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This study applies computationally efficient shallow neural networks to predict
topographic effect multipliers directly from digital elevation data obtained from
complex terrain, such as mountainous areas. Data were obtained from boundary
layer wind tunnel (BLWT) modeling of surface wind flow over six regions in mainland
Puerto Rico and its municipal islands. The results demonstrate an improvement over
linear regression models, even for computationally efficient low neuron count and single
hidden layer models. The paper proposes the development of a global BLWT data atlas
to inform development of methods to predict topographic wind speedup for a diverse
range of topography and surface roughness conditions. It also identifies knowledge gaps
that could prevent standardization of data collected from different BLWT experimental
designs.
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INTRODUCTION

Prediction of wind speed in complex topography is integral to the design and operation of civil
infrastructure (e.g., Baker et al., 1985; Huang and Xu, 2013; Ngo and Letchford, 2009), siting and
optimization of wind energy resources (Barthelmie et al., 2009; Badger et al., 2014; Wilczak et al.,
2015; Brahimi, 2019; Haupt et al., 2019; Olson et al., 2019; Santoni et al., 2020), forest management
(e.g., Quill et al., 2020), and meteorological forecasting (e.g., Finnigan et al., 2020; Donadio et al.,
2021). Within the context of wind loads on structures, surface gusts occurring in a flat expanse can
double in magnitude upslope (Kondo et al., 2002), quadrupling the loads occurring on low-rise
buildings. Therefore, modern wind load provisions (e.g., ASCE 7–16) account for the presence of
hills, escarpments, and other topographic features through provisioning of rational engineering
analysis for simple landforms or special wind region maps for areas that have complex topography.
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Additional methods to account for complex terrain in structural
design include wind tunnel testing and computational fluid
dynamics (CFD) simulation. While over time CFD will likely
become the dominant method to predict speedup, these methods
are still computationally expensive, time intensive, and
occasionally prone to not resolving flows in complex terrain
well. Thus, this study explores the use of shallow neural
networks, which are excellent universal function
approximators when trained properly (Hornik et al., 1989).

Flow over isolated topographic features has been studied for
decades (e.g., Taylor and Teunissen, 1987; Salmon et al., 1998),
later extending to the study of complex landforms (e.g., Chock
and Cochran, 2005; Rasouli et al., 2009; Kikuchi and Ishihara,
2012; McAuliffe and Larose, 2012; Lange, 2016). The present
research adds to the body of work that uses data-driven
methods to predict speedup, using six mountainous regions
in mainland Puerto Rico and the municipal islands of Vieques
and Culebra as the study testbed (Figure 1). Multiple shallow
neural network configurations are applied to surface velocity
measurements obtained from boundary layer wind tunnel
(BLWT) modeling of complex terrain, including coastal-to-
mountain transitions and inner mountain ranges. The results
support the efficacy of this approach for rapid and
computationally inexpensive prediction of wind speedup in
complex topography using digital elevation model (DEM)
data. We conclude that BLWT topographic modeling data
obtained from different facilities should be warehoused in a
single, openly accessible data atlas to validate, improve, and
cross-compare the results of predictive models for a wide range
of terrain and land cover types.

Motivating the study is the impact of Hurricane Maria
(2017), which struck the island as a Saffir Simpson
Hurricane Wind Scale Category 4 storm that caused more
than 4,000 deaths (Kishore et al., 2018), $90B in economic loss
(Pasch et al., 2019), and widespread power outages that
occurred for more than 6 months (Kwasinski et al., 2019).
The National Hurricane Center (Pasch et al., 2019) speculated
that “winds of category 5 intensity were almost certainly felt at
some elevated locations on the island,” which was further
evidenced by post-storm damage assessments led by the

FEMA Mitigation Assessment Team (Bass et al., 2018) and
Prevatt et al. (2018). The testbed encompasses many of the
most heavily impacted areas, as data were collected at the
request of the FEMA Building Science Branch for the
development of a special wind region map that was later
adopted by the 2018 Puerto Rico Construction Code. The
selection of these six regions during this study considered
Hurricane Maria’s path, location of urban areas, and terrain
complexity parameters (i.e., elevation, slope, curvature, and
rugosity) calculated using ArcGIS and DEM Surface Tools for
ArcGIS (Jenness, 2013). Table 1 lists the corresponding range
of values for elevation, slope, curvature, and rugosity. Data
collected for this project are available for download at the
National Science Foundation Natural Hazards Engineering
Research Infrastructure (NHERI) DesignSafe site (www.
designsafe-ci.org).1

BACKGROUND

Definition of Wind Speedup and
Topographic Effect Multipliers
For structural design, topographic wind speedup effects are
typically quantified as a non-dimensional multiplier that
amplifies the velocity pressure used in the calculation of
localized wind loads on the building’s surface. Ngo and
Letchford (2009) provide an overview of four such codified
procedures from four internationally recognized building
codes. As shown in Figure 2, the structural load
multipliers are derived from a ratio that relates the gust
wind speed (ûzt) at elevation z above the site of interest to
the gust wind speed (ûz) occurring in a flat expanse under the
same wind conditions. This ratio is termed the topographic
effect multiplier (Mzt), which is equivalent to 1 + the

FIGURE 1 | Regions of Puerto Rico selected for testing at BLWT at UF.

1These data will be made publicly available prior to publication of the manuscript
(remove this footnote later and update URL in text with more specific link via
DOI). Requests for the data can be made to the corresponding author prior to its
release.
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fractional speedup ratio (Δûz/ûz) given elsewhere in the
literature.

Mzt � ûzt

ûz
� ûz + Δûz

ûz
� 1 + Δûz

ûz
(1)

Methods to Predict Topographic Wind
Speedup in Strong Winds
Approaches to predict topographic wind speedup include analytical
methods (e.g., Jackson and Hunt, 1975; Deaves, 1980), physical
simulation through boundary layer wind tunnel modeling (e.g.,
Glanville and Kwok, 1997; Chock and Cochran, 2005; Lubitz and
White, 2007; Rasouli et al., 2009; Kikuchi and Ishihara, 2012;
McAuliffe and Larose, 2012; Lange, 2016), and CFD (e.g., Abdi
and Bitsuamlak, 2014). The two physical simulation efforts most
relevant to this study are Chock and Cochran (2005) and McAuliffe
and Larose (2012). Chock and Cochran (2005) conducted a
“microzonation” study to predict windspeed up factors for use in
wind load provisioning for the Hawaiian Islands by applying linear
regression to hot film anemometer measurements taken over a
1:6000 scale model of Oahu and its corresponding DEM data.
The current study adopts a similar approach; however, it
applies a neural network (i.e., logistic regression) for
prediction. McAuliffe and Larose (2012) modeled a wind
farm at 1:1500 scale to study aerodynamic scaling effects; its
experimental design heavily informed the current study.

Finnigan et al. (2020) provides a historical narrative on the
development of analytical and numerical methods and
supporting experiments in BLWTs and in the field, e.g.,
Askervein Hill (Taylor and Teunissen, 1987) and Perdigão
(Mann et al., 2017). Here we turn to describing recent
applications of machine learning approaches to improve wind
speed prediction.

In the last two decades, artificial neural networks have found a
broad range of applications in the study of boundary layer flows.
Selected examples include the design and operation of wind
tunnels (e.g., Križan et al., 2015), prediction of design wind
speeds for civil infrastructure (e.g., Huang and Xu, 2013), and
forecasting for wind energy resources (e.g., Burlando and
Meissner, 2017; Chen et al., 2018; Liu et al., 2018; Yu et al.,
2018; Brahimi, 2019). Starting in the 2000s, machine learning
began to be applied in the prediction of topographic wind
speedup. One of the first studies was led by Bitsuamlak et al.
(2002), who successfully trained a model to predict speedup over
shallow and steep sinusoidal hills to match analytical modeling.
Bitsuamlak et al. (2007) subsequently incorporated CFD data to
quantify speedup accounting for surface roughness conditions.
Robert et al. (2012) produced monthly wind speed maps from a
data architecture that include multiscale topographic features
extracted from a digital elevation model and weather station data.
Burlando and Meissner (2017) and Mayo et al. (2018) developed
hybrid approaches involving CFD, numerical weather prediction
(NWP), and surface wind measurements to inform neural
network modeling. More recently, Donadio et al. (2021)
developed a highly automated “prediction pipeline” that
integrated global and regional NWP to predict wind speed and
wind energy production.

These studies foretell of a promising future for regional-scale
modeling of wind speedup in complex terrain accounting for the
influence of wind directionality or by extension, local climatology.
The current work continues to assess the premise that wind
speedup in adiabatic boundary layer flow conditions can be
predicted directly from elevation data, within the experimental
limitations imposed by conducting geometrically scaled physical
simulations in a BLWT. The work presented uses data collected
over scaled models of complex terrain regions, to develop a feed
forward neural network architecture. The literature review
provides a summary of the efforts to implement neural
networks for wind speed prediction, but no attempt has been
made to train a neural network with the goal of predicting
topographic wind speedup multipliers over real complex terrain.

TABLE 1 | Terrain complexity parameters.

Region Location Elevation (m) Slope (deg.) Curvature (deg.) Rugosity

Min. Max. Min. Max. Min. Max. Min. Max.

Aibonito Inland 189 809 0 74 −43 64 1 3.64
Culebra Coastal 0 197 0 46 −24 18 1 1.41
Humacao Coastal 0 363 0 65 −41 34 1 2.17
Utuado Inland 54 668 0 67 −43 52 1 2.56
Vieques Coastal 0 182 0 48 −45 34 1 1.62
Yabucoa Coastal 0 523 0 53 −28 25 1 1.65

FIGURE 2 | Topographic wind speedup.
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METHODOLOGY

Physical Simulations in the Boundary Layer
Wind Tunnel
Development Section Configuration, Instrumentation,
and Approach Flow Conditions
Experiments were carried out in the BLWT located at the Powell
Family Structures and Materials Laboratory at the University of
Florida. Catarelli et al. (2020) describes the tunnel’s operating
characteristics and flow simulation capabilities. Refer to Figure 3
for details on the BLWT configuration used during testing. In this
study, the roughness elements in the “Terraformer” development
section were oriented in the wide configuration to a uniform
height of h = 7 mm or 20 mm to produce marine and suburban
aerodynamic roughness lengths of z0 = 0.005 and 0.300 m full-
scale (FS) at a geometric scale of 1:3100, respectively. At the
chosen geometric scale of 1:3100, matching z0 to achieve the
desired mean velocity profiles effected a reduction in the
longitudinal turbulence intensity for the rougher case from an
expected value of 25% to nominally 15%. Models were installed in
a 4 m turntable that was rotated in one of 16 wind directions (N,
NNE, . . . , NNW). The exposure was selected based on the
specific upwind terrain of the model section being tested.

Turbulent Flow Instrumentation (TFI) Cobra Probes
measured three components of velocity with a sampling
frequency of 1250 Hz. Figure 4A shows the dimensions of the
probe, which controlled how close to the surface measurements
could be made without interfering with the flow. The lowest
elevation that could be achieved without introducing speedup
between the probe and the model was determined to be
approximately three probe head diameters (~8 mm above the
tunnel floor or 25 m at full scale). An automated gantry system
(Figure 4B) translated the probes laterally, vertically, and
longitudinally using a user-defined sample location input file.
Data were then filtered using a 3rd order Butterworth filter with a
150 Hz cutoff frequency.

Gust values were quantified to conservatively estimate the
surface wind field intensity. Given the complex flow
conditions, the gust value was obtained from a moving
average of the instantaneous wind speed magnitude (s) of
the three-dimensional wind speed magnitude
(i.e., s � ����������

u2 + v2 + w2
√

where the velocity components are
defined as u = longitudinal, v = lateral, and w = vertical)
instead of the longitudinal component to ensure that the scalar
wind speed maxima was enveloped in the result. Second, the
gust was computed as ŝ � S + gσs, where S and σs are the mean

FIGURE 3 | Boundary Layer Wind Tunnel Configuration.

FIGURE 4 | Cobra probe instrumentation. (A) Cobra probe dimensions (Chen et al., 2000). (B) Automated instrument gantry.
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and standard deviation of the instantaneous wind speed
magnitude, respectively. The peak factor (g) was set to 3.0,
which Balderrama et al. (2012) has shown to be a conservative
upper bound for strong winds generated by Atlantic tropical
cyclones (TC) landfalling in a variety of surface roughness
exposures. The selected value of g is based on a T = 600 s
duration record because TCs, as a rule, exhibit non-stationary
behavior for longer time periods. The value would need to be
re-referenced to T = 3,600 s for straight line wind applications.

The automated gantry system and Cobra Probes were also
used to measure velocity profiles immediately upwind of the
models. Figure 5 presents representative profiles of the
longitudinal mean velocity and turbulence intensity for the u,
v, and w components. Data measured in the inertial sublayer
(ISL) portion of the neutral boundary layer are compared to the
logarithmic law modified by Sutton (1949) to account for a zero-
plane displacement. Figure 6 presents plots of the longitudinal
turbulence spectra measured at the end of the Terraformer in the

centerline of the tunnel at heights of z � 8 and 988 mm (i.e., full-
scale dimensions of z = 25 and 3,063 m, respectively) after
applying Welch’s method (Bendat et al., 2000) to the
unfiltered velocity records. Data are compared to the power
spectra model in ESDU 74030 and 74031 (1974), which was
first derived by von Kármán (1948) for isotropic turbulence:

nSuu(z, n)/σ2u � 4f/(1 + 70.8f2)
5
6 (2)

where f � nLxu/U, n is the frequency, Lxu is the longitudinal
integral length scale of the turbulence, U is the longitudinal
mean velocity, Suu(z, n) is the power spectral density function,
and σu is the longitudinal standard deviation of velocity. The data
exhibit the same phenomenon identified byMcAuliffe and Larose
(2012) during topographic modeling of a 1:1,500 scale wind farm
in Quebec. Similitude in the freestream flow is achieved, however
the observed energy at the high frequency range near the surface
is larger than the von Kármán model. McAuliffe and Larose
(2012) attributed this phenomenon to eddy surface layer

FIGURE 5 | Mean velocity and turbulence intensity profiles. (A) U for z0 = 0.005 m FS, (B) Iu for z0 = 0.005 m, (C) U for z0 = 0.3 m FS, and (D) Iu for z0 = 0.3 m.

FIGURE 6 | Longitudinal power spectra. (A) z0 = 0.005 m FS. (B) z0 = 0.300 m FS.
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behavior, where anisotropic spectral decay proportional to the
inverse of the wavenumber ( k−1) is expected to occur. Although
not the subject of this paper, it does draw attention to the validity
of the upper bound of geometric scaling requirements, which is
generally accepted as 1:5,000 (ASCE 49, 2012).

Topographic Models
Six 1:3,100 scale topographic models of 12.4 km diameter
circular regions encompassing the municipalities of
Aibonito, Culebra Humacao, Utuado, Vieques, and Yabucoa
(Figure 1) were constructed from DEM data obtained from the
U.S. Geological Survey (USGS). Figure 7A shows the Yabucoa
model installed in the BLWT turntable. Data represent the
bare-earth surface at a resolution of 1/3 arc-second (~10 m)
referenced to the North American Vertical Datum of 1983
(NAVD83) High Accuracy Reference Network (HARN) State
Plane Puerto Rico Virgin Islands Federal Information
Processing Standards (FIPS) 5200.

A MultiCam APEX304 3-axis computer numerical control
(CNC) routing system fabricated the topographic models by
cutting contours into Type IV 25 psi XPS foam panels, which
were layered to build the final model. A 30 m spatial filter was
applied to the DEM data to ensure the CNC could follow the
tool paths. The contour interval height was selected from

results of trial-and-error testing of a surface flow over
model escarpment routed at different cut heights (smooth,
1, 3, and 5 mm) across the width of the tunnel. Dimensions of
the model escarpment were 3.0 mW × 0.3 m H × 1.7 m L. The
front section of the model was routed into a curved ramp
(rotation angle from 0–45° along a circular arc), and the back
section was a tabletop configuration. Ultimately the 3 mm
height was chosen because coarser routing produced an
unrealistic rise in turbulence intensity over the escarpment
and using a finer contour would have been time prohibitive
given the project schedule.

The outer regions of the models were modified to minimize
the effects of the abrupt transitions in flow caused by the
truncation of mountainous areas at the edge of the model. As
Figure 7B shows, each model was divided into three regions.
Measurements were confined to the inner R = 1 m radius (5 km
FS) circular region unless the outer region was flat. No
modification was made to the annular “fetch” region (nominal
width of R/3) surrounding it, ensuring that surface flows would
travel at least 2 km full-scale over unmodified terrain before
reaching the measurement location. Finally, any terrain
projecting above a line angled 7° upward from the outermost
model edge at the tunnel floor was excluded, with the angle of the
cutting plane having been chosen to prevent boundary layer

FIGURE 7 | Tapered, fetch, test regions and measurement locations of the model. (A) 1:3,100 scale model of the Yabucoa region. (B) Tapered, fetch, and test
regions.

TABLE 2 | Directional surface wind measurement on the topographic models.

Region Location Number of measurements Measurement elevations (m)

Raw After QC* Min. Max.

Aibonito Inland 1,392 1,083 266.6 629.3
Culebra Coastal 608 565 24.8 136.4
Humacao Coastal 768 688 34.1 210.8
Utuado Inland 832 596 99.2 452.6
Vieques Coastal 1,136 1,075 24.8 173.6
Yabucoa Coastal 1,232 949 24.8 536.3
Total 5,968 4,956

*Quality Control = removed records with more than 20% of the data missing in the record.
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FIGURE 8 | Single Layer Network Architecture.

FIGURE 9 | Coefficients of determination for varied neuron counts and horizontal spacing between elevation data points in the DEM for the single layer neural
network. (A) Smooth-to-rough transition, 10 m spacing. (B) Rough terrain, 10 m spacing. (C) Smooth-to-rough transition, 100 m spacing. (D) Rough terrain, 100 m
spacing.
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separation (ANSI (American National Standards Institute),
2007).

Data Collection and Processing
Surface wind speed measurements were obtained for each
region (model) from gridded locations for each of 16 wind
directions in 30 s duration records. Table 2 provides a
measurement (grid location) count for each region, the
corresponding number of records that passed quality
control, and the minimum and maximum elevations of the
measurement locations. Records were rejected if the Cobra
Probe failed to collect at least 80% of the record. Sample quality
drops if the resultant wind velocity is outside of the 45° cone of
acceptance around the probe head. This generally occurs in
separated flow regions where topographic speedup effects are
not a concern.

Measurement locations, shown in Figure 7B, were selected to
coincide with lines parallel to the 16 wind compass rose aligned
with true north (i.e., N, NNE, . . . , NNW), with two lines generally
intersecting near a local maxima at the terrain and at least one of
those lines following the highest ridgeline. Measurement
locations extended between 300 and 4,400 m from the local
maxima, generally terminating in a valley or a flat expanse.
Spacing between locations varied from 100–500 m.

The testing sequence was as follows:

1) The Terraformer height was adjusted to create a compatible
upwind fetch condition by setting the roughness element
height (h) to
a) h = 20 mm (z0 = 0.300 m) for regions located fully inside a

mountain range (e.g, Aibonito, Utuado) and for the case
where terrain that extended beyond the model perimeter.
This category of fetch is referred to as “rough” because of
both the mountainous terrain and treed conditions that
were prevalent in these locations

b) h = 7 mm (z0 = 0.005 m) where the model terminated at
the floor before the perimeter (i.e., where upwind marine
or flat, open conditions were present). This category of
fetch is referred to as the “smooth-to-rough transition”

2) The BLWT fans were brought up to maximum operating
speed (20 m/s freestream)

3) Reference velocity measurements were obtained at a height of
8 mm (25 m FS) at five locations spaced 750 mm apart at the
trailing edge of the Terraformer development section

4) Data were sequentially collected at the model measurement
locations at a height of 8 mm (25 m FS) for a 30 s duration

5) Fan speed was reduced to 0 RPM
6) The turntable was rotated 22.5° to the next wind direction
7) Steps 1–6 were repeated until all 16 wind directions were

tested
8) Steps 1–7 were repeated until all six models were tested.

FIGURE 10 | Coefficients of determination for varied neuron counts and horizontal spacing between elevation data points in the DEM for the double layer neural
network. (A) Smooth-to-rough transition, 10 m spacing. (B) Rough terrain, 10 m spacing. (C) Smooth-to-rough transition, 100 m spacing. (D) Rough terrain, 100 m
spacing.
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Artificial Neural Networks
Single and double hidden layer shallow feedforward neural
networks were constructed using the Deep Learning Toolbox
in Matlab 2019a. The model architectures consisted of neurons
initialized with random weights and biases. Figure 8 shows the

generic single layer neural network architecture configuration
used. Hidden layers were fully connected using rectifying linear
unit activation functions, and the output layer used a linear
activation function. The Levenberg-Marquardt training
method (Hagan and Menhaj, 1994) was applied following Liu

FIGURE 11 | Training, testing, and validation of a single layer, 30 neuron model for the smooth-to-rough transition cases using 100 m horizonal spacing DEM data.
(A) Training, (B) Testing, and (C) Validation.

FIGURE 12 | Training, testing, and validation of a single layer, 150 neuron model for the rough terrain cases using 100 m horizonal spacing DEM data. (A) Training,
(B) Testing, and (C) Validation.
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(2010) to optimize the weights and biases based on the mean
square error. During training, the network was limited to only
1,000 epochs and six validation checks to avoid overfitting the
data. Data were separated 70% for training, 15% for testing, and
15% for validation at the beginning of each training process via
random assignment. The 4,956 quality-controlled records
(Table 2) measured from 373 unique geographic locations in
16 wind directions were used to train the neural network.

The model input consisted of 2 km of upwind terrain elevation
data and 1 km of downwind terrain elevation data at each site in
each wind direction. The input was chosen after comparing

results of training for different combinations of inputs that
included elevation and slope. Inputting the slope as the single
variable (as was done in Chock and Cochran, 2005) was also
attempted. None of these inputs produced a better trained model
than inputting the elevation data alone.

The model output was the gust topographic effect multiplier at
each site in each wind direction. As discussed in theMethodology,
the choice of calibrating the approach flow to match the mean
velocity profile led to a reduction in turbulence intensity for the
rough terrain case, leading to the turbulence intensity
characteristics representative of open exposure fetch. Given
that the Mzt values are based on gusts (usually referenced to
open exposure), the reference values were not adjusted for this
comparison.

RESULTS

Sensitivity analyses were conducted onmultiple configurations of
shallow neural networks. Figures 9, 10 present results for single
and double hidden layer network configurations, respectively.
The number of neurons was parametrically increased from 10 to
150 neurons for the single hidden layers and 10 to 80 neurons for
the double hidden layers, in steps of 20 neurons. Fine (10 m) and
coarse (100 m) horizontal DEM input resolutions were evaluated
separately for each network. Results are stratified by the upwind
terrain (smooth-to-rough transition, rough) and horizontal fetch
resolution. The box and whisker markers characterize
coefficients of determination (R2) based on 10 training sets,
comparing predicted to measured values of Mzt.
Complementary values for root-mean-square-error (RMSE)
are also given.

FIGURE 13 | Coefficients of determination for varied neuron counts,
using the single layer neural network and 100 m horizontal spacing DEM data.

FIGURE 14 | Training, testing, and validation of a single layer, 30 neuron model for all terrain cases using 100 m horizonal spacing DEM data. (A) Training (B)
Testing (C) Validation.
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In all model configurations, R2 and RMSE vary little for the
lower neuron counts, ranging from approximately 0.65–0.75.
Larger neuron counts produce a slight improvement for the
rough terrain cases but reduce the accuracy of the model for
three of four smooth-to-rough transition cases. This degradation in

the model is the worst for the double hidden layer case
(Figure 10A). The only model that shows improvement as the
number of neurons increases is the rough terrain case using 100 m
horizontal fetch resolution (Figure 9D), however the marginal
improvement is far outweighed by the increased computational

FIGURE 15 | Predictions of topographic effect multipliers, enveloping for all directions. (A) Aibonito. (B) Culebra. (C) Humacao. (D) Utuado. (E) Vieques. (F)
Yabucoa.
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expense. For example, training a 150 neuron model takes
approximately 30 times longer than training the 10 neuron
model. Similarly, the use of a fine (10 m) resolution DEM input
data slowed down the training process and did not improve the
performance when compared to the use of a coarse (100 m) DEM.

Figures 11, 12 present the testing, training, and validation results
for two cases of the smooth-to-rough transition and rough terrain
models using 30 and 150 neuron single hidden layer architectures,
respectively. Data are stratified by themagnitude of the speedup value.
Testing the neural network on data yields R2 values of 0.67 and 0.74
(and RMSE values of 0.11 for both cases), exceeding the observed R2

value of 0.5 by Chock and Cochran (2005). The neural network
performance was compared to the linear regressionmethod, using the
same data for the training, and testing of the neural network. The
linear model performance on the stratified data resulted in R2 of 0.65
and 0.61. Notably, the neural network models exhibit less variability
between runs as the speedup value increases.

The encouraging results of these sensitivity tests support the
use of simple configurations of neural networks for predicting
topographic effect multipliers in complex terrain directly from
the elevation data. To simplify this approach further, single
hidden layer models were trained using data from all terrain
types. This modification has the effect of reducing any benefit of
stratifying the upwind terrain types but beneficially increases the
size of the data available for training, testing, and validation.

Figure 13 presents the R2 and RMSE box and whisker plots
based on neuron count for the “all upwind terrain” case. Figure 14
presents the results from training, testing, and validation for a
single model. The results yield similar R2 and RMSE values as the
terrain stratified model results given in Figures 9–12, indicating
that stratifying the data by upwind terrain type did not produce any
appreciable improvement in the modeling.

Returning to the primary goal of producingmaximum topographic
effect multiplier maps, a 30-neuron model with coarse horizontal fetch
resolution and no stratification of approach flow condition was trained
(R2= 0.819, RMSE= 0.09) and then applied to the six study regions. To
create the maps, data were extracted in a 50m horizontal resolution
grid from a gridded interpolant of the DEM data. The same DEM
interpolant was then used to extract the fetch elevation data at 100m
intervals (coarse resolution) ranging from 2 km upwind to 1 km
downwind for 16 wind angles. For each grid location and each
wind angle, the elevation fetch data were input to the neural
network to predict the gust topographic effect multiplier specific to
that location andwind angle. Finally, the largestmultiplier over all wind
angles was determined and plotted in the Figure 15.

Ground truth over the study regions is not available to draw a
quantitative comparison to the neural network outputs, but
qualitatively it is observed that the gradation of the topographic
effect multipliers matches expectations. Values are less than unity
in valley regions, approach unity in flat open expanses, and reach
1.6–1.7 for the upper slopes of the mountains. The upper bound
compares favorably to previous studies of topographic effect
multipliers for surface gusts, e.g., Kondo et al. (2002), Glanville
and Kwok (1997), and Bowen and Clucas (1992), which give values
of 1.6–1.8. Further, the computational expense of producing these
maps, which cover 121 km2 at a 50 m resolution, is approximately
5 mins using a single compute core on a laptop. With

parallelization, it should be possible to compute a map for the
entire island of Puerto Rico within a day or less.

DISCUSSION AND CONCLUSION

The study provides initial proof-of-concept that shallow neural
networks may offer an alternative and computationally inexpensive
approach to produce topographic wind speedup maps such as the
“special wind regions” in ASCE 7. A shallow neural network was
successfully trained using digital elevation data (inputs) and surface
velocity measurements taken at 25m FS over 1:3,100 scale models of
regions of Puerto Rico and its municipal islands (outputs). Training a
neural network requires voluminous amounts of data, thus data
collection was automated to conduct high throughput
experimentation, making it possible to collect hundreds of
measurements per day. Six 4m diameter models were tested in
BLWT for approximately 2 weeks, producing 5,968 records
measured from 373 unique geographic locations in 16 wind
directions. Feed forward neural networks were trained varying the
number of hidden layers, comparing different horizontal resolutions of
the DEM data (input) and by stratifying the approach flow conditions.
It was ultimately found that low neuron count, single hidden layer
networks are sufficient to train models to predict topographic effect
multipliers, which opens the door to applying the model to similar
terrain in other parts of Puerto Rico. Sensitivity studies revealed that
stratifying the approach flow conditions before training and using as
input a finer (10m) resolution of the DEM data did not cause a
significant improvement in the predictive performance of the neural
network. Lastly, six topographic wind speedup maps provide
predictions over six complex terrain regions, demonstrating the
computational advantage of using this methodology.

We conclude that this approach could be extended to other
terrain and land-use/land-cover (LULC) types if the BLWT dataset
was expanded to other geographical regions, particularly those that
possess different gross physical features, taller landforms, and
landform elements atypical to the terrain evaluated in this study.
Synthetic topography could also be generated from target
information about elevation, slope, curvature, and rugosity, with
variations in surface roughness introduced to model LULC effects.
The results from these studies could be combined to create a shared
global topographic wind speedup database that warehouses BLWT
experimental data to validate, generalize, and cross-compare
predictive modeling and ultimately reduce the need for the
extremely laborious physical testing required to collect these data.
Alternatively, these data could augment existing field measurement
atlases such as the New European Wind Atlas (Mann et al., 2017).

Future research will be required to standardize experimental
methods and data processing to achieve this vision. Our experience
with this study, a thorough review of the literature, and follow up
discussions with other BLWTmodelers led us to identify multiple key
areas that warrant further investigation. Examples of topics include:

• Revisiting the acceptable range of geometric scales. The
accepted upper bounds for geometric scaling (~1:2,500—1:
6,000) appear to originate from early BLWT tests on low hills
free of obstructions (e.g., trees). While the Reynolds number
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requirement upks/]> 70 can be relaxed without loss of
simulation accuracy (Taylor and Teunissen, 1987), it is
questionable if the relaxation will hold for more complex
environments (Bowen, 1983)—particularly for mountainous
landforms that are (partially) covered in tree canopies.
Further, the effect of geometric scale on the observed
power spectra has received scarce discussion in the
literature. As McAuliffe and Larose (2012) and the current
(1:3,100 scale) study observed, analysis of the power spectra
clearly indicate that surface (10–25m FS) measurements
sample the eddy surface layer, not the inertial sublayer.

• Defining a non-arbitrary reference wind speed in the physical
simulation. The boundary layer depth varies over the model
as a function of the elevation profile, and mountain heights
can exceed the boundary layer depth by a factor of five or
more. Adopting the surface wind speed upwind of the model
also introduces variability between tests of different models.
Internal boundary layers form between the end of the
development section and the model (causing wind speed
recovery), and the presence of the land mass retards the wind
speed well before it reaches the landform.

• Modeling topographic features that extend to or beyond the
perimeter of the model, e.g., a region within a mountain
chain. Most of the study subjects in the experimental
research literature are isolated landforms that terminate
upwind into a flat expanse. While we would assert that
the taper-fetch-test partitioning (Figure 7) is a rational
approach to prevent an abrupt transition, additional
work is required to move this heuristic approach into an
analytical framework. This guidance should also address the
modelling of the upper part of a tall landform.

• Modeling (heterogenous) surface roughness and, as a
practical matter, doing so without prohibitively
increasing fabrication time/cost. Today topographic
models are usually fabricated through subtractive
manufacturing, e.g., the 3-axis CNC used in this study.
This tried-and-true approach should either be replaced
with large-scale additive manufacturing (e.g., 3D
printing) or a 4- or 5-axis CNC to simultaneously
impart the desired shape and surface roughness.
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