ℓ4pf ρw tanϕy(i) cosϕy(i) g (6)

Here ϕx and ϕy are the angles of rotation of the platform around
the x axis. The platform damping for the x, y, and z direction of
the ith platform is calculated by

Fdx(i) = −dx ẋ(i) (7)

Fdy(i) = −dy ẏ(i) (8)

Fdz(i) = −dz ż(i) (9)

and platform damping around the x and y axis by

Mdx(i) = −dϕx ϕ̇x(i) (10)

Mdy(i) = −dϕy ϕ̇y(i) (11)

where dx, dy, dz , dϕx, and dϕy are the frequency dependent
hydrodynamic damping coefficient and ẋ, ẏ, ż, ϕ̇x, and ϕ̇y are
the linear and angular components of the platform velocity. The
effect of the surrounding fluid was accounted for as described in
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Newman (1977). This yields the damping terms dx, dy, dz , dϕx,
and dϕy used in Equations (7)–(11) and additional mass terms
mxadd,myadd,mzadd, and additional inertia terms2xxadd,2yyadd
used in Equation (15) (Supplementary Table 1). The effect of
damping due to the rotation around the ϕz axis is neglected
because of the small rotation speed around the z axis.

The drag in x and y direction of the ith platform, which is
influenced by the viscosity of the water and is calculated by

Fdvx(i) = −1

2
dvx ẋ

2
(i) ρw ℓpf ts (12)

Fdvy(i) = −1

2
dvy ẏ

2
(i) ρw ℓpf ts (13)

where dvx and dvy are the drag coefficient in x and y direction,
ẋ and ẏ are the platform velocities in x and y direction and ts
is the submersion depth of the platform. The weight force is
calculated by

Fg = −g mpf . (14)

The combination of the Equations (2)–(14) results in the
equation of motion of the ith platform element describing the
platform dynamics:





























ẍ

ÿ

z̈

ϕ̈x

ϕ̈y

ϕ̈z





























(i)

=

































1
mpf+mxadd

(

∑a nr
j=0 Fcrx(j) + Fcmx +

∑a nf
j=0

(

Fcfx(j) + Fdfx(j)
)

+ Fdvx + Fdx

)

1
mpf+myadd

(

∑a nr
j=0 Fcry(j) + Fcmy +

∑a nf
j=0

(

Fcfy(j) + Fdfy(j)
)

+ Fdvy + Fdy

)

1
mpf+mzadd

(

∑a nr
j=0 Fcrz(j) +

∑a nf
j=0

(

Fcfz(j) + Fdfz(j)
)

+ Fbz + Fg + Fdz

)

1
2pfx+2xxadd

(

∑a nr
j=0 Mcrx(j) +

∑a nf
j=0

(

Mcfx(j) +Mdfx(j)
)

+Mdx +Mbx

)

1
2pfy+2yyadd

(

∑a nr
j=0 Mcry(j) +

∑a nf
j=0

(

Mcfy(j) +Mdfy(j)
)

+Mdy +Mby

)

1
2pfz

(

∑a nr
j=0 Mcrz(j) +

∑a nf
j=0

(

Mcfz(j) +Mdfz(j)
)

)

































(i)

(15)

The coefficient a in Equation (15) depends on the number of
adjacent platforms of the ith platform in the platform array
depicted in Figure 2. For interior platforms a = 4, for edge
platforms a = 3 and for corner platforms a = 2. The mooring
forces Fcmx and Fcmy are included if there are mooring lines at
the respective platform. The moments Mcr(x,y,z), Mcf (x,y,z), and
Mdf (x,y,z) are resulting from the forces Fcr(x,y,z), Fcf (x,y,z), and
Fdf (x,y,z), the moment acting from the mooring lines on the
platform is neglected. For a platform array with npf platforms,
the number of equations of motion is given by 6 npf . By solving
these equations the states of the system are determined.

2.2.3. Ocean Wave Modeling
The main external forces exciting the structure are due to waves.
Ocean wave characteristics depends on several factors, such as
the wind speed, the distance over which the wind blows and
the sea depth. There are different spectral descriptions of ocean
waves (Pastor and Yucheng, 2016), e.g., by the Hubble proposed
wave spectrum (Ochi andHubble, 1976), the Pierson-Moskowitz
(PM) (Pierson and Moskowitz, 1964) and the JONSWAP
Spectrum (Hasselmann et al., 1973). In this paper, the ocean

waves aremodeled using the Pierson-Moskowitz power spectrum
(Spanos, 1983). The PM power spectrum describes the energy
distribution with frequency of wind generated fully developed
ocean waves. For the simulation, a time series of the waves
is generated by applying the autoregressive moving average
(ARMA) algorithm to the PM power spectrum. The ARMA
algorithm consists of the auto regressive (AR) and the moving
average (MA) algorithm. The AR algorithm is ideal for treating
all pole spectra and the MA algorithm is best suited for all zero
spectra (Spanos, 1983). The PM spectra involves both poles and
zeros, so the combination of the AR and MA overcomes this
requirements and the ARMA algorithm is used in this paper. The
AR part of the time series of the waves is defined as (Box et al.,
1994) wk = uk −

∑p
i=1 ai wk−i where uk be the white noise,

a1, . . . , ap are the AR parameters and wk−1, . . . ,wk−p are the
previous estimated ARwave hights. The sum of the ai wk−i can be
shown as the weighted floated mean of the previous values wk−1

where the AR-coefficients a are the weights. The MA component
of the wave series is defined as wk = uk +

∑q
j=1 bj uk−j where

b1, . . . bq are the MA parameters which determine the weight of
the white previous noise terms uk−1, . . . , uk−q. Inmatrix notation

with the p × p matrix A = [a, e1, . . . , ep−1]
T , where ei is a p × 1

zero vector that is one in its ith component and a = (a1, . . . , ap)
T ,

the p × q matrix B = [b, 0q,p−1]
T with the q × 1 vector b =

(b1, . . . , bq), the q × q matrix V = [0q,1, e1, . . . , eq−1]
T and

the auxiliary states vk, the ARMA algorithm can be written as
(Geist and Pietquin, 2011):

(

wk

vk

)

=
[

−A B
0q,p V

] (

wk−1

vk−1

)

+
(

e1
e1

)

uk (16)

The ARMA coefficients now need to be chosen such that the
process generates a spectrum according to PM with S(ω) is
calculated according (Pierson and Moskowitz, 1964):

S(ω) = U

ω5
exp

(

− V

ω4

)

, (17)

U = 8.2 · 10−3g2 and V = 0.74(g/v19.5)
4, where g represents

the gravitation acceleration, ω the frequency of the spectrum
and v19.5 the wave producing wind speed measured 19.5 m
above sea level. The determination of the coefficients in Equation
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FIGURE 4 | Comparison of the PM spectrum of a wind speed v19.5 = 21m/s

with the ARMA calculated PM spectrum.

(16) follows the work of Spanos (1983). It essentially results in
a minimization

M
∑

n=0

[S(ωn)− Ŝ(ωn)]
2 != min, (18)

where the coefficients of the ARMA algorithm are selected to
give an approximated spectrum Ŝ(ωn) close to the required
spectrum (17). Figure 4 gives an example for such a spectral
description. For the calculation of the buoyancy force in Equation
(4), the average wave hight wav, related to the platform base area,
is considered.

The main task of the multi-body platform system described
in section 2 is to generate acceleration data by the sensors. The
following Kalman filter uses these acceleration data to estimate
the states of the system, whereat the searched stiffness of the ropes
are treated as states.

2.3. Fault Estimation of the Space@Sea
Platform
After building the platform model and modeling the system
input, the detection of faulty ropes is the main aim of this
work. Changing stiffness parameters of the ropes are estimated
by Kalman filters. These changing parameters, which can be
an indication of a system fault, maybe difficult to measure
directly in a mechanical system. In this section, the parameter

estimation with the Kalman filter and the extended Kalman filter
is explained, which is then used for the fault estimation of the
Space@Sea platform array.

2.3.1. Basic Kalman Filter Equations
A deterministic continuous time linear system with its noise
is described by a state equation and an output equations
(Lunze, 2014):

ẋ = A x+ B u+ w (19)

y = C x+ D u+ v (20)

where x is the state vector, y the output vector, ẋ the derivation
of x, u the system input, A the system-, B the input-, C the
measurement, and D the feed-through matrix. The process noise
w and the measurement noise v are both white noise with zero
mean and uncorrelated. In this work, measurement and state
values are discrete values, therefore the system is discretized with
a sample time T. Furthermore, there is no feed-through matrix in
the system. The discretized state space formulation of the linear
system with the discretized system, input and measurement
matrices F,G, and H is written in equations:

xk = Fxk−1 + Guk−1 + wk−1 xk ∈ R
nst×1 (21)

yk = Hxk−1 + vk yk ∈ R
nmeas×1 (22)

For optimal state estimation, the well-known Kalman filter is
used (Kalman, 1960; Dan, 2006). After calculating the expected
values of the initial state x̂+0 and P+0 , the covariance of the
initial state x0, from Equations (23) and (24), the Kalman filter
operates in two steps. In the prediction step, the measurement
information at time step k is not known. The estimated state
x̂−
k
, also named as a priori state (−), with all measurements

information before, but not including time k is used, is calculated
by the time update Equation (25). The time update of the
covariance of the estimation error P−

k
is calculated from Equation

(26) where Qk−1 is the disturbance input covariance matrix. In
the correction steps the Kalman gain Kk, the estimated state x̂+

k

and the covariance update matrix P+
k

of the error covariance

of x̂+
k

are calculated in Equations (27)–(29). This includes the
measurement information yk up to and including time k. The
estimated state x̂+

k
is called the a posteriori (+) state. Rk is the

measurement error covariance matrix.
The measurement covariance Rk and the process covariance

matrixQk are known from themeasurement noise vk and process
noise wk, wk ∼ (0,Qk), vk ∼ (0,Rk).

Initialization :

x̂+0 = E(x0) (23)

P+0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
T] (24)

Prediction steps :

x̂−
k

= Fk−1x̂
+
k−1

+ Gk−1uk−1 (25)

P−
k

= Fk−1P
+
k−1

FTk−1 + Qk−1 (26)
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Correction steps :

Kk = P−
k
HT
k (HkP

−
k
HT
k + Rk)

−1 (27)

x̂+
k

= x̂−
k
+ Kk(yk −Hkx̂

−
k
) (28)

P+
k

= (I − KkHk)P
−
k

(29)

2.3.2. Parameter Estimation and System Input

Estimation
The Kalman filter cannot only be used for state estimation, also
unknown system parameters can be estimated (Kopp andOrford,
1963; Dan, 2006). Periŝić et al. (2014) shows the application of the
Kalman filter to estimate the structural loads of an offshore oil
platform. Unknown system parameters are treated as additional
components in the state vector. Faults in the ropes, connecting
the platforms, can be found from changes in the stiffness values.
To estimate these stiffness values, the state vector xk ∈ R

nst×1 is
increased by additional components xp ∈ R

np×1, to the extended

state vector xek = [xT
k
, xTp ]

T , R(nst+np)×1. np is the number of
parameters to estimate. For squared platform arrangements, e.g.,
5×5, considered in this work, np is calculated by np = 2 nr

√
npf .

2.3.3. The Extended Kalman Filter
The Kalman filter described in Equations (23)–(29) works
for linear systems. To include the effect of non-linearities in
our system, the extended Kalman filter is used in this work
(Dan, 2006). Therefore, some approximations of the discretized
non-linear system are necessary. The non-linear discretized
system and measurement equations, including the extended
states, are as follows:

xek = fk−1(xek−1
, uk−1,wek ) (30)

yk = hk(xek , vk) (31)

Some non-linear Kalman filter techniques for state estimation
of multi-body models can be found in Pastorino et al. (2012).
To get a linear state transition matrix, the non-linear system
is approximated by linearization about the operating point.
Therefore, a Taylor series expansion, which is aborted after
first term, is applied to the state equation (30) near x̂+ek−1

. The

linearized state transition matrix is calculated from a partial

derivative Ak−1 = ∂fk−1
∂xek

∣

∣

xek=x̂+ek−1

∈ R
(nst+np)×(nst+np). The

linearization of the output equation (31), near the operation
point x̂−ek , leads to the linearized output matrix Ck = ∂h

∂xek

∣

∣

xek=x̂−ek
∈ R

(nmeas)×(nst+np). nmeas is the number of measured accelerations
of the platform system. The process noise covariance matrix Q is
calculated by Q = B σ 2

wav
BT ∈ R

(nst+np)×(nst+np), with σ 2
wav

∈
R

(npf )×(npf ) is the input noise covariance matrix of the average
wave hights of each platform wav = [wav(1), . . . ,wav(pf )]

T ∈
R

npf×1 and B is the linearized input matrix calculated from

a partial derivative B = ∂f0
∂wav

∣

∣

wav=0
∈ R

(nst+np)×npf near the

average wave hight of zero and the platform in equilibrium at the
simulation start. The matrices Ak−1 and Ck are calculated at each
time step k.

After calculating the expected values of the initial state x̂+e0 and
P+e0 , the covariance of the initial state xe0 , by Equations (23) and
(24), the Kalman filter equations for the linearized system are
calculated by:

x̂−ek = fk−1(x
+
ek−1

, uk−1) (32)

P−ek = Ak−1P
+
ek−1

AT
k−1 + Q (33)

Kk = P−ekC
T
k (CkP

−
ek
CT
k + Rk)

−1 (34)

x̂+ek = x̂−ek + Kk

(

yk − hk(x̂
−
ek
)
)

(35)

P+ek = (I − KkCk)P
−
ek

(36)

The covariance matrix of the initial estimate is

P+e0 =
[

P+xst0 0

0 P+xp0

]

∈ R
(nst+np)×(nst+np), (37)

where P+xst0 and P
+
xp0

are thematrices of the initial state covariance

and the initial rope stiffness covariance. The covariance of the
measurement noise is defined as

TABLE 2 | Test cases for the simulation.

Test case: I 1A 1B 1C 2A 2B 2C 3A 3B 3C

(a) Nr. of the faulty rope: – 1 20 1, 9, 20 1 20 1, 9, 20 1 20 1, 9, 20

(b) Wind speed v19.5 (m/s): 21 21 21 21 21 21 21 16 16 16

(c) Platform array size: 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5

(d) nmeas: 175 175 175 175 175 175 175 175 175 175

Test case: 4A 4B 4C 5A 5B 5C 6A 6B 6C

(a) Nr. of the faulty rope: 1 20 1, 9, 20 1 20 1, 9, 20 1 20 1, 9, 20

(b) Wind speed v19.5 (m/s): 10 10 10 21 21 21 21 21 21

(c) Platform arrangement: 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 8 × 8 8 × 8 8 × 8

(d) nmeas: 175 175 175 112 112 112 448 448 448
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Rk =







σ 2
v 0 0

0
. . . 0

0 0 σ 2
v






∈ R

(nmeas)×(nmeas), (38)

where σ 2
v is the variance of the measurement noise. It is assumed,

that the estimates of the initial states and the measurement noise
are uncorrelated, there are only entries in the diagonal of P+e0
and Rk.

The diagonal entries of the initial covariance of the estimated
error P+xst0 in 37 are set to 10−6 and 5 ·10−6 for P+xp0. The variance

of the measurement noise σ 2
v in 38 is 4 · 10−4.

3. RESULTS AND DISCUSSION

Parameter estimation using the Extended Kalman filter, is applied
to detect faulty ropes of the Space@Sea platform arrangement.
Parameters for the simulation model are summarized in Table 1.
The platforms are excited by wind generated ocean waves, which

FIGURE 5 | Rope numbering for a squared 5 × 5 platform array with 25 platforms and 30 ropes. Faulty ropes for test cases A, B, and C are marked.

FIGURE 6 | Normalized estimated rope stiffness test case I, fault free system.
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are modeled by the Pierson- Moskowitz power spectrum. The
model is used to generate data from the acceleration sensors,
which are used in the estimation process. Different settings are
reviewed: (a) one or more faults in selected ropes are assumed,
(b) the wind speed is altered, (c) the platform array size is
changed, and (d) the number of measured accelerations is varied.
Simulation settings used in this work are shown in Table 2. The
test case notation refers to the following diagrams, in this work
squared platform arrays are considered. The ropes are numbered
according Figure 5, represented for a squared 5 × 5 platform

array with 25 platforms and 30 ropes. The simulation is starting
when the platform elements are in equilibrium, not moving and
the mooring elements are without tension. The measurement
values are superimposed with a white noise with a variance of
0.0004 to include sensor noise. To decrease simulation effort,
every 4th measurement value, which equates a time step of 0.2 s,
is used for the iterative estimation process. For all simulations,
after a simulation time of 210 s, the rope stiffness of faulty ropes
in the model is set to 80% of the non-faulty rope which is
indicated in Figures 7–12 by blue dotted lines. The Kalman filter

FIGURE 7 | Normalized estimated rope stiffness test cases 1A (A), 1B (B), and 1C (C).
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FIGURE 8 | Normalized estimated rope stiffness test cases 2A (A), 2B (B), and 2C (C) including uncertainties of model parameters.

fault detection process is launched 200 s after the simulation
start. For better comparability of the estimated rope stiffness,
the stiffness parameter is set to one for the non-faulty rope and
0.8 for the faulty ropes. A rope fault is indicated, when the
normalized estimated rope stiffness is falling below the boundary
of 0.95, which is indicated by a horizontal dashed line. The
normalized estimated rope stiffness in the bar plots indicates the
normalized estimated rope stiffness after 600 s in test case 1A,
1B, 1C, 2A, 2B, and 2C. For the other test cases, the normalized
estimated rope stiffness is shown after 1,200 s. On the basis of

the Figures 6–12, the trend of the estimated rope stiffness is
explained for simulations carried out once. After this section,
a higher number of simulations are included for selected test
cases to test the repeatability of the simulations. Figure 13 shows
statistical results of the rope fault detection time.

Figure 6 gives the results for the fault free test case I, it can be
seen that all estimated rope stiffness are near one, which indicates
that there are no faults in the system.

Figure 7 shows test cases 1A, 1B, and 1C, where specific ropes
are considered to have a significantly lower stiffness: In Figure 7A
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FIGURE 9 | Normalized estimated rope stiffness test cases 3A (A), 3B (B), and 3C (C).

rope 1, in Figure 7B rope 20, and in Figure 7C ropes 1, 9, and 20
are considered to be faulty. The time until the fault is detected
differs: Fault in rope 1 is estimated after 9 s, and fault in rope 20
after 101 s. All three faults in Figure 7C are estimated within 84 s.

In order to test the robustness of the filter against platform
mass changes caused by different loading, against the deviation
of fender properties and against different wave conditions, some
parameters of the model are varied. The platform mass mpf , the
vertical damping value dz , the additional mass in z direction
mzadd, the fender damping df and the fender stiffness kf are

altered for all platforms by random values for the following
simulations. All platform masses were altered by random values
of ±1%, all vertical damping values by random values of ±5%,
all additional masses in z direction by random values of ±5%
and all fender stiffness and fender damping values by random
values of ±10%. Figure 8 shows test cases 2A, 2B, and 2C with
the same fault cases as Figure 7, including parameter variation
for robustness examination. The results show, that all faults are
detected. The uncertainties in the parameters leads to a longer
detection time. The fault in rope 1, Figure 8A, is detected after
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FIGURE 10 | Normalized estimated rope stiffness test cases 4A (A), 4B (B), and 4C (C).

18 s, fault in rope 20, Figure 8B, after 126 s and all tree faults,
Figure 8C, are estimated within 130 s after the faults set in.
Stiffness in rope 20 is detected significantly later. Rope 20 is
located between the ropes 19 and 21 as shown in Figure 5,
which go through the same platforms. Changes in its stiffness
are more difficult to detect. In this case the estimator has
to distinguish between the cases of one fault in the middle
rope, or two smaller faults in the parallel adjacent ropes. The
effect of these cases on the overall dynamics of the system is
relatively similar.

Figure 9 shows test cases 3A, 3B, and 3C for fault detection at
a wind speed v19.5 of 16 m/s. A fault in rope 1 is found after 16 s
Figure 9A, a fault in rope 20 after 858 s with a narrow difference
to other estimated rope stiffness Figure 9B. Three faults occur
as depicted in Figure 9C, a fault in rope 20 is not indicated.
Figure 9C shows that at a lower wind speed, a fault in rope 1
is estimated more than three times faster than a fault in rope
9. A change of stiffness in one of the ropes on the edge of the
platform array, like ropes 1, 15, 16, or 30, has a higher influence
on the platform dynamics than a stiffness change in ropes located
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FIGURE 11 | Normalized estimated rope stiffness test cases 5A (A), 5B (B), and 5C (C) with acceleration sensor only placed on the edge- and corner platforms.

inside the platform structure. Therefore, it is easier for the filter
process to detect these rope faults. A changing stiffness of ropes
inside the platform array with two adjacent parallel ropes is not
as critical for the platform safety, because there are at least two
parallel ropes nearby supporting the faulty rope, which is not the
case for ropes placed on the edge of the platform array.

Figure 10 shows test cases 4A, 4B, and 4C for fault detection
at a wind speed v19.5 of 10 m/s. A fault in rope 1, Figure 10A
and 1 and 9, Figure 10C can be detected, faults in rope number
20 were not detected, Figure 10B. The fault detection process

needs more calculation steps as for the higher wind speed shown
before. This is due to the low platform excitation, which results in
small acceleration amplitudes measured by the sensors. Thus, the
smaller values deliver less information for the estimating process.

Figure 11 shows the results for test cases 5A, 5B, and 5C,
where the tree acceleration sensors per platform are just attached
to the edge- and corner platforms, which reduces the number
of acceleration sensors by 27. Test case 5A shows that the filter
detects not only the faulty rope as defect, when the stiffness
boundary of 95% is considered. There is a major difference

Frontiers in Built Environment | www.frontiersin.org 15 May 2021 | Volume 7 | Article 658363

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tockner et al. Fault Detection of Modular Platforms

FIGURE 12 | Normalized estimated rope stiffness test cases 6A (A), 6B (B), and 6C (C).

between the estimated value of the faulty rope 1 and the false
positive ropes 4, 6, and 10. Faults in rope 20, Figure 11B were
not detected. Figure 11C shows the test case 5C with three faulty

ropes. Faults in rope 20 were not detected. The estimated stiffness
of the faulty ropes 1 and 9 have the lowest values. The difference
to the false positive in rope 4, 6, 10, 12, 19, 21, 25, and 27 is small.
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Therefore, fault detection becomes unreliable, when only a small
number of sensors is used in the analysis.

Figure 12 shows the results for test cases 6A, 6B,
and 6C with a squared platform array of 64 platforms
(Supplementary Figure 1) and acceleration sensors attached to
all platforms. Forty-eight ropes are connecting the platforms,
therefore the Kalman filter has to estimate 48 rope stiffness.
Test case 6A in Figure 12A shows that the filter detects faults
in rope 1, which is placed on the edge of the platform array,
within 13 s. The faulty rope 12 in test case 6B is detected after
17 s (Figure 12B). The test case 6C with faults in rope 1, 12,

and 35 shows that all faults are estimated within 79 s after the
faults occurred (Figure 12C). Faults in rope 35 are detected
significantly later. This rope goes through the center of its
connecting platforms, and, again, has neighboring ropes to the
left and right, which have a similar effect on the overall dynamics
of the structure, making changes more difficult to detect.

The trend of the normalized estimated stiffness in
Figures 7–12 differs by the location of the faulty ropes. The
normalized estimated rope stiffness of ropes that go through the
center of its connecting platforms, differ significantly compared
to the normalized stiffness of the model after a simulation time

FIGURE 13 | Fault detection time of test case 2 edge ropes (A), test case 2 middle ropes (B), test case 2 inner ropes (C), test case 3 edge ropes (D), test case 3

middle ropes (E), test case 3 inner ropes (F), test case 4 edge ropes (G), and test case 4 inner ropes (H).

TABLE 3 | Test case variation.

Test case: 2 2 2 3 3 3 4 4

Faulty ropes: Edge Middle Inner Edge Middle Inner Edge Inner

Average faulty rope detection time (s): 12 122 18 22 106 47 231 515

Minimum faulty rope detection time (s): 1 17 9 11 33 16 139 248

Maximum faulty rope detection time (s): 28 291 33 40 295 79 312 650
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of 600, respectively 1,200 s. These rope faults are more difficult
to detect. The normalized estimated rope stiffness of the residual
faulty ropes nearly reach the normalized stiffness value of the
faulty rope of the model if the wind speed is hight enough.
Faults in these ropes are also indicated if the normalized stiffness
boundary, indicating the minimal allowed normalized rope
stiffness, is lowered. If the number of sensors is decreased and if
uncertainties in the system are larger, a lower normalized stiffness
boundary can be useful because of the higher deviation of the
estimated stiffness of the non-faulty ropes. These deviations
lead to false fault indication of the non-faulty ropes, shown in
Figure 11.

To test the repeatability of the simulations, test cases 2, 3,
and 4 are simulated with alternating single rope faults for the
squared 5× 5 platform array. Different settings with the average,
minimum and maximum rope fault detection times are shown
in Table 3. Faulty ropes placed on the edge of the platform array
like rope Nr. 1, 15, 16, and 30 are called “edge,” faulty ropes going
through the center of a platform “middle” and the remaining
faulty ropes are labeled as “inner” faulty ropes. For every test case,
50 simulations are evaluated, the results are shown in Figure 13.
As the fault detection of faulty “middle” ropes at test case 4, for
wind speed v19.5 of 10 m/s, are not detectable, just “edge” and
“inner” ropes are considered. The fault detection times of test case
3 for middle rope faults consider faults on the middle ropes of the
edge platforms with the rope numbers 2, 14, 17, and 29, where all
faults are detected. Rope faults in the remaining middle ropes for
test case 3 are detectable by a probability of 25% and not listed in
Table 3 and Figure 13E.

Fault detection for “edge” and “inner” ropes works well
by applying the extended Kalman filter. The faulty ropes are
identified and the estimated values of the normalized rope
stiffness are close to the true values in adequate simulation time.
Faults occurring in “middle” ropes are significantly harder to
detect, as the filter has to distinguish “middle” rope faults from
adjacent ropes faults, i.e., the influence of the middle rope on
the overall dynamics of the structure is almost identical to the
influence of the two adjacent ropes. The normalized estimated
stiffness values for these faulty middle ropes do not capture the
true values, as shown in Figures 7B, 8B, 9B, 10B, 11B for rope
number 20, but the estimated values differ significantly from
non-faulty ropes. There is a huge influence of the wind speed
on the fault detection process. For low wind speed, the detection
is less reliable, since the entire structure moves very little and
changes due to faults are also very small. This is shown in test case
4 in Figure 10 in comparison to test case 2 in Figure 8 and test

case 3 in Figure 9where the wind speed is 60%, respectively 110%

higher. The location of the faulty ropes in the platform array
influences the trend of the estimated stiffness of the faulty ropes.
Rope faults nearby the edge of the platform array, e.g., faults in
rope number 1, are significantly faster to detect than ropes further
inside, like rope number 9 shown in Figures 9C, 10C, 11C, 12C.

4. CONCLUSION

A feasibility study for fault detection in the connection elements
of floating modular offshore platforms was presented. The paper
focuses on the application of the well-known Extended Kalman
Filter method on faulty rope detection, by the estimation of
the rope stiffness Several test cases were reviewed, with single
and multiple rope faults, different platform arrays, altering wind
speed and a different number of sensors. The possibility and
performance of the Extended Kalman Filter to detect faults by
parameter estimation at modular floating platforms was shown.
For higher wind speeds, all rope faults are detected. At lower wind
speed, the detection takes longer and some specific types of faults
are more difficult to detect.
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