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Revisiting the dynamics of the car cabin environment and its impact on driver

comfort is essential, as these concepts have not been explored in recent years.

Older methods of assessing driver comfort and cabin environments require

elaborate experimental settings and prolonged engagement of study

participants, making repeatability difficult. Therefore, this study develops a

model for study models the car cabin environment based on temperature,

humidity, and CO2 levels using a thermal imager, an air quality device, and

open-source temperature and humidity data. This study also determines

whether the impact of the cabin thermal environment on driver comfort

(skin dryness, eye fatigue, body fatigue, and body heat) can be quantified

based on driver perceptions. The study results showed that body fatigue

decreased from 4.2 to 2.7 when the average relative humidity is reduced

from 37.2% to 24.2%, and the temperature dropped from 41.8°C to 40.0°C.

Notably, the impact of air temperature on the cabin thermal environment was

1.8 times stronger than that of the car skin temperature. Cabin temperature was

found to be a better predictor of driver (dis)comfort than cabin humidity and

CO2 levels. A 10 min exposure to summer heat in the UAE was found to have a

significant effect on drivers’ perceptions of body fatigue, body heat, and eye

fatigue. Overall, these findings have implications for car cabin ergonomics and

future thermal comfort research.
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1 Introduction

Studies concerning rising heat in urban areas seldom discuss its impact on car cabins

and drivers (Joubert et al., 2011; Nakano and Tanabe, 2020; Marcotullio et al., 2022). For

example, Nakano and Tanabe (2020) investigated the thermal impacts of air-

conditioned (AC) and non-AC spaces on occupants, focusing exclusively on the

heat characteristics of the built environment. Similar studies on the heat impacts of

AC and non-AC car cabins on drivers have not been discussed in the relevant literature.

This selective focus has led to the literature that proposes heat management strategies

disconnected from driver needs. For example, one study presented how to determine

optimal tree placement to mitigate urban heat (MacLachlan et al., 2021). Another study
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proposed enhancing basic services, infrastructure, awareness,

and education among residents to enhance urban heat

management practices (Adegun et al., 2022). A driver-

centered approach to the impacts of urban heat is lacking in

the literature.

Overheated vehicle cabins cause, on average, 37 child deaths

per annum in the United States (Horak et al., 2017). High

humidity in the car cabin can affect driver concentration,

situation handling, eye comfort, and visual fatigue (Tsutsumi

et al., 2007). Because CO2 concentration in the car cabin is

associated with driver fatigue (Mathur, 2016), the in-cabin

environment has implications for driver health and comfort,

but studies have neglected this underlying relationship. Crizzle

et al. (2017) searched several renowned databases (Pubmed,

CINAHL, Scopus, and PsycINFO) for articles on the health

and wellness of truck and bus drivers in Canada and the

United States; their analysis of 33 peer-reviewed articles

published between 2000 and 2017 revealed that smoking,

obesity, hypertension, poor diet, lack of exercise, stress, and

sleep were evaluated as major problems for drivers (Crizzle

et al., 2017). This exclusion of the cabin environment impact

from the literature on driver health and comfort could

undermine the significance of regulating cabin environment.

Policymakers, fleet managers, and drivers might disregard the

cabin thermal profile and air quality.

Summertime temperatures in the UAE can reach 51°C,

uncomfortable to remain outdoors. The effects of this heat level

on workers in the construction and oil and gas industries have been

well documented in the literature (Siddique et al., 2019).

Comprehensive programs to reduce heat-related illness for

workers in the UAE and other Middle Eastern countries exist

(Joubert et al., 2011). However, the effects of heat on car drivers

are typically disregarded based on the assumption that car ACs are

sufficient to offer the appropriate degree of comfort. Instead, the focus

is almost exclusively on ‘at risk’workers, such as farmers, construction

laborers, firefighters, miners, soldiers, and proletarians (Xiang et al.,

2014). This neglect has resulted in a lack of engineering and

administrative control measures to reduce drivers’ exposure to

heat. The use of complex experimental settings in previous studies

(Tsutsumi et al., 2007;Mathur, 2016) could have contributed to a lack

of research on driver comfort and the cabin environment. For

example, Tsutsumi et al. (2007) required study participants to sit

in a climate chamber for 5 h to evaluate the impact of the cabin

environment on their comfort levels. Finding volunteers to sit for that

long in a controlled environment, even when it is pleasant, is difficult.

Creating a climate chamber may also not be feasible in many cases.

Thus, introducing simpler and more intuitive methods to profile the

car cabin environment and its impact on driver health can encourage

more scholars (or policymakers, for that matter) to participate in this

research domain.

This exploratory study has two main goals: (i) to revisit the

dynamics of the car cabin environment in the context of hot UAE

summers, and (ii) to demonstrate the usefulness of a simpler,

psychometric approach to evaluate the impact of cabin

environment on driver comfort. The study assumes that the

cabin environment can be modeled using external factors such as

car skin temperature, air temperature, and air humidity. Thermal

conditions (temperature and relative humidity) and air exchange

(CO2 concentration) are considered the main attributes of the

cabin environment (Croitoru et al., 2015; Szczurek and

Maciejewska, 2016). The impact of these factors–temperature,

relative humidity, and CO2 concentration–on driver comfort is

evaluated using four constructs: body fatigue, eye fatigue, body

heat, and skin dryness. These constructs are widely regarded as

measures of driver comfort (Tsutsumi et al., 2007; Danca et al.,

2016). This study is expected to contribute to the literature on car

cabin thermal dynamics and associated driver comfort levels.

This study is novel because it explores the impact of cabin

thermal environments on driver comfort, which has remained

unexplored in the context of the UAE, despite the country’s

soaring levels of heat witnessed during the summers. The use of

real field settings, as opposed to climate chambers to elicit more

accurate driver responses is another innovative aspect of this

study. The latter (climate chamber) methodology, used in most

studies concerning cabin environment and driver comfort, does

not mimic real-life situations wherein car users (while walking to

the parking lot) face external environmental heat before

experiencing the cabin thermal environment. This pre-

exposure to heat might affect how drivers rate their cabin

environment. Finally, this study simplifies existing research

methods for assessing the drivers’ comfort level by employing

fewer instruments and relying more on psychometric approaches

based on statistical analysis to explore the relationship between

cabin environment and driver comfort.

2 Materials and methods

The overall objective of this study is to measure the impact of

external thermal conditions, including car skin temperature, on

the cabin thermal profile, and relate it to driver comfort. The air

conditions outside the cars are expected to affect the air

conditions inside the cars, thereby affecting driver experience

(level of comfort). Because car ACs can alter cabin conditions

(temperature and humidity), drivers’ experiences before and after

turning on the ACs are evaluated. Exposure to non-AC

conditions would help simulate the external environment

conditions that drivers face while walking to and from the car

parking. While long-term (more than 15 min) exposure to high-

temperature levels can induce heat stroke, little is known about

the impact of short-term heat exposure.

This study included a car cabin and driver comfort

monitoring experiment, conducted on 26 May 2022, at the

UAE University visitors’ parking area located in Al Ain city,

UAE. The experimental settings included ten white cars

parked under different shading conditions: eight under an
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outdoor covered parking lot, one under a tree, and one in an

indoor parking compound. Different shading conditions were

meant to introduce random variation in the car cabin thermal

environment. All cars had the same (white) color to rule out

the reported impact of car color on the cabin thermal profile

(Levinson et al., 2011). Because car materials can impact the

cabin thermal environment (Marshall et al., 2019). Cars of

similar make and model were used in this experiment to

neutralize this effect. All cars were gulf variants of standard

sedans of Japanese origin. At random periods during the day,

the research team visited each car individually to monitor the

car skin temperature and cabin air quality (temperature,

humidity, and CO2 levels). A handheld thermal imager

was used to photograph the cars (Figure 1). Because

various components of the car body showed different

temperatures, for the sake of consistency in recorded

values, the temperature of the hottest part of the car skin

was recorded.

Car cabin temperature and humidity levels were measured

using an off-the-shelf air quality monitor. The device could log

temperature and humidity levels at 10 s intervals. The

surrounding air temperature and humidity levels were

retrieved from an open-source metrological data repository

that records weather data at hourly resolution (Weatherspark,

FIGURE 1
Optical and thermal images of cars parked under various shading conditions.
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2022). The temperature was assumed to remain constant

throughout each hourly interval. Table 1 shows the thermal

properties of the car skin, car cabin, and surrounding air.

Note that the cabin humidity (HC) and cabin temperature

(Tc) values show the averages of 5 minutes of data logged for

each car (Table 1).

To measure the impact of cabin air quality on driver

experience, two study participants were assigned per car to sit

in the front seats for 10 min. The car AC was kept off for the first

5 min and on for the last five. Moreover, the car windows were

kept closed during the experiment. In total, 11 participants

participated in the driver perception survey: ten respondents

(one per car) and one surveyor (the same person for all ten cars).

The reason for assigning a different participant each time was to

ensure that the study participants did not face heat-related

illnesses such as heat exhaustion, or worse heat stroke, which

could set in after 10–15 min of exposure to the heat levels

observed in the UAE. The surveyor, who had to successively

sit in all ten cars, was protected from the heat by limiting his

sitting time to that part of the experiment when car ACs were

turned on. Notably, the participants were told that they could

leave the car (or turn on the AC) at any point during the

experiment, should the cabin environment start feeling too

hot. The purpose was to record the impact of changing

thermal conditions on driver comfort. Apart from Hc and Tc,

the cabin-CO2 (CC) levels were also logged to understand the

impact of CO2 concentration on driver comfort. The comfort

level was measured in terms of body fatigue, eye fatigue, body

heat, and skin dryness, using a five-point Likert scale where one

meant the least impact and five meant the greatest.

Table 2 shows the passenger experience data under varying

car cabin conditions. Each case includes 5-min average cabin

air quality data with a corresponding passenger comfort

rating. Humidity was measured in relative %, the

temperature in °C, and CO2 in parts per million. In total,

there were 20 cases, and data were collected at various times of

the day.

3 Results

Data analysis (Table 1) shows that the mean car cabin

temperature (41.797°C) exceeds the mean air temperature

(37.350°C) but is lower than the mean car skin temperature

(47.390). This occurred even though all cars were parked under

shaded conditions. The car parked under a tree shade registered a

cabin temperature of 50°C (nine units higher than the average cabin

temperature of the sample cars). Because all cars used in the

experiment were white, the impact of car color on cabin

temperature could be ignored. The highest variation in

temperature was observed in the car skin temperature (SD= 5.4206).

3.1 Car cabin temperature

Linear regression modeling assumptions were tested to

model car cabin temperature as a dependent variable and air

temperature and car skin temperature as predictors. Table 3

shows the correlations among the variables of interest. The

correlation between air temperature and car skin temperature

was 0.02 and was not significant. To alleviate multicollinearity

concerns, the correlations between independent variables (air

temperature and car skin temperature in this case) should not

exceed 0.7 (Gregorich et al., 2021). Thus, multicollinearity is not

a concern here. Another desirable condition is the correlation

value between predictor variables and outcome variables should

exceed 0.3 (Ratner, 2009). Table 3 shows that the correlation

values between cabin temperature and air temperature and car-

skin temperature were 0.7 and 0.405, respectively. These

correlation values are desirable.

TABLE 1 Thermal profiling of car skin, car cabin, and the surrounding air.

Car no. Car skin
temperature (Ts)

Cabin humidity
(Hc)

Cabin temperature
(Tc)

Air humidity
(Ha)

Air temperature
(Ta)

1 38.0 40.0 35.0 41.0 32.0

2 48.5 35.2 40.0 37.0 33.0

3 51.0 46.2 38.6 32.0 34.0

4 51.6 39.8 39.5 28.0 35.0

5 53.7 45.2 41.5 22.0 38.0

6 47.8 39.5 43.0 17.0 39.0

7 47.7 37.7 41.9 15.0 40.0

8 50.6 29.6 50.0 12.0 40.5

9 47.3 28.0 49.7 11.0 41.0

10 37.7 30.3 38.7 11.0 41.0

Mean 47.4 37.2 41.8 22.6 37.4

Frontiers in Built Environment frontiersin.org04

Alkaabi and Raza 10.3389/fbuil.2022.1041305

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1041305


The normal probability–probability (P-P) plot shows that the

points follow a linear trend (Figure 2). Although the points

deviate from the line slightly in the middle, overall, they

follow a linear line, which is satisfactory. The scatterplot

(Figure 2) shows point distribution as none exceeds

+3 or −3 units (standard deviation) along either axis. This

compactness may be attributed to the small sample size used

in this study. For studies involving larger sample sizes, outliers

are usually observed. Such points (outliers) may be removed from

the analysis. Further discussion in this regard is beyond the scope

of this article and interested readers might want to refer to the

relevant literature (Terrin et al., 2005; Sarikaya and Gleicher,

2018).

Other parameters measured to test modeling assumptions

included standard residual and Cook’s distance (Table 4). The

standard residual values ranged from −0.971 to 1.397 which is

well within the threshold limit (±3). Likewise, the average Cook’s

Distances was 0.226; well below the threshold of 1.0 which shows

TABLE 2 Passenger experience under varying cabin thermal conditions.

Case No Hc Tc Cc Body fatigue Eye fatigue Body heat Skin dryness

1 40.0 35.0 1998.0 3 4 4 5

2 35.2 40.0 1,207.2 4 2 4 5

3 46.2 38.6 2828.1 4 2 4 1

4 39.8 39.4 2440.6 3 2 3 4

5 45.2 41.4 1,580.2 5 3 3 5

6 39.5 43.0 3,718.8 5 5 5 5

7 37.7 41.8 2347.1 5 5 5 5

8 29.6 49.9 2350.1 5 5 5 5

9 28.0 49.7 2117.1 5 5 5 3

10 30.3 38.7 1795.9 3 1 2 2

Averages 37.2 41.8 2238.3 4.2 3.4 4.0 4.0

11 24.0 32.0 2283.0 2 2 3 4

12 29.0 39.6 2725.0 3 1 3 4

13 34.3 36.6 3,908.0 3 1 3 1

14 23.3 37.4 2610.0 1 1 2 3

15 23.7 39.1 2950.7 3 1 2 3

16 24.9 42.5 3,334.5 3 3 4 4

17 25.7 40.5 2900.0 3 3 4 4

18 16.9 49.4 2624.4 4 4 4 4

19 19.9 45.7 2159.6 4 3 3 1

20 20.6 37.1 2455.0 1 1 1 1

Average 24.2 40.0 2795.0 2.7 2.0 2.9 2.9

TABLE 3 Correlations between car cabin temperature, air
temperature, and car-skin temperature.

Correlations

Tc Ta Ts

Pearson Correlation Tc 1.000 0.700 0.405

Ta 0.700 1.000 0.020

Ts 0.405 0.020 1.000

Sig. (1-tailed) Tc . 0.012 0.123

Ta 0.012 . 0.478

Ts 0.123 0.478 .

N Tc 10 10 10

Ta 10 10 10

Ts 10 10 10
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that overall, data points do not exhibit peculiarities. However, the

maximum Cook’s distance was 1.058 indicating the presence of at

least one outlier (an influential term that can lead to a regression

model presenting a distorted image). Identifying such influential

terms requires finding the Cook’s distance value of the individual

data points. Removing the outliers from the data set requires finding

the impact of such removal on the least square estimates. Such

detailed analysismight not bewarranted for exploratory studies such

as this one wherein the data points showed a reasonably low average

value (of Cook’s distance). Studies featuring large sample sizes and

aiming to establish the relationships, however, need to analyze the

possibility of removing of outliers from the data points. For more

insights into this topic, interested readers should refer to Cook

(1977).

The R-Square value for the model was 0.642, indicating that the

predictor variables could predict 64% of the variation in the

FIGURE 2
Normal P-P plot (left) and scatterplot (right).

TABLE 4 Residual statistics.

Residuals statistics

Minimum Maximum Mean Std. Deviation N

Predicted Value 33.521 45.870 41.797 3.8314 10

Std. Predicted Value -2.160 1.063 0.000 1.000 10

Standard Error of Predicted Value 1.146 2.672 1.715 0.484 10

Adjusted Predicted Value 30.383 46.304 41.850 4.8639 10

Residual -3.1489 4.5271 0.0000 2.8587 10

Std. Residual -0.971 1.397 0.000 0.882 10

Stud. Residual -1.505 1.582 -0.008 1.079 10

Deleted Residual -7.5610 5.8052 -0.0527 4.4862 10

Stud. Deleted Residual -1.695 1.826 0.015 1.167 10

Mahal. Distance 0.225 5.217 1.800 1.635 10

Cook’s Distance 0.001 1.058 0.226 0.324 10

Centered Leverage Value 0.025 0.580 0.200 0.182 10

a. Dependent VariableTC.
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dependent variable (Table 5). However, given the small sample size in

this study, adopting a conservative estimate of the R Square value

(adjusted R-Square) seems reasonable. The adjusted R Square value of

the model is 0.54. Usually, R-Square values of more than 0.3 indicate

acceptable regression models. The analysis of variance (ANOVA)

showed that the regressionmodel was significant at a 95% confidence

level i.e., the p-value was less than 0.05. More specific measures of

multicollinearity include tolerance and variance inflation factors

(VIF) (Miles, 2014). The tolerance describes how much variability

of a predictor variable is not explained by other independent variables

in the model. The desired value of tolerance should exceed 0.1.

Likewise, the desired value of VIF should be below 3, though

some scholars (O’brien, 2007) permit higher VIF values. Table 5

shows that the tolerance and VIF value for both predictor variables is

one, satisfying multicollinearity assumptions.

The air temperature variable has a standardized coefficient of

0.692 as compared to car skin temperature of 0.391, implying that

more (nearly twice) variation in the outcome variable is explained

by air temperature than car skin temperature. Notably, standardized

coefficients offer a better comparison between the predicting power

of independent variables compared to unstandardized coefficients.

The unstandardized values of air temperature (0.942) and car skin

temperature (0.345) are important from a modeling perspective.

Thus, the car cabin thermal environment predictionmodel takes the

following form based on the results of this study. Note that the air

temperature is a significant predictor of the car cabin temperature

(p < 0.05), but the car skin temperature is not (p > 0.05).

CarCabin Temperature � 0.942*(Air Temperature)

+ 0.345*(Car Skin Temperature)

− 9.715

(1)

3.2 Passenger comfort evaluation

The impacts of cabin humidity, cabin temperature, and C

O 2 concentration on the participants’ perception of body

heat, body fatigue, eye fatigue, and skin dryness were

measured (Table 2). The participants rated their experience

under 20 varying conditions. Since the driver engagement was

brief (15 min) and there were distinct boundary conditions

and respondents for every car, it was deemed necessary to

validate that the recorded measurements would adequately

TABLE 5 Model summary, ANOVA, and coefficients of cabin temperature.

Model summaryb

Model R R Square Adjusted R
Square

Std. Error of the
Estimate

Change Statistics

R Square
Change

F Change df1 df2 Sig. F
Change

1 0.801a 0.642 0.540 3.2414 0.642 6.287 2 7 0.027

ANOVAa

Model Sum of Squares Df Mean Square F Sig

1 132.119 2 66.059 6.287 6.287 0.027b

73.549 7 10.507 10.507

205.668 9

COEFFICIENTS AND COLLINEARITYa

Model Unstandardized
Coefficients

Standardized Coefficients T Sig Correlations Collinearity
Statistics

B Std. Error Beta Zero-order Partial Part Tolerance VIF

1 (Constant) -9.715 14.766 -0.658 0.532

Ta 0.942 0.308 0.692 3.060 0.018 0.700 0.756 0.692 1.000 1.000

Ts 0.345 0.199 0.391 1.730 0.127 0.405 0.547 0.391 1.000 1.000

a. Dependent Variable: Tc b. Predictors: Ta Ts
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describe driver comfort levels. To this end, the internal

consistency of the driver comfort data was measured using

Cronbach’s α. A minimum α value of 0.7 is required to ensure

internal consistency (Tavakol and Dennick, 2011). The α

value for driver comfort data turned out to be

0.880 showing high internal consistency. To improve the

validation, the analysis of the sensitivity of α value to the

scale items was performed (Table 6). The analysis showed that

the responses on skin dryness were not consistent, as α

jumped to 0.913 upon removing skin dryness from driver

comfort data. Therefore, skin dryness was excluded from

subsequent regression modeling in this study. The

statistical significance of the relationships was also tested.

Thus, the overall reliability of the research method was

ensured.

To find if the skin dryness variable could be modeled using

this data, a normal P-P plot of regression standardized

residuals was plotted (Figure 3). The skin dryness rating

data points did not satisfy the normality assumption. A

non-linear regression or nonparametric statistical analysis

was also unlikely to yield meaningful results because of the

internal inconsistency of the measurement scale for skin

dryness. Therefore, skin dryness was excluded from further

analysis.

3.2.1 Perceived eye fatigue
Perceived eye fatigue was modeled as a function of Hc, Tc,

and Cc levels. The correlations among predictor variables were

less than 0.7, alleviating multicollinearity concerns. The

correlation between cabin temperature and eye fatigue

exceeded 0.3 indicating that temperature is a good

predictor of eye fatigue. Humidity and CO2 show

insignificant weak correlations (<0.3) with eye fatigue.

Diagnostic plots revealed that the assumptions of normality

and homoscedasticity were satisfied (Figure 4). Other

assumptions of linear regression including independence

and linearity, were also satisfied but were not discussed

here considering the exploratory nature of the study and

for the sake of brevity. Interested readers are referred to

the relevant literature (James et al., 2021) for further

diagnostics of the data used in the study (Table 2).

The R-Square value for the model was 0.529, implying that

the independent variables could predict a 52.9% variation in

the dependent variable (Table 7). However, given the small

sample size (n = 20), adopting a more conservative estimate of

the R Square value (adjusted R Square) seems reasonable here.

The adjusted R Square value for the model was 0.441 which is

acceptable. The ANOVA results showed that the regression

model was significant at a 95% confidence level i.e., the p-value

is less than 0.05. The standardized coefficients of humidity,

TABLE 6 Cronbach’s alpha: Item-total statistics.

Item-total statistics

Scale Mean if Item
Deleted

Scale Variance if Item
Deleted

Corrected Item-Total
Correlation

Squared Multiple
Correlation

Cronbach’s Alpha if
Item Deleted

Body Fatigue 9.60 13.305 0.720 0.633 0.835

Eye Fatigue 10.35 10.661 0.836 0.769 0.783

Body Heat 9.60 12.884 0.865 0.797 0.789

Skin Dryness 9.60 13.200 0.536 0.327 0.913

FIGURE 3
Normal P-P plot.
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FIGURE 4
Diagnostic plots; eye fatigue.
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temperature, and CO2 were 0.321, 0.723, and 0.019,

respectively, showing that cabin temperature explains more

than twice the variation in eye fatigue as compared to cabin

humidity. CO2 levels explained little to no variance in the

outcome variable. Cabin temperature is a significant

explanatory variable (p < 0.05), but humidity and CO2

levels were not. The collinearity statistics were satisfactory

(tolerance >0.3 and VIF<3). Overall, the eye fatigue prediction

model takes the following form.

Eye Fatigue � 0.57*(HC) + 0.229*(TC) − 8.506 (2)

Because the impact of CO2 concentration was

negligible (to the order of 10-5), it was excluded from the

final model.

3.2.2 Body fatigue
Like eye fatigue, body fatigue was modeled as a function of

Hc, Tc, and Cc levels. The correlation between body fatigue with

predictors was more than 0.3 in the case of Hc and Tc and less in

the case of Cc (Table 8). It implies that CO2 level might not be a

strong predictor of body fatigue. The correlation of body fatigue

is highest for Tc (0.680), as shown in Table 8. Notably, the

correlations among predictor variables were less than 0.7,

reducing the multicollinearity concerns. Diagnostic plots

showed that the assumptions of normality and

homoscedasticity were not violated (Figure 5).

The adjusted-R Square value of the model was 0.787 which

was significantly powerful, especially considering the small

sample size (Table 8). Thus, the model could explain 78.7% of

the variance of the body fatigue variable. The analysis of variance

(ANOVA) showed that the regression model was significant at a

95% confidence level. The standardized coefficients of Hc and Tc

were 0.606 and 0.801, respectively. It implied that the latter can

explain 25% more variations in body fatigue than the former. On

the other hand, the Cc level explained little to no variance in body

fatigue (standardized coefficient = −0.035). Tc and Hc were

statistically significant (p < 0.05), but Cc was not. The

collinearity statistics are satisfactory (tolerance >0.3 and

TABLE 7 Model summary, ANOVA, and coefficients of eye fatigue.

Model summaryb

Model R R
Square

Adjusted R
Square

Std. Error of the
Estimate

Change Statistics

R Square
Change

F Change df1 df2 Sig. F Change

1 0.728a 0.529 0.441 1.140 0.529 6.000 3 16 0.006

ANOVAa

Model Sum of Squares Df Mean Square F Sig

1 Regression 23.401 3 7.800 6.000 0.006b

Residual 20.799 16 1.300

Total 44.200 19

COEFFICIENTSA

Model Unstandardized
Coefficients

Standardized Coefficients T Sig Correlations Collinearity
Statistics

B Std. Error Beta Zero-order Partial Part Tolerance VIF

1 (Constant) -8.506 2.924 -2.909 0.010

HC 0.057 0.031 0.321 1.821 0.087 0.173 0.414 0.312 0.948 1.055

TC 0.229 0.056 0.723 4.117 0.001 0.657 0.717 0.706 0.955 1.047

CC 4.334E-5 0.000 0.019 0.109 0.915 -0.045 0.027 0.019 0.986 1.014

a. Dependent Variable: Eye_Fatigue b. Predictors: (Constant), CO2, TC, HC
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VIF<3). Overall, the body fatigue prediction model is written as

follows:

BodyFatigue � 0.087*(HC) + 0.205*(TC) − 7.439 (3)

Note that the impact of CO2 concentration on body fatigue

was negligible (to the order of 10-5) and was thus excluded from

the final model.

3.2.3 Body heat
Like body fatigue and eye fatigue, body heat was also

modeled using Hc, Tc, and Cc as predictor variables. Table 9

showed that the correlation between body heat and Tc was

the highest (0.551) was statistically significant (p < 0.05). The

intercorrelations among predictor variables were less than

0.7, thereby reducing the multicollinearity concerns. The

correlations of Tc and Hc with body heat are more than

0.3 indicating that these predictors were good candidates for

the intended regression modeling. Cc, on the other hand,

showed insignificant (p > 0.05) and weak (<0.3) correlations
with the body heat rendering its candidacy as a predictor

variable, questionable. Diagnostic plots showed that the

assumptions of normality and homoscedasticity were valid

(Figure 6).

Given the small sample size, adopting the adjusted R

Square value seemed reasonable, which was 0.451 (Table 9).

Thus, the model can explain 45.1% of the variance in Body

Heat. The ANOVA results showed that the regression model

was significant at a 95% confidence level i.e., the p-value was

less than 0.05. The standardized coefficients of humidity,

temperature, and CO2 were 0.487, 0.656, and 0.149, showing

that the cabin temperature explained the most variation in

body heat. However, the CO2 level explained little to no

variance in the outcome variable. Both Tc and Hc were

significant explanatory variables (p < 0.05), but the Cc

Level was not. The collinearity statistics were also

satisfactory (tolerance >0.3 and VIF < 3). Overall, the

body heat prediction model takes the following form

based on the results of this study.

BodyHeat � 0.065*(HC) + 0.156*(TC) − 5.565 (4)

TABLE 8 Model summary, ANOVA, and coefficients of body fatigue.

Model summaryb

Model R R
Square

Adjusted R
Square

Std. Error of the
Estimate

Change Statistics

R Square Change F Change df1 df2 Sig. F Change

1 0.906a 0.821 0.787 0.570 0.821 24.394 3 16 0.000

ANOVAa

Model Sum of Squares Df Mean Square F Sig

1 Regression 23.756 3 7.919 24.394 0.000b

Residual 5.194 16 0.325

Total 28.950 19

COEFFICIENTSA

Model Unstandardized
Coefficients

Standardized
Coefficients

T Sig Correlations Collinearity
Statistics

B Std.
Error

Beta Zero-
order

Partial Part Tolerance VIF

1 (Constant) -7.439 1.461 -5.091 0.000

HC 0.087 0.016 0.606 5.570 0.000 0.447 0.812 0.590 0.948 1.055

TC 0.205 0.028 0.801 7.392 0.000 0.680 0.879 0.783 0.955 1.047

CC -6.600E-5 0.000 -0.035 -0.332 0.744 -0.130 -0.083 -0.035 0.986 1.014

a. Dependent Variable: Body_Fatigue
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FIGURE 5
Diagnostic plots, body fatigue.
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Note that the impact of CO2 concentration on body heat was

not observed.

4 Discussions

The car cabin environment can be described in terms of

thermal and air exchange parameters. The thermal factors used

in this study were temperature and humidity and the air exchange

factor was CO2, which is consistent with the literature (Szczurek

and Maciejewska, 2016). Intuitively, cabin temperature and

humidity can be associated with the surrounding air

temperature and humidity. However, simultaneously modeling

air temperature and humidity as predictors can be misleading in

that the two are strongly correlated, raising multicollinearity

concerns. In this study, the correlation between air humidity

and the air temperature was found to be perfect (0.995). This is

why the cabin environment was studied only as a function of air

temperature and not air humidity.

The driver perception of comfort data measured using a five-

point Likert scale in this study is ordinal scale data (or at best

interval scale data). Still, during the analysis, it is treated as ratio

scale data which is a higher-level data type than the ordinal and

interval scales. Future studies should treat such data carefully.

Before using the data for parametrical statistical analysis, the

assumptions of normality, linearity, homoscedasticity, and

independence should be tested using diagnostic plots. If any

of these assumptions do not hold, scholars should be careful in

their choice of analysis methodology. Alternate analysis

techniques are available for data that do not follow a normal

distribution. For more discussion on this topic, interested readers

are referred to the relevant literature on nonparametric statistical

techniques (Kraska-MIller, 2013).

The correlation between cabin temperature and the

surrounding air temperature was found to be strong (0.7) and

significant (p < 0.05). However, the correlation between car skin

temperature and car cabin temperature was weak (0.02). This

may be attributed to several factors including shading conditions

TABLE 9 Model summary, ANOVA, and coefficients of body heat.

Model summaryb

Model R R
Square

Adjusted R
Square

Std. Error of the
Estimate

Change Statistics

R Square
Change

F Change df1 df2 Sig. F Change

1 0.733a 0.538 0.451 0.849 0.538 6.206 3 16 0.005

ANOVAa

Model Sum of Squares Df Mean Square F Sig

1 Regression 13.418 3 4.473 6.206 0.005b

Residual 11.532 16 0.721

Total 24.950 19

COEFFICIENTSA

Model Unstandardized
Coefficients

Standardized Coefficients T Sig Correlations Collinearity
Statistics

B Std. Error Beta Zero-order Partial Part Tolerance VIF

1 (Constant) -5.565 2.177 -2.556 0.021

HC 0.065 0.023 0.487 2.791 0.013 0.341 0.572 0.474 0.948 1.055

TC 0.156 0.041 0.656 3.771 0.002 0.551 0.686 0.641 0.955 1.047

CC 0.000 0.000 0.149 0.869 0.398 0.072 0.212 0.148 0.986 1.014

a. Dependent Variable: Body_Heat
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and the car skin temperature measurement technique used in this

study which targeted maximum skin temperature instead of the

average skin temperature. Still, this finding warrants further

investigation with a larger sample size. In the final regression

model, the air temperature explained three times the variation in

the car cabin temperature as compared to the car skin

FIGURE 6
Diagnostic plots, body heat.
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temperature. Thus, air temperature is a better predictor of the car

cabin thermal environment than car skin temperature.

Passenger comfort was measured using three constructs:

body heat, body fatigue, and eye fatigue. The attempt to

evaluate the fourth construct (skin dryness) was not successful

as the internal consistency of data was low and diagnostic plots

showed skin dryness data did not follow a normal distribution.

The impact of cabin temperature on eye fatigue was estimated to

be 2.25 times more than the impact of humidity (Table 7). An

increase in temperature and humidity translated into an increase

in eye fatigue. Eyeblink suppression and ocular surface irritation

are known sources of eye fatigue for drivers (Sullivan, 2008).

While more studies are needed to specify the repercussions of

visual fatigue on driving tasks, an already-known characteristic of

eye fatigue is that it has no permanent effect and can be resolved

by taking rest (Megaw, 1995). The amount of rest needed to

recover from visual fatigue is unknown (Sullivan, 2008).

The participants also reported an increase in body fatigue at

high cabin temperatures and high humidity levels. The impact of

cabin temperature on body fatigue was 132% more than that of

cabin humidity. Likewise, for body heat, the temperature impact

was 134% more than the humidity effect. However, the impact of

CO2 concentration on driver comfort (body fatigue, body heat,

and eye fatigue) was negligible. This may be due to short-term

exposure to the gas at low concentrations. The maximum level of

CO2 reached during the experiment was 3,908 ppm (Table 2).

Future studies might consider assessing the impact of higher

concentrations of CO2 on driver fatigue.

One of the elements of novelty in this study is the use of real

field settings to elicit drivers’ perceptions of comfort levels

concerning the changing cabin thermal profile. Previous

studies used lab-based design to evaluate the dynamics of the

car cabin environment and related driver experience (Tsutsumi

et al., 2007; Mathur, 2016). Moreover, the literature does not offer

any study on the impact of cabin heat on the driver comfort level

in the UAE, given that the country features one of the hottest

summers in the world. Driver experience in everyday situations is

a product of both the external (air) and the internal (cabin)

thermal profiles which differ from the lab-based experimental

where the study participants usually sit in an AC environment

before entering the climate chambers for the experiment. Hence,

this study is expected to evoke a more lifelike thermal experience

among drivers and to gather more realistic data on their comfort

levels than the previous studies.

Another contribution of this study is the use of simple

instruments only a thermal camera and an air quality

measuring device is used for the cabin environment modeling.

Another remarkable feature is the brief engagement time for the

study participants (around 15 min including 10 min of sitting in

the car and 5 min of filling out the questionnaire). Fewer

equipment needs and shorter study duration mean that more

stakeholders can use this method to study the cabin environment

and driver comfort. Moreover, a psychometric approach was

employed to evaluate driver comfort, which was previously

analyzed using elaborate experimental settings (Tsutsumi

et al., 2007; Mathur, 2016). Besides health impacts, the cabin

thermal environment affects fuel consumption (Mansour et al.,

2018). Cabin heating issues are also linked with parking behavior

(parking choice, duration, visiting hours, etc.). Therefore, this

study is expected to attract a broad readership including

transport and health policymakers, parking managers, and

scholars.

This study’s findings can be applied to the assessment of

comfort conditions and the design of car cabins according to

comfort requirements. Driver comfort improved significantly

and quickly (within 5 minutes) as in cabin thermal parameters

were enhanced. For example, the average body fatigue reduced

from 4.2 to 2.7 when the average relative humidity was reduced

from 37.2% to 24.2%, and the temperature from 41.8°C to 40.0°C

(Table 2). This finding corroborates the literature that asserts a

quicker response to thermal stress in car cabins (Danca et al.,

2016). Likewise, eye fatigue and body heat were also reduced

from 3.4 to 4.0 to 2.0 and 2.9, respectively. However, note that

these improvements in thermal comfort parameters are relative,

and not absolute i.e., the study does not quantify thermal comfort

levels. Future studies might want to consider differentiating

thermal comfort from discomfort to strengthen this study’s

findings toward improving the ergonomics of car cabin

thermal environments.

The limited sample size is one one of this study’s limitations,

whichmay have diminished the statistical analysis power. This also

resulted in the lack of data required for model validation.

Therefore, as the title suggests, this study should be treated as

an exploratory study to guide future research in this domain.

Another limitation is the direct measurement of constructs (body

heat, body fatigue, and eye fatigue). Using Likert scale to measure

complex constructs can be misleading. This limitation was

addressed by ensuring an acceptable level of internal

consistency in the employed scale (Table 6). Finally, the time of

day when the reading is taken might affect body fatigue, eye

fatigue, and body heat. For example, for the body fatigue readings

taken in the afternoon, study participants might already be tired

due to daylong activity which could affect their item rating on the

Liker scale. Future research should consider accounting for the

impact of such covariates.

5 Conclusion

This exploratory study demonstrated that modeling the car

cabin thermal environment as a function of external air

temperature and car skin temperature is feasible. Air

temperature has a more pronounced impact on the cabin

environment than car skin temperature. The cabin environment

affects driver comfort level which can be measured using four

constructs: body heat, body fatigue, eye fatigue, and skin dryness.
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The first three constructsmight bemeasured psychometrically, but

skin dryness might not be measured in the same way. Respondents

could not describe their feelings of skin dryness in an internally

consistent manner, that is, they could not employ the same scale to

rate skin dryness. This finding has implications for future studies

that measure skin dryness or other similar constructs. The level of

comfort was shown to be more sensitive to cabin temperature than

it is to the cabin humidity and CO2 levels. The CO2 concentration

studied in this experiment was 3,908 ppm, and its impact on driver

comfort was negligible. This corroborates with the literature which

suggests no serious health impacts for CO2 levels below 5,000 ppm

(Prill, 2000).

Car cabin environment modeling should be studied more

often, focusing on passenger comfort. Simple research

methods can facilitate various stakeholders in expanding

the scope of this research domain. In this regard, methods

requiring minimal instrumentation could facilitate relevant

policymakers and practitioners in collecting empirical data

for their specific needs. Thermal camera-based technologies

are anticipated to become more widespread in near future;

thanks in part to the advancement in drone-based thermal

images. Aerial thermal photographs can help scan fleets of

vehicles in parking lots and urban traffic revealing a wealth of

information that was previously unavailable to parking

managers and policymakers.

This study used only white cars to rule out the impact of car

color on the cabin environment. Future studies might consider

using different colored cars to gain more insight into the impact of

car surfaces on the cabin environment. Moreover, the study used a

small sample size that did not allow for evaluating the impact of

shading conditions on the cabin environment. Future studies

should consider increasing the sample size, that is, including

more cars in the experiment, and allowing parking enough cars

under different shading conditions to study and compare the

impact of various parking types on the cabin environment and

driver comfort. These findings would partly explain the choice,

timing, and duration of parking, and would interest parking

managers and urban transport planners whose businesses are

sensitive to the dynamics of parking behavior. A large sample

size will also allow for the validation of study findings.

Psychometric approaches to analyze constructs related to

passenger comfort should be preferred over the other, more

complex methods requiring instrumentation. This study

demonstrated that reliable data on passenger comfort can

be obtained and analyzed using effective parametric statistical

techniques. Future studies should also consider using

nonparametric statistical techniques, such as ordinal

regression, should the assumptions of normality,

homoscedasticity, independence, or linearity fail to hold.

This, however, should be performed only on internally

consistent data. In this regard, Cronbach’s alpha is a useful

parameter. Clear explanations of study constructs to study

participants may aid in improving data internal consistency.

In this study, skin dryness could not be evaluated due to low

internal consistency. Interested readers are referred to

Tsutsumi et al. (2007) for alternative methods of measuring

skin dryness.
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