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Introduction

The “ride comfort” of passengers generally refers to their feelings or perceptions of the

compounded motions and vibrations experienced by a running train (Suzuki, 1998).

There are two major approaches to improving ride comfort. The first focuses on vibration

abatement techniques via an optimal driving pattern with additional train technologies to

moderate train body vibrations. The other focuses on passengers’ onboard perception of

various environmental factors (Chen et al., 2020), such as if surrounded passengers follow

the etiquette or not, seat ergonomics, service attitude of train attendants, air quality,

temperature, and catering. Passenger satisfaction also relates to travel time spent, as

studied from over 80,000 survey responses (Lyons et al., 2016). These survey results

showed that the time traveled by rail passengers in Great Britain had increased from

2004 to 2010 due to a shift from paper-based materials accompanying passengers to

digital alternatives. However, passengers’ satisfaction with their onboard experience had

decreased due to increased crowding. Many researchers have extensively examined the

various aspects that can affect passengers’ ride comfort.

ISO 2631 IOS (1997), UIC 513 UIC (1994), and the Sperling index (Sperling and

Betzhold, 1956) are the three most widely used vibration-based standards for assessing

ride comfort and train body motion indexes. ISO 2631 and UIC 513 adopt vibrations in

three directions, while the Sperling index relies on vertical or lateral vibrations. Sufficient

expertise is required to execute rigorous data collection and determine those standardized

indexes. Therefore, our recent research is devoted to developing alternative automation

that integrates data sensing and ride-comfort level determination on amobile phone using

an advanced machine learning (ML) model (Huang and Kaewunruen, 2022). To enrich

research in this domain for real-world applications (Huang and Kaewunruen, 2022), we

further enhanced our algorithm to account for passenger ride comfort and angular

motions—which ISO 2631 considers important for tilting trains IOS (1997),—and to

showcase its new capabilities on a newly built underground railway line—the Elizabeth

Line (or Crossrail) in London. To explore these new advances, three more

features—including angular motions in three-dimensional space—were also employed

to generate new capabilities for a robust and explainable AI model. These new capabilities

are essential not only for passenger ride comfort; they are also critical to the operational

safety of train–track movement and the wheel–rail interface.
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Angular motions

Tilt trains have been introduced to increase speed on

curved rail sections by tilting inwards to offset the

centrifugal forces. Tilting also introduces rotation of the

rolling stocks, leading to angular motions: yaw, pitch, and

roll. This type of motion (or rapid change of rolling

behaviours) often results in passengers and crew

experiencing nausea, headache, and dizziness. Rapid and

severe changes in rolling behaviours could potentially cause

train derailments. Researchers have used questionnaires to

evaluate the impact of the train-body tilting on ride comfort,

finding that conventional methods might consider an

unsatisfying comfort level satisfying. With some follow-up

evaluations, researchers have concluded that an alternative

that uses angular velocity as an index is desirable (Suzuki,

1998). Figure 1A depicts the directions used by the

accelerometer and gyroscope. Our research found that a

gyroscope embedded in mobile phones can accurately sense

rotations, whereas an accelerometer only monitors linear

motions. Therefore, we extended our research to enable our

advanced AI model (Kaewunruen et al., 2016; Huang and

FIGURE 1
(Continued).
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FIGURE 1
(Continued). Elizabeth line passenger comfort based on the ML model. (A) Directions for accelerometers and gyroscopes. (B) Acceleration vs.
angular motions. (C)Comfort calculation of the acquired dataset. (D) Flowchart of model training for Elizabeth line. (E) Performance for the Elizabeth
line. (F) Performance for the Elizabeth line and the line in Birmingham. (G) Ride comfort according to ISO 2631 for benchmarking UIC 513 we used
in (C).
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Kaewunruen, 2022) to assess ride quality in both linear and

rolling motions.

Results

Figure 1B illustrates the acceleration and rotations of the

Elizabeth Line. As observed from the magnitude of the

accelerations, the vertical z-axis accelerations gather around

0 m/s2, while the longitudinal x-axis and lateral y-axis

directions have more severe accelerations. The magnitude

of the rotations commences at the peak of 1.2 rad/s and

plummets within the limit of 0.5 rad/s, which may be

caused by the lack of the tilting section. The rotations plot

agrees with Figure 1C, revealing that most of the comfort

levels are within 1–4—“good” and “acceptable” comfort. A

smaller incidence for “poor” and “inferior” comfort can also

be observed in Figure 1C.

Figure 1D provides an overarching framework for

procuring input and labels for the model, based on the

dataset. The transient comfort index in every 5s is

determined using UIC 513 based on the three-axis

accelerations. In the new AI model, frequency weighting

has been used to contour the raw acceleration to the

feelings of human beings (more details are available in

Huang and Kaewunruen (2022)). The same techniques, as

shown in Huang and Kaewunruen (2022) for 98% of R2, are

utilized with hyper-parameter tuning to twist the AI model to

the new datasets from the Elizabeth Line. Accordingly,

Figure 1E reveals a 94.54% R2 by comparing actual values

and predictions. Our AI model predicts well the train ride

quality with additional capabilities for both ride comfort and

angular motions. Figure 1F provides the model performance

using the datasets, assimilating the data from the Elizabeth

Line and datasets from Huang and Kaewunruen (2022). A

very consistent pattern and satisfactory performance can be

seen in Figure 1F. Figure 1G gives overall vibrations in X, Y,

and X directions with a limit of not uncomfortable defined by

ISO 2631. A consistent ride comfort level from Figures 1C,G

can be observed, which implies that the Elizabeth Line can

deliver a satisfying comfort level in the tested section

according to either UIC 513 or ISO 2631.

Discussion

Different countries use various equations to determine train-

ride quality assessments; however, all are based on vibrations to

evaluate ride comfort for train passengers. Our recent study

revealed a reliable relationship between different mainstream

methods for evaluating ride comforts, such as Sperling’s method,

the r.m.s-based method proposed in ISO 2631, and the statistical

method used by UIC 513 (Azzoug and Kaewunruen, 2017). The

comparison between Figures 1C and G demonstrates the strong

correlation between UIC 513 and ISO 2631. Ding et al. (2021)

evaluated the two standards in several different high-speed train

lines and their conclusions agreed with the correlation. This

finding implies correlations between those methods and

underpins the feasibility of our AI model for automation

using any specific standard in any different country. The

present study raises the possibility that our new AI model can

embrace crowd-sensing and decentralize the live monitoring of

train-ride quality in three-dimensional space (considering both

linear and rolling acceleration), as clearly demonstrated in

Figures 1E and F. This study has also demonstrated the ML

model’s robustness for application to surface and underground

trains. By data assimilation and automated retraining, the AI

model can fully address and determine the ride quality, taking

into account both ride comfort and rolling motions.
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