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Building roof inspections must be performed regularly to ensure repairs and

replacements are done promptly. These inspections get overlooked on sloped

roofs due to the inefficiency of manual inspections and the difficulty of

accessing sloped roofs. Walking a roof to inspect each tile is time-

consuming, and as the roof slope increases, this difficulty increases the time

needed for an inspection. Moreover, there is an intrinsic safety risk involved.

Falls from roofs tend to cause severe and expensive injuries. The emergence of

new sensing technologies and artificial intelligence (AI) such as high-resolution

imagery and deep learning has enabled humans tomove beyond the concept of

using manual labor in damage assessments. It has brought significant

advantages in the field of safety management, and it can be a substitute for

the traditional assessment of roofs. This study uses unmanned aerial vehicles

(UAVs) and deep learning technology to perform sloped roof inspections

effectively, thus eliminating the safety risk involved in traditional manual

inspections. This study utilizes UAVs and deep learning to automatically

collect and classify roof imagery to identify missing shingles on the roof.

The proposed research can help real estate agents, insurance companies,

and others make better and more informed decisions about roof conditions.

Future research could be refining the model to deal with different types of

defects in addition to missing shingles.
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Introduction

Rooftops could become obsolete because of the loss of

shingles, or they get completely damaged due to storms and

hail. There are millions of dollars in property insurance claims

filed by homeowners every year, resulting from these damages.

There is an inherent delay in claiming process, which can be

hectic for customers. To mitigate this problem, insurance

companies prefer periodic assessments of rooftops. Periodic

assessment is imperative as it can cut down the cost

significantly. However, two reasons hinder the periodic

assessment process. The first reason is the risk of falling from

the roof, and the second is the extra cost due to inaccuracy and

human error. Falling from heights is one of the most significant

causes of accidents in the construction industry. Construction

workers in general and roofers, in particular, are exposed to risk

when they get on a roof simply due to gravity and physical

limitations such as weight or age that increase the risk of climbing

on a roof. According to a study done by the Center for

Construction Research and Training (CPWR), fatal falls to a

lower-level account for more than one in three (36.4%)

construction deaths in 2020. The study further states that

roofs were the primary source of those fatal injuries (Brown

et al., 2021).

The incorporation of Artificial Intelligence (AI) and drones

has enabled the performance of high-level operations without the

intervention of humans. Along with other benefits, it can

efficiently inspect the infrastructure. The overall drone

inspection and monitoring market is expected to grow from

USD 9.1 billion in 2021 to USD 33.6 billion by 2030, at a

compound annual growth rate of 15.7% from 2021 to 2030

(Intelligence, 2022). Deep learning, a subpart of Artificial

Intelligence, has shown promising results when it comes to

computer vision applications. In particular, Convolutional

Neural Network (CNN) can process high-level drone imagery

and perform classification and object detection via different

algorithms (i.e., YOLO, Resnet-50, VGG-f, and Alexnet)

(Mseddi et al., 2021). Also, it is a modern approach to data

classification which has shown recent advancements in

unsupervised image classification, in some cases producing

results with higher accuracy than humans (Wan et al., 2014).

The deployment of this category of technologies has not been

explored for the effective inspection of sloped roofs with the

capacity to reduce and eliminate the safety risks associated with

the conventional roof inspection approach. To bridge this gap,

this study investigates the implementation of UAVs and deep

learning technology for the inspection of sloped roofs through

the automatic collection and classification of roof imagery to

identify missing shingles on the roof. A residential roof condition

assessment method using techniques from deep learning is

presented in this research. The proposed method operates on

residential roofs and divides the task into two stages; 1) using

drones to collect high-resolution roof images; and 2) developing

and training a deep learning model, convolutional neural

network (CNN), to classify roofs into two categories of good

and bad conditions based on missing shingles.

Literature review

Many research studies have reported the application of deep

learning for image processing, mainly for concrete structures and

road condition assessment. This section presents a review of

these applications starting with road condition assessment,

followed by concrete structure condition assessment, and then

wrapping up the review with the sparse application for roof

assessment necessitating the need for this study. The first

subsection below will summarize the work that has been done

in the area of road assessment using Artificial Intelligence

methods.

Road condition assessment

Many researchers have been working to optimize road

conditions assessment, an important research area worthy of

exploration for instance due to the high cost associated with road

maintenance and the fact that road infrastructure globally is

always not in its best shape. Ukhwah et al. (2019) proposed a

novel approach for asphalt pavement road detection using YOLO

neural network. Different YOLO versions such as Yolo v3, Yolo

v3 Tiny, and Yolo v3 SPP are evaluated based on accuracy and

mean average precision. The results show that mAP of Yolo v3,

Yolo v3 Tiny, and Yolo v3 SPP were 83.43%, 79.33%, and 88.93%,

with the accuracy of 64.45%, 53.26%, and 72.10%, respectively. It

takes only 0.04 s to detect the image, which signifies the

robustness of their proposed models. In a recent study,

(Mubashshira et al., 2020), proposed a new model for crack

detection on roads using unsupervised learning of deep learning

technology. Color histograms of roads are used for the analysis of

road pavements in their study. Afterward, K clustering and

OTSU thresholding were employed for segmentation in order

to detect the cracks. Results showed that the model performed

well in detecting and localizing the damage in the image. In

another study, (Sizyakin et al., 2020) proposed a new model for

crack detection on roads using deep learning. In their work, they

used the publicly available dataset CRACK500 and trained them

on the state-of-the-art object detection algorithm U-net.

Moreover, the morphological fitting is used to increase the

binary map so the model can detect cracks with higher

accuracy. Aravindkumar et al. (2021) proposed a model for

automatic crack detection on roads using the deep learning

technique. A total of 3,533 road images were taken as a

dataset of roads of Tamil Nadu, India. They used the transfer

learning technique using ResNet-152 classifier with the

incorporation of a faster region-based convolutional neural
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network (Faster R-CNN). Images were trained based on a variety

of damages and cracks and then notifying the relevant authority

about the locations of these damages. From the results, it was

concluded that their model worked effectively.

Bhat et al. (2020) proposed a model for crack detection on

roads using deep learning technique. In their work, they

exploited various models from traditional CNN and image

processing to segmentation. A variety of classifiers are also

analyzed, however, based on the result and findings CNN

outperformed all other models due to its high accuracy.

Elghaish et al. (2021) proposed a model for the classification

and detection of highway cracks using deep learning. A total of

4,663 images were taken as dataset which were classified into

subparts as “horizontal cracks”, “horizontal and vertical cracks”

and diagonal cracks. State of the art object detection algorithms

were used and a CNNmodel was develop in order to increase the

accuracy of the proposed model. From the results it was

concluded that the pre-trained model googlenet has higher

accuracy of 89.08%. However, the new created CNN model

exceeded the accuracy of all other algorithms with 97.62%

accuracy rate with the use of adam’s optimizer.

Bhavya et al. (2021) proposed a model for pothole detection

using deep learning using classification techniques. Images that

were further divided into roads with potholes and roads without

potholes were taken. They used a state-of-the-art pre-trained

model Resnet-50 as a classifier. After the results it was concluded

that the model can accurately classify between different kinds of

roads and can replace external manpower in assessing road

conditions. Ping et al. (2020) proposed an efficient deep

learning model for detecting potholes using state-of- the-art

objects detection models such as YOLO, SSD, HOG with

SVM, and Faster-RCNN. The images were pre-processed and

labeled accordingly. Their results showed that YOLO performed

better than other object detecting for its higher accuracy and

faster computation. Pan et al. (2018) proposed a new model for

pothole detection on roads using deep learning and UAVs. In

their study, spectral images were taken using UAVs and by the

use of machine learning algorithms such as support vector

machine (SVM) and random forest. Data is classified into

normal pavements and pavements with potholes and cracks.

They evaluated different models in their research and concluded

that came to the conclusion that remote sensing via UAVs can

offer an alternative to traditional assessment of roads.

Arman et al. (2020) presented a model for classification and

detecting of road damage using deep learning models. Images

were taken from a smartphone camera in the city of Dhaka.

Damages such as a pothole, crack, and revealing were taken into

account for this model. Their model’s images were fed into Faster

RCNN, and RCNN for object detection and support vector

machine algorithm of machine learning is used for

classification purposes. The result demonstrated that they

achieved 98.88% damage detection and classification accuracy.

Wang et al. (2018) proposed a deep learning model for damage

detection and classification in road networks. They used the SSD

and Faster R-CNN in their work for detection and classification.

The results were demonstrated in the IEEE BigData Road

Damage Detection Challenge, and according to the results,

their model performed better. Alfarrarjeh et al. (2018)

suggested a deep learning model for road damage detection

using images taken from mobile. According to their model,

they trained their object detector algorithm on various images

of damages as defined by Japan Road Association. Results show

that their model performed well despite low imagery resolution

and achieved an F1 (Accuracy) score up to 0.62. Seydi et al.

(2020) proposed a model for the assessment of roads network

damages caused by an earthquake. They used LIDAR point cloud

in their model. The proposedmodel is based on three steps. In the

first step, features of LIDAR data were extracted using CNN. In

the second step, another neural network: Multilayer perceptron

(MLP), is used to detect the debris in the data (images). The

output fromMLP was fed into another neural network to classify

the road segments into blocked and unblocked. Their model

performed well and achieved an accuracy of 97%.

Liu et al. (2020) proposed a novel approach for detecting

damages inroads using a deep learning model. At first, they used

segmentation technique to detect roads areas, then data was fed

into object detection models You look Only Once (YOLOv4) and

Faster Regional Convolutional Neural Network (F-RCNN) for

detecting the damages. The result shows that the proposed model

achieved good object detection capability in the IEEE Global

Road Damage Detection Challenge 2020. Ale et al. (2018)

proposed a faster and more accurate deep learning model for

damages to the roads. In their model, classification and bounding

box regression are done in a single stage as it is much faster than

two stages, which are classification in one step and bounding box

regression in the second step. They have trained the images on

several one-stage models and inferred that a model RetinaNet

can detect road damages with high accuracy. Bojarczak et al.

(2021) proposed a model damage diagnosis of railways using a

deep learning model and UAVs. They used a fully convoluted

network (I.e., semantic segmentation) to locate the railhead’s

defects. Their model is based on an OpenCV python library’s

tensor flow work environment. The results showed that their

model could accurately locate defects in the railway with an

efficiency rate of 81%.

To summarize, this section shows that deep learning can be used

successfully to diagnose and identify damage (including potholes

and cracks) on asphalt roads and highways. The next subsection will

discuss the assessment of concrete structures for automated crack

detection using deep learning and other techniques.

Concrete structures condition assessment

Concrete structure condition assessment has been an interest

to the Federal Department of Transportation for many years,
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especially the assessment of the bridge’s conditions. Otero et al.

(2018) proposed a model for remote sensing of concrete bridge

inspection using deep learning technology. In their work

unsupervised learning approach is used to extract the features,

i.e., cracks from the images. The dataset consisted of different

kind of damages along with noise factor. After testing the model,

they evaluated that algorithm can successfully detect cracks in

different kind of images. Chen et al. (2020) proposed a model for

damage detection in concrete bridges using a deep learning

model. Their model is based on the technique of transfer

learning, taking an existing state-of-the-art object detection

algorithm YOLOv3 is used for object localizing. For the

extraction of small features, deformable convolution is used.

The tests showed that their model is more effective and takes

less time in computation.

Kim et al. (2020) proposed a deep learning model for the

detection of multiple cracks in concrete. Their model used

Masked-RCNN, images of cracks, efflorescence, rebar

exposure, and spalling were trained using Masked-RCNN.

According to the results, their model achieved a precision of

90.4%, which promises the applicability of Masked-RCNN in

damage detection. Rajadurai et al. (2021) proposed a model for

using deep learning for automated crack detection in concrete.

Transfer learning technique is used, and images (with cracks and

no cracks) were fed into Alexnet model. Stochastic gradient

descent was used as an optimizer to prevent high loss. Their

model showed an accuracy of 99.99% when tested with test

images. Cha et al. (2017) came up with a novel approach to

detecting cracks in concrete automatically, and they used a

convolutional neural network for their model. The model was

trained on 40,000 images with a 256 × 256 pixels resolution.

Their model outperformed all previous work on image

processing and achieved 98% accuracy. Furthermore, they

validated their result by testing data of 50 images of 5,888 ×

3,584-pixel resolution. The result showed that their model could

work in real-time situations.

Desilva et al. (2018) proposed a model for automatic

detection of concrete cracks via deep learning and UAVs. A

dataset of 3500 images was taken with different conditions such

as daylight intensity, surface finishes, and humidity. The dataset

was divided into training and testing with a ratio of 80/20. They

used VGG-16 on their dataset, on which the model performed

well. The overall accuracy of this model is 92.27% which shows

the potential of deep learning in the detection of concrete cracks.

Kumar et al. (2022) suggested a model for real-time monitoring

of cracks in high rises concrete building. A total of 800 RGB pixel

images (480 × 480 pixels) were fed into the You Look Only Once

(YOLO-3) algorithm as input collected using UAVs. Images were

annotated manually using open-source software. Their model

outperformed all other previous work achieving an accuracy of

94.24%, and their model can process an image in 0.033 s.

All in all, detecting cracks in concrete automatically has been

investigated by many researchers. Deep learning has been used

successfully for this purpose. The next subsection will discuss the

automation of roof condition assessment using deep learning and

other Artificial Intelligent techniques.

Roof condition assessment

Up to the date of this research, only two papers have been

found on the application of deep learning to automatically assess

a residential house roof condition. Hezaveh et al. (2021)

proposed a model for the automatic assessment of hail-

damaged roofs. The dataset consisted of roof images that were

damaged due to hail. In their model, the researchers used

Unmanned Air Vehicle (UAV) to capture high-resolution

RGB imagery. The images were trained in different types of

convolutional networks. They found that their model can

accurately identify hail damage on residential roofs. Wang

et al. (2019) presented a residential roof condition assessment

method using techniques from deep learning. The proposed

method operates on individual roofs and divides the task into

two stages: 1) roof segmentation, followed by 2) condition

classification of the segmented roof regions. The proposed

algorithm has yielded promising results and has outperformed

traditional machine learning methods.

Obviously, the utilization of deep learning for roof conditions

assessment is still lacking and needs more investigation. This

paper will focus on missing roof shingles, and it will use YOLO

v5 algorithm for the detection of damaged areas in roofs. The

following section will discuss the research methodology in detail.

Methodology

The aim of the study is to develop a deep learning model

which can automatically locate and identify missing shingles in

the roof. This study explores new possibilities to evaluate and

localize the damaged areas in the roofs using the computer vision

technique. The study utilizes the transfer learning technique of

deep learning technology in which a pre-trained network is taken

and fine-tuned until the loss function is minimum (Brown and

Miller, 2018). This work incorporates YOLO v5 algorithm for the

detection of missing shingles in roofs. YOLO v5 is a state-of-the-

art object detection algorithm that has high accuracy and offers

fasters computation. YOLO v5 divides input images into grids

and each cell is responsible for object detection. It can effectively

extract high and low-level features of input images based on the

healthiness of the dataset. The model utilizes a supervised

learning technique in which input data is already provided

along with the labeled output. Here, a pool of images is taken

and annotated using a labeling tool which is fed into the object

detection algorithm (Aguera-Vega et al., 2017).

As shown in Figure 1, high-resolution RGB images of

damaged roofs are captured using a UAV which are
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annotated using a labeling toolkit. The dataset is then classified

into test and train sets and are further trained on YOLO v5 using

python library “Tensor Flow Object Detection API”. Tensor flow

is an open-source platform developed by Google, having special

emphasis on deep learning models. Once the dataset is trained, its

accuracy is checked against the test images for model evaluation

(Adams et al., 2014).

The whole process utilizes a virtual machine using Google

Colab for faster computational purposes. The study is classified

into three stages.

Stage no. 1: Data acquisition

Gathering healthy data is one of the most important

parameters in deep learning model training (Alzarrad et al.,

2021). The researcher suggested utilizing a drone to capture

high-resolution images. The dataset acquired is annotated using

an open-source tool (labelImg). The ground truth acquired from

the labeled dataset is then fed to an algorithm for training.

Stage no. 2: Training the model

In this step, the transfer learning technique is applied, where

the dataset is classified into test and train sets. YOLO

v5 pertained model is utilized for this purpose. Depending on

the size of the dataset, batch size and epochs are then evaluated.

“Tensor flow object detection API” is then used for training and

validating the model.

Stage no. 3: Model evaluation

In this stage, the model is evaluated based on the accuracy of

the prediction. The model is then checked to see if predictions are

made accurately. Random test set images are then fed to the

model and will check if the model accurately localized the region

of interest in the images.

Case study

To illustrate an implementation of the presented model, a

case study is used to verify and validate the model’s robustness.

The researchers used DJI Matrice 300 RTK drone equipped with

Zenmuse H20T, which has the capacity to zoom up to 20x

(Figure 2) to collect roof images for two different houses in

Hurricane, West Virginia.

The drone covered each roof by means of manually

composing and capturing mainly oblique aerial images. The

individual roof inspection images were carefully composed by

means of “first person view” (FPV); a facility which presents the

drone operator with a real-time view of the scene as it is being

captured by the on-board camera. To ensure completeness, a

methodical sequence was followed in a flight that generally went

around the roof in a counterclockwise fashion. Given the

complex design and considerable height of the roof profiles

(the highest point of the roof being some 28 ft above ground

level) the inspection by air certainly saved considerable costs in

time and money, and generally reduced the risk of injury and the

potential for disturbance to the occupants. Figure 3 below shows

the most common defects, namely cracked or slipped roof tiles,

identifiable on the manually composed aerial images.

A total of three hundred and fifty (350) photos were collected

from the first house and used to train the model. Two hundred

(200) photos were collected from the second house and used to

validate the model accuracy. All photos were annotated using an

open-source tool (labelImg). To find and remove duplicate and

near-duplicate images in the image dataset. The researchers use

FiftyOne, an open-source ML developer tool. FiftyOne provides a

method to compute the uniqueness of every image in a dataset.

which results in a score for every image indicating how unique

the contents of the image are with respect to all other images.

FIGURE 1
Methodology of model.

FIGURE 2
Collecting data using DJI Matrice 300 RTK drone.
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Images with a low uniqueness value are potential duplicates that

researchers explored to remove if needed.

Figure 4A shows a sample of the photos that have been used to

train the model. Figure 4B shows a sample of the photos that have

been used to validate the model. The accuracy of the model using

training data was 72%, while the accuracy of the model using the

validation photos from the second house was 81%. The model did

not pick up 19% of the defects, mainly because of poor photo

quality or defects being too small. The model has not detected a

defect when there was no defect (no false positive detection).

The model is capable of detecting missing shingles only and

no other defects have been investigated for this stage of the

research. The researchers tested the model’s accuracy by

comparing the model’s prediction vs. humans’ prediction. A

sample of the images that have been used to validate the

model was sent to a graduate student. The student went

through 100 randomly selected photos and categorized them

as damaged and undamaged. The researchers compared the

student prediction result with the model result and found that

the model accuracy is good. The model accuracy turned out to be

0.81 (81%), indicating that 81 correct predictions were made out

of 100 total examples. Further, to fully evaluate the effectiveness

of the model, the researchers examine the model’s precision.

Precision quantifies the number of positive class predictions that

actually belong to the positive class (i.e., how many good

condition photos have been classified as good conditions).

The model precision was 0.86, as shown in Figure 5.

FIGURE 3
Common defects identified on the manually composed aerial images.

FIGURE 4
(A) (left) shows the accuracy of themodel for the training photos, which is 72%. (B) (right) shows the accuracy of themodel for validation photos
which is 81%.

FIGURE 5
The model precision.
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Further, the researchers examine themodel F1 score. F1 score

measures the percentage of correct predictions that the model has

made. An F1 score is considered perfect when it is 1, while the

model is a total failure when it is 0. The F1 score for this model

was 0.832, which is good as shown in Figure 6.

Conclusion

8As important as it is to maintain the integrity of roofs in

residential buildings, the routine inspection required to achieve

this by ascertaining the characteristics and recommending the

need for repairs or replacements is usually a daunting task,

particularly, when it comes to sloped roofs. The level of

inefficiencies and worker injuries experienced in current roof

inspection practices expose the weaknesses in traditional

inspection methods. The results of this research show that the

implementation of deep learning techniques for processing

imagery data has the potential to help mitigate or eliminate

these challenges. In this study, the researchers used a transfer

learning methodology by implementing YOLOv5 to

automatically identify damaged areas specifically missing

shingles on residential roofs. The model which was manually

tested with a real case study shows a high level of performance

indicating the potential of this technique for the automatic

assessment of roofs. The model developed in the study after

training and validation were found to have an accuracy of

approximately 81% and a precision of 86% despite the limited

amount of dataset. Although the relatively low amount of data

used in the modeling is a limitation of this study, the level of

accuracy and precision achieved further reinforces the potency of

the methodology adopted and the model developed for the roof

assessment. The use of this model can significantly benefit roofers

and insurance companies for their timely decisions. This study is

a steppingstone toward high-end roof damage assessment; with a

large amount of dataset, the model accuracy could be improved.

Lastly, for future research, the model can be converted to tensor

flow lite to allow its use on smartphones such as Android, iPhone,

and Raspberry Pi.
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The F1 score for the model.
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