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Optimal controllers can enhance buildings’ energy efficiency by taking forecast and
uncertainties into account (e.g., weather and occupancy). This practice results in
energy savings by making better use of energy systems within the buildings. Even
though the benefits of advanced optimal controllers have been demonstrated in
several research studies and some demonstration cases, the adoption of these
techniques in the built environment remains somewhat limited. One of the main
reasons is that these novel control algorithms continue to be evaluated individually.
This hampers the identification of best practices to deploy optimal control widely in the
building sector. This paper implements and compares variations of model predictive
control (MPC), reinforcement learning (RL), and reinforced model predictive control (RL-
MPC) in the same optimal control problem for building energy management. Particularly,
variations of the controllers’ hyperparameters like the control step, the prediction horizon,
the state-action spaces, the learning algorithm, or the network architecture of the value
function are investigated. The building optimization testing (BOPTEST) framework is used
as the simulation benchmark to carry out the study as it offers standardized testing
scenarios. The results reveal that, contrary to what is stated in previous literature, model-
free RL approaches poorly perform when tested in building environments with realistic
system dynamics. Even when a model is available and simulation-based RL can be
implemented, MPC outperforms RL for an equivalent formulation of the optimal control
problem. The performance gap between both controllers reduces when using the RL-
MPC algorithm that merges elements from both families of methods.

Keywords: model predictive control, reinforcement learning, buildingmodeling, thermal management, optimization,
artificial neural network

1 INTRODUCTION

Industry, transportation, and buildings are responsible for the largest share of greenhouse gases
(GHG) emitted into the atmosphere. According to the International Energy Agency (IEA), the
United Nations Environment Programme, and the Global Alliance for Buildings and Construction,
the CO2 emissions associated with the building sector account for 38% of the global energy-related
CO2 emissions (lobalnvironmen, 2020), corresponding to 13.6 Gt CO2-eq/year. According to a
report delivered by the same organization (lobalnvironmen, 2019), above half of the energy used in
buildings is used by the heating, ventilation, and air conditioning (HVAC) systems for space heating,
space cooling, and water heating. Figure 1 highlights that buildings are the largest emitters.
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Moreover, unlike industry and transportation, the building sector
offers an untapped potential to improve the control strategies
used for their operation.

The massive energy savings potential in buildings stems
from their longevity, risk-averse industry, and large thermal
inertia. The long lifespan of buildings results in a building
stock that requires renovation. Their materials degrade, and
their HVAC systems become deprecated. Even for new
constructions, building owners and operators usually stick
to classical rule-based controls and have not yet widely
adopted advanced methods integrating prediction and
optimization that have the potential to enhance operational
efficiency (Drgoňa et al., 2020).

Furthermore, the large thermal inertia of buildings enables
flexible operation, an appealing feature when connected to an
electric grid with a rise of intermittent renewable energy sources
(RES) such as wind and solar power. Buildings can provide
demand response (DR) services through power-to-heat devices
like heat pumps or electric heaters. The building sector is
particularly suitable for providing DR because it accounts for
approximately 55% of the global electricity use (lobalnvironmen,
2020). Besides, their constructions and indoor spaces constitute

an infrastructure already in place with an invaluable potential to
steer flexibility. Intelligent building operation can harvest this
flexibility by implementing modeling, commissioning, and
predictive control.

Ensuring building indoor comfort and safe operation while
enhancing energy efficiency and providing flexibility is an
exceptionally complex control problem. Buildings comprise
several variables and a wide variety of time constants. Set-
points and actuator values need to be decided for every
control step and building HVAC component based on a few
measurements. Additionally, the effect of a decision may be well
delayed in time.

Optimal control is a mature science that solves a sequential
decision-making problem to determine the control actions that
optimize a performance objective. The applicability of optimal
control is clear, and it has been implemented in multiple fields
like medicine, engineering, psychology, or economics. During the
last decade, there has been a clear interest growth in using optimal
control for HVAC systems because it provides the theory to
address the challenges mentioned above. Figure 2 underlines this
increased interest by showing the number of yearly peer-reviewed
scientific publications related to optimal control in buildings.

Model predictive control (MPC) and reinforcement learning
(RL) are two approaches for optimal control that pursue the same
goal but follow different strategies. The MPC approach is mainly
studied within the control theory community, and it is well known
for its robustness and sample efficiency but falls short in terms of
adaptability. It usually requires a significant engineering effort to
implement and configure a controller model suitable for
optimization. On the other hand, RL is mainly studied within
the machine learning community. Contrarily to MPC, this
advanced control approach is well known for its adaptability
and versatility, but it has difficulties dealing with constraints and
lacks intelligibility. Both control families have advantages and
disadvantages, and the complementarity between them is clear.
However, it is unclear if there is one method more suitable than
the other for the application of building energy management
(BEM). Moreover, the hyperparameters of the controllers are
typically obtained based on experience and heuristics.
Particularly for RL, the choice of hyperparameters is arbitrary,
primarily because of the black-box nature of this optimal control

FIGURE 1 | Global share of buildings and construction final energy and emissions, 2019. Figure obtained from (lobalnvironmen, 2020).

FIGURE 2 | Evolution of the number of scientific publications about
optimal control in buildings during the last decades. Data obtained from the
Clarivate Web of Science.
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technique. The control parameters to be tuned in the RL
approach have no physical interpretation, which makes it
difficult to draw general guidelines for the design of a
learning agent.

A unified benchmarking framework is thus required to
facilitate a fair evaluation of the algorithms and shed light on
best practices for optimal control in buildings. The Building
Optimization Testing (BOPTEST) framework (Blum et al.,
2021) has been recently developed specifically to address that
need: the evaluation and benchmarking of different control
techniques for BEM. The framework provides a simulation
environment with a menu of emulator building models that
come along with standardized test cases and baseline
controllers that serve as a performance reference. The
framework also provides functionality to compute Key
Performance Indicators (KPIs), read and overwrite control
points, and handle boundary condition data like weather or
pricing variables. The BOPTEST application programming
interface is general to any controller, but an OpenAI-Gym
environment (Arroyo et al., 2021) has been developed around
this interface to facilitate the assessment of RL algorithms for
building control.

This paper evaluates and benchmarks variations of MPC and
RL algorithms with different hyperparameter settings for the
BESTEST Hydronic Heat Pump case of the BOPTEST
framework. Variations of the control step, prediction horizon,
state-action spaces, learning algorithm, and the RL agent network
architecture are explored and evaluated in all testing scenarios
offered by the envisaged BOPTEST case. The RL-MPC algorithm
proposed in our prior work (Arroyo et al., 2022) that merges
elements from both MPC and RL is also tested in all available
testing scenarios. The objective is to benchmark these methods,
and to investigate whether there is any realization of an RL
algorithm that can compete against MPC for direct building
thermal control when tested in an emulator model with realistic
building dynamics.

This paper is structured as follows. Section 2 highlights
previous research related to this work; Section 3 explains the
methodology used to implement the control algorithms and
compare their performance results; Section 4 presents the
simulation results; Finally, Section 6 draws the main
conclusions of this paper.

2 RELATED WORK

In our prior work (Arroyo et al., 2022) we applied MPC, RL, and
RL-MPC to the same BOPTEST building case. It was found that
RL can difficultly cope with constraints and that RL-MPC could
aid in this task. The RL agent from that work was designed to
replicate a control formulation equivalent to a typical MPC
design, regardless of the state-action space dimension.
However, large state-action space dimensions can be
challenging to learn because of the curse of dimensionality
(Sutton and Barto, 2018). Therefore, other hyperparameter
settings could be more effective when training an RL agent. In
this paper we investigate whether any of those combinations

could outperformMPC. Moreover, previous studies have stressed
the need to compare different RL algorithms and test different
control parameters in a standardized building benchmark
(Touzani et al., 2021).

Other researchers have compared different optimal control
techniques and their hyperparameter settings for BEM. For
instance, Mbuwir et al. (Mbuwir et al., 2019a) explored two
model free offline RL techniques, namely Fitted Q-Iteration
(FQI) and policy iteration in a residential micro-grid that
integrates a heat pump and a battery. Their work shows that
policy iteration is more suitable when developing control policies
that control flexibility providers as it results in a lower net
operational cost per day. A comparison against MPC was also
performed in this case study indicating that the RL algorithms are
a viable alternative to MPC, although their focus was on the
operation of a micro-grid rather than optimal building climate
control. For this reason, the thermal behavior of the indoor
building space was oversimplified and the same model was
used to train and test the agent’s policy. No partial
observability was considered in the study, and discomfort was
not explicitly computed as a KPI. Mbuwir et al. (Mbuwir et al.,
2019b) further benchmarked different regression methods for
function approximation in RL. Six well-known regression
algorithms were compared for use in Fitted-Q iteration (FQI),
a batch RL technique, to optimize the operation of a dwelling with
a heat pump, PV generation and a battery. It was found that extra-
trees combined with FQI can provide a good compromise
between accuracy and computational time. Again, the
emulator model was oversimplified and partial observability
was thus not addressed.

On a similar note, Ruelens et al. (Ruelens et al., 2017)
compared batch RL to temporal difference techniques and
suggested that batch RL techniques are more suitable for their
application to DR. Their simulation study showed that RL
combined with a Long-Short Term Memory (LSTM)
performed better than other classical function approximations
like neural networks. However, their analysis was again
exclusively based on operational cost and did not consider
thermal discomfort. A very similar study was carried out by
Patyn et al. (Patyn et al., 2018) who explored different topologies
of neural networks as function approximators for an RL agent. In
their case, the use of Convolutional Neural Networks (CNN), led
to significantly higher operational cost than the use of Multi-
Layer Perceptron (MLP) or LSTM, which performed similarly.

In general, the research studies that address RL for BEM either
use an oversimplified plant model for testing or entail a backup
controller to deal with constraint satisfaction of thermostatically
controlled loads, e.g., (De Somer et al., 2017; Ruelens et al., 2017;
Patyn et al., 2018; Mbuwir et al., 2019a; Mbuwir et al., 2019b;
Ruelens et al., 2019). It is important to stress here the importance
of direct control, i.e. the control of an actuator point that directly
influences a controller variable without any backup controller
that can potentially modify its behavior. With direct control, the
controller/agent needs to deal with constraint satisfaction.
Contrarily, indirect control only suggests actions that can be
overwritten by a backup controller, which is ultimately
responsible for satisfying constraints. While indirect control
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provides a more secure operation, it does not exploit the full
potential of a predictive controller because the controller can only
work at a supervisory level and not at a local-loop level where the
range of operational possibilities is broader. Indirect control can
be implemented by translating an optimal control problem that is
formulated using direct control. However, this practice does not
guarantee that the used setpoint translates to the right actuation
signal unless the model accurately maps this translation.

The studies mentioned above usually claim that model-free RL
agents can learn policies for building climate control from only a
few days of operation. However, their agents are tested using first
and second-order emulator models or directly precomputing the
heat demand. This practice directly conflicts with the findings of
Picard et al. (Picard et al., 2017), who emphasized the relevance of
using a detailed and reliable plant model when evaluating the
building controllers in order not to overestimate their
performance. Real implementations of RL for building HVAC
control, like those in (Liu and Henze, 2006; Zhang and Lam, 2018;
Chen et al., 2019), never use model-free RL techniques directly
and rely on simulation-based off-line learning or model-based
RL. To the best of our knowledge, only Peirelinck et al. (Peirelinck
et al., 2018) has evaluated a model-free RL agent in a simulation
environment using a detailed emulator building model. However,
they used indirect control and a low-dimensional action space.
Their analysis is thus based on operational cost only and does not
take into account thermal discomfort.

None of the above studies has compared variations of MPC
and RL techniques in a unified benchmarking framework for
BEM. In this study, we investigate direct control for BEM and use
the BOPTEST framework for testing, which ensures both
reliability of the plant model and reproducibility of the results.
The most favorable case scenario for the data-driven methods is
considered by assuming that the RL algorithms can access the
plant model with realistic dynamics for a large number of
interactions during training.

3 METHODOLOGY

3.1 Test Case and Scenarios
At the time of writing, the BOPTEST platform comprises five
building emulators. The BESTEST Hydronic Heat Pump case
from BOPTEST as in version v0.1.0 is used in this study to
investigate the performance of several optimal control
implementations. This test case offers a representative, yet
relatively simple, building model that allows focusing on
fundamental aspects of the control problem. The following
description of the test case is based on the explanation gien by
Blum et al. (Blum et al., 2021) and it is partially repeated here for
clarity.

The test case model represents a single-zone residential
building with a hydronic radiant floor heating system and an
air-source heat pump located in Brussels, Belgium. The building
is modeled as a single zone with a rectangular floor plan of 12 m
by 16 m (192 m2) and a height of 2.7 m, with a south-oriented
façade that has multiple windows with a total surface area of
24 m2. The thermal mass of indoor walls is modeled assuming

that there are 12 rooms in the building. The modeled indoor walls
do not split the indoor space of the single-zone building model
but increase its overall thermal mass.

A family of five members inhabit the building and follows a
typical residential weekly schedule, where the building is
occupied before 7h00 and after 20h00 every weekday and full
time during weekends. The comfort range defines the boundaries
of the indoor operative zone temperature and is 21–24°C during
occupied hours and 15–30°C otherwise.

The heating system consists of an air-to-water modulating
heat pump of 15 kW nominal thermal capacity, which is coupled
to a floor heating system. The embedded baseline controller for
heat pump modulation uses a PI logic to track the operative zone
temperature. This controller, while reactive, has been carefully
tuned to provide adequate indoor comfort without excessive
energy use. The floor heating circulation pump and evaporator
fan operate only when the heat pump is on. No cooling is
considered in this test case, which is justifiable in a Belgian
climate.

Figure 3 shows a schematic drawing of the BESTEST
Hydronic Heat Pump case. Note that only the control points
and measurements used in this dissertation are shown in
Figure 3, these being a subset of the points exposed in the
BOPTEST framework. In Figure 3, ufan, upum, and uhp
represent the input signals for controlling the fan, the pump,
and the heat pump compressor frequency, respectively. Pfan,
Ppum, and Php indicate the measurements of the electric power
of the evaporator fan, the circulation pump, and the heat pump
compressor. _Qc is the condenser thermal power. Finally, Tz is the
measurement of the zone operative temperature.

The building envelope model is implemented using the IDEAS
Modelica library (Jorissen et al., 2018) and incorporates, among
others: dynamic zone air temperature, air infiltration assuming a
constant n50 value, dynamic heat transfer through walls, floor,
ceiling, and fenestration, and non-linear conduction, convection,
and radiation models. Air humidity condensation and start-up
losses are not considered.

This test case comprises two testing periods of 2 weeks each,
that are standardized in the BOPTEST framework and that
represent typical and peak heating periods. These periods are
January 17th-31st and april 19th-May 3rd, respectively. For each

FIGURE 3 | Scheme of the BESTEST Hydronic Heat Pump
building case.
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of them, three price scenarios are considered, namely: constant,
dynamic, and highly-dynamic. The constant price scenario uses a
constant price of 0.2535 €/kWh. For the dynamic price scenario
the test case uses a dual-rate that alternates between an on-peak
price of 0.2666 €/kWh between 7h00 and 22h00, and an off-peak
price of 0.2383 €/kWh otherwise. The highly dynamic price
scenario uses the Belgian day-ahead energy prices as
determined by the BELPEX wholesale electricity market in the
year 2019. All pricing scenarios include the same constant
contribution for transmission fees and taxes as determined by
Eurostat and obtained from (European CommissionDirect,
2020). Particularly, this component is 0.2 €/kWh for the
assumed test case location, and only the remainder of the
price is the energy cost from the utility company or the
wholesale market.

All six available case scenarios are considered in this paper
when testing the controllers for a complete overview and
evaluation. These scenarios arise from combining the two
heating periods (peak and typical) and the three electricity
pricing tariffs (constant, dynamic, and highly-dynamic). Each
controller instance is tested in each of the 2-weeks scenario
periods. The control objective is always the same: maximize

comfort while minimizing operational cost. To this end, both
the MPCs objective functions and the RL agents’ rewards are
configured to weigh discomfort approximately one order of
magnitude more than the operational cost at nominal conditions.

3.2 MPC Implementation
MPC is implemented using the FastSim toolbox (Arroyo et al.,
2018). Particularly, the nonlinear MPC configuration described
in Blum et al., (2021) and in Arroyo et al. (2022) is used, and it is
summarized here for completeness. A controller model F is
required by the MPC. A grey-box model is used consisting of
a thermal resistance-capacitance (RC) architecture constructed
from basic physical principles and without using any system
metadata like building geometry or material properties. A model
of order five is decided from a forward-selection procedure.

The model has a total of 20 lumped parameters that need to be
estimated. The parameter estimation process is carried out with
the Grey-Box Toolbox (De Coninck et al., 2016). Two weeks of
data are generated by the emulator with the baseline controller for
training, and 2 weeks are used for validation of the model. The
fitting variables are the zone operative temperature Tz, the heat
pump condenser thermal power _Qc and the heat pump electrical

FIGURE 4 | Training and validation periods for estimating the controller model F. The training period is at the left of the vertical grey dashed line and the validation
period at the right. The inputs are presented in the bottom two plots, and the simulated outputs are presented in the top two plots and compared with themeasured data.
The grey lines in the first plot represent the comfort constraints.

Frontiers in Built Environment | www.frontiersin.org April 2022 | Volume 8 | Article 8497545

Arroyo et al. Comparison of Optimal Control Techniques

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


power use Php. The last two variables determine the coefficient of
performance of the heat pump. The model further consists of
three inputs: ambient temperature Ta, solar irradiation _Qrad, and
occupancy gains _Qocc. Figure 4 shows an overview of the training
and validation periods that have been selected not to overlap any
of the testing periods.

The non-linear JModelica optimization module developed in
(Axelsson et al., 2015) is used here and has been extended to
enable mutable external data. This JModelica module utilizes the
direct collocation scheme and relies on CasADi (Andersson et al.,
2019) for algorithmic differentiation. This approach is well
known for its versatility and robustness. The optimization
problem that needs to be solved at every control step is
formulated in Eq. 1e.

min
uhp

Jk � min
uhp

∫tk+Δth

t�tk
(pe(Php + Pfan + Ppum) + wδTz )dt (1a)

_Tz, Php, Pfan, Ppum � F(uhp, _Qrad, _Qocc, Ta, Tz,T, p) (1b)
T z − δTz ≤Tz ≤ �Tz + δTz (1c)
δTz ≥ 0 (1d)
0≤ uhp ≤ 1. (1e)
In Eq. 1e and the time dependency has been omitted for clarity

because all variables are time-dependent except the vector of
model parameters p, and the weighting factor w, the latter being
used to account for the different orders of magnitude between
energy cost and discomfort δTz . The energy cost is the first term of
the objective function where all elements accounting for electrical
power are summed and multiplied by the electricity price pe.
These are the heat pump power Php, the evaporator fan power
Pfan, and the circulation pump power Ppum. T represents the
vector of non-measured temperature states of the controller
model. The discomfort δTz is defined as the deviations of Tz
out of the comfort range bounded by T z and �Tz. The weighting
factor w is tuned to penalize more heavily the instantaneous
discomfort than the instantaneous energy cost, such that the
thermal discomfort is treated as a soft constraint in the
optimization.

The optimization module is combined with the unscented
Kalman filter of the JModelica toolbox for state estimation. The
specific state estimation algorithm is the non-augmented version
described in (Sun et al., 2009), and the sigma points are chosen
according to (Wan and Van Der Merwe, 2000). The controller
model F is also used by the state estimator to compute the
distribution of predicted model states.

Perfect deterministic forecast provided by BOPTEST is
used by the MPC every control step. Variations in the
prediction horizon of 3, 6, 12, 24, or 48 h and in the
control step of 15, 30, or 60 min are considered. The
objective of exploring these variations is twofold: first, to
determine the sensitivity of the MPC to these parameters.
Second, to extend the benchmarking results of the baseline
controller with the results of an optimal predictive controller
for the tested RL agents.

The performance results obtained with the different prediction
horizons are related to the time constant of the building to enable

the generalizability of the conclusions drawn. Usually, the time
constant of a building can only be roughly estimated from the step
response because the boundary conditions prevent the building
from settling fully. A BOPTEST case is also unavoidably exposed
to changing boundary conditions. However, the simulation
capabilities of the framework can be exploited to obtain a
more accurate approximation of the time constant of the
building test case. Particularly, the building can be simulated
in free-floating from two different initial conditions, e.g., an
indoor temperature state higher than another. The difference
between the resulting output trajectories represents the system’s
step response where the effects of the boundary conditions are
mostly filtered out. The resulting trajectory can be used to
estimate the time constant τ from its definition in Eq. 1 if a
first-order system for the step response is assumed.

ΔT t( ) � ΔTie
−t/τ (2)

The time constant τ is estimated by fitting Eq. 1 to a given
evolution of the temperature difference ΔT(t) from an initial
temperature difference ΔTi that is artificially generated to emulate
the step.

The process of calculating the step response by filtering out the
effect of the continuously changing boundary conditions is
schematically depicted in Figure 5. In this figure, Tz,high
represents the zone operative temperature of the simulation
that starts at a higher thermal state, Tz,low represents the zone
operative temperature of the simulation that starts at a lower
thermal state, and Ta is the ambient temperature.

3.3 RL Implementation
This study pays particular attention to the evaluation of RL agents
because we are interested in the feasibility of model-free control
approaches for their application to BEM. There is an indefinite
amount of possible combinations of hyperparameters when
configuring an RL agent. Since the learning period of an agent
is substantially large, it is not possible to use hyperparameter
optimization techniques like Bayesian optimization or random
search grid for hyperparameter tuning. A different approach is
required to evaluate the effect of using different combinations of
hyperparameters. We use the one-at-a-time approach, which
consists of varying only one hyperparameter from a reference
RL agent configuration each time and studying how the new
configuration affects the learning process and the performance
results in testing. Varying only one hyperparameter at a time
throws light on the effect of varying each aspect of the
learning agent.

The original choice of hyperparameter settings is called the
reference case (REF), and it is chosen to be the same configuration
as the one considered in our prior work (3). This reference case is
designed to replicate the MPC problem formulation described
above. Each implemented agent varies different aspects from the
reference case to investigate which features mostly influence the
results and to identify those that expedite learning or lead to more
effective policies. Aspects like the state space, the action space, the
learning algorithm, or the function approximation are explored,
tested, and compared. The BOPTEST-Gym environment
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developed in (33) allows to easily configure the environments
with different observations and actions accessible to the learning
agent. The summary of considered cases is shown in Table 1,
where a ✓ symbol indicates that the observation is included in the
state space and a 7 symbol indicates that it is excluded. More
details about the definition of each specific case are provided in
the following subsections. Table 1 anticipates the markers that
are used in Section 4 to indicate the results.

Two Gym environments are configured for this study. First,
the so-called actual environment Ef which wraps the BOPTEST
building model f around the BOPTEST-Gym interface. Second,
the so-called simulation environment EF wraps the controller
model F around the same BOPTEST-Gym interface. Both
environments expose the same observation and action spaces
to the RL agents. However, Ef has the ground truth dynamics and
its availability would be limited in practice as it represents the
actual building, while EF has simplified dynamics and would be
extensively available in practice as it represents a simulation
environment. The Ef environment will be used in general and
unless specified otherwise. The reason is that we want to
investigate whether model-free RL can perform better than
MPC without having to consider aspects of the used controller
model. This is a favorable scenario for the RL agents when
compared to MPC as they are allowed to learn from an
indefinitely large amount of samples of actual experience.

3.4 Analysis of the RL State Space
Different sets of observed features are passed to the agent to
analyze how it can handle state space representations of different
dimensions. The variables considered as possible observations are
the time of the week tw, the zone operative temperature Tz, the
electricity price signal λ, the lower and upper bounds of the
comfort range T , �T, the ambient temperature Ta, the solar
irradiation _Qrad, and the occupancy gains _Qocc. The set of
measurement variables Sm can be extended with regressive
observations, that is, past observation of each measurement
point during a regressive period Δtr. Similarly, the set of

disturbances Sd can be extended with the expected forecast of
its variables for a prediction horizon Δth. Perfect deterministic
forecast is assumed to be available for all disturbances when the
considered state is predictive. Although the agent could benefit
from extending the observed state space with regressive and
predictive variables, it will also have to deal with a larger state
space dimension. Also the control step period Δts directly affects
the dimension of the state space because its value influences the
granularity of the received observations. To illustrate this, the
state space dimension of the reference case is calculated here as
follows:|S| � nt + nm · (1 + nr) + nd · (1 + nf) � 1 + 1 · (1 + 24)
+6 · (1 + 96) � 608, where nr � Δtr

Δts � 6h
15m � 24 is the number of

regressive steps, and nf � Δth
Δts � 24h

15m � 96 is the number of
forecasting steps. It is clear that the choice of the control step,
prediction horizon, and regressive periods heavily influences the
dimension of the observed state space.

A trade-off needs to be found between the state space
dimension and the information perceived by the agent. All
cases exploring variations of the state space dimension are
marked purple in Table 1 and their identifiers start by SS. The
cases SS1, SS2, and SS3 vary the observations passed to the agent
and are those with the lowest state space dimensions. SS4, SS5,
and SS6 use the same observation variables as REF, but vary their
prediction horizons to be 3, 6, or 12 h, respectively. Finally, SS7
and SS8 explore variations of the control step for 30 and 60 min,
respectively.

3.5 Analysis of the RL Action Space
The action controlled in the reference case is the heat pump
modulation signal for compressor frequency uhp. That is,
A � {uhp}, with uhp ∈ [0, 1]. This action is discretized with
the aid of the DiscretizedActionWrapper class of the
BOPTEST-Gym interface as some of the learning agents do not
allow continuous action spaces. Particularly, the reference case
discretizes the action space using 10 equal bins, such that uhp ∈ [0,
0.1, . . . , 1], and |A| � 11. Three variations are explored from this
reference case. The first variation (AS1) radically reduces the

FIGURE 5 | Schematic representation of the process used to estimate the building step response in BOPTEST.
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TABLE 1 |Considered RL agent configurations for comparison. The state space representation is grouped in the set of time variablesSt, the set of measurement variablesSm and the set of disturbancesSd . Alg indicates the
learning algorithm, and Net the network architecture used as a function approximator. The markers anticipate the symbols that are used to depict the results in the following section.

Case St

tw

Sm

Tz

Sd

λ T �T Ta
_Qrad

_Qocc Δts Δth Δtr |S| A |A| Alg Net Marker

REF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15 m 24 h 6 h 608 uhp 11 DDQN 2 × 64

SS1 ✓ ✓ ✓ 7 7 7 7 7 15 m 0 h 0 h 3 uhp 11 DDQN 2 × 64

SS2 ✓ ✓ ✓ ✓ ✓ 7 7 7 15 m 0 h 0 h 5 uhp 11 DDQN 2 × 64

SS3 ✓ ✓ ✓ ✓ ✓ 7 7 7 15 m 3 h 0 h 41 uhp 11 DDQN 2 × 64

SS4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15 m 3 h 6 h 104 uhp 11 DDQN 2 × 64

SS5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15 m 6 h 6 h 176 uhp 11 DDQN 2 × 64

SS6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15 m 12 h 6 h 320 uhp 11 DDQN 2 × 64

SS7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 30 m 24 h 6 h 308 uhp 11 DDQN 2 × 64

SS8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 158 uhp 11 DDQN 2 × 64

AS1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 uhp 2 DDQN 2 × 64

AS2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 Tset 11 DDQN 2 × 64

AS3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 Tset
a 11 DDQN 2 × 64

AL1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 uhp ∞ SAC 2 × 64

AL2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 uhp ∞ A2C 1 × 64

AL3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 uhp ∞ PPO 2 × 64

NN1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 uhp 11 DDQN 1 × 64

NN2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 uhp 11 DDQN 1 × 32

NN3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 m 24 h 6 h 608 uhp 11 DDQN 2 × 64b

aThis action space implements a backup controller.
bThis neural network implements normalization of the hidden layers.

Frontiers
in

B
uilt

E
nvironm

ent
|w

w
w
.frontiersin.org

A
pril2022

|V
olum

e
8
|A

rticle
849754

8

A
rroyo

et
al.

C
om

parison
ofO

ptim
alC

ontrolTechniques

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


action dimension to use only two possible values of the action
space, such that: uhp ∈ [0, 1], and |A| � 2. The second variation
(AS2) uses indirect control to manipulate the temperature
setpoint instead of the heat pump modulation signal as an
action variable. In this case, the PI baseline controller of the
BOPTEST case is not bypassed and acts as a subcontroller to
decide on the heat pump modulation signal based on the passed
temperature setpoint and the measured zone operative
temperature. Therefore, for AS2 we have: A � {Tset}, where
Tset is the zone operative setpoint temperature that is allowed
to adopt values between 18 and 28°C in intervals of 1°C. That is:
Tset ∈ [18, 19, . . . , 28] °C, and |A| � 11. Finally, the third
variation (AS3) uses the same action space as AS2 but
implements a backup controller between the agent and the
environment. This backup controller is configured to change
the temperature setpoint sent from the agent to the lower and
upper values of the comfort range when the agent decides an
action that goes below or over these values, respectively. The
objective here is to guarantee comfort as much as possible and to
investigate how this practice (typically adopted in literature)
affects performance. All cases exploring variations of the
action space are marked blue.

3.6 Analysis of the RL Algorithm
The BOPTEST-Gym interface is general to all algorithms that
follow the OpenAI-Gym standard, which enables to easily plug
the building environment into different learning algorithms. The
RL algorithms implemented in this paper are obtained from the
Stable Baselines repository (14). The reference case uses Double
Deep Q-Network (DDQN) for learning as proposed in (Mnih
et al., 2013) and in (van Hasselt et al., 2015). Specifically, a double
network is implemented to avoid the overoptimism inherent to
Q-learning for large-scale problems (van Hasselt et al., 2015). The
network weights are updated following a stochastic gradient

descent scheme. A linear schedule is followed for exploration
during training such that random actions are taken with a
probability that linearly decays from 10 to 1%.

The first variation of this algorithm is AL1 and implements
an actor-critic approach, i.e., its learning method approximates
both the value and the policy functions. Particularly, the Soft
Actor Critic (SAC) described by Haarnoja et al. (Haarnoja et al.,
2018) is implemented in this variation. SAC optimizes its
stochastic actor in an off-policy approach. Another
significant difference of SAC with respect to the DDQN
algorithm is that it uses a more sophisticated exploration
method based on the maximum entropy principle of RL.
This means that the agent seeks maximization of the
expected return and the expected entropy. The aim is to
encourage the agent to explore the regions of the state-action
space that it is less familiar with. SAC features continuous action
spaces. Hence, the heat pump modulation signal is not
discretized in this case, wich is indicated with an ∞ symbol
in Table 1.

The second variation (AL2) from the reference case also uses
an actor-critic approach as learning method. Specifically, the
algorithm used is the synchronous advantage actor critic
(A2C) algorithm, a variant of the asynchronous method (A3C)
proposed by Mnih et al. (Mnih et al., 2016). The main difference
with the algorithms used in REF and AL1 is that it is an on-policy
algorithm, i.e. it explores by sampling actions based on the
current version of its policy. It also differs from its
predecessor, A3C in that it does not trigger several
environments at a time and is more cost-effective when
parallelization is not performed, as is the case in this work.
The key idea behind A2C is that it follows an updating
scheme of the policy function approximation based on fixed-
length segments of experience. The stabilizing role of the replay
buffer of the DDQN algorithm is substituted by updates that

FIGURE 6 | Block diagram showing a high-level introduction of RL-MPC. Every control step, RL-MPC decides an action ak by optimizing the sum of the one-step
ahead non-linear program of the MPC and the value function from the estimated following state (Arroyo et al., 2022).
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involve multiple segments of experience. Each segment explores a
different part of the environment such that each update averages
the effect of all segments.

A third (AL3) variation from the reference case explores
another very popular deep RL algorithm nowadays, namely the
Proximal Policy Optimization (PPO) algorithm, as proposed
by Schulman et al. (Schulman et al., 2017). PPO is similar
to A2C in that it is also an on-policy algorithm and uses a
policy gradient update scheme of its actor. It also extends
A2C by implementing a clipped objective to update the
parameters of the function approximator representing its
policy. The formulation of the clipped objective prevents

abrupt changes after policy updates that could hinder
convergence.

We refer to (Hill et al., 2018) for the practical implementation
of these algorithms. All cases exploring variations of the learning
algorithm are marked red.

3.7 Analysis of the RL Network Architecture
The reference case implements a Multi-Layer Perceptron (MLP)
neural network configured with TensorFlow (Abadi et al., 2015)
to represent its state-action value function. The state-action value
function is updated every step from a target estimated from the
immediate perceived reward and the return estimated with the

FIGURE 7 |MPC performance results for different test case runs in each of the BOPTEST scenarios. The rows show the results for the same pricing scenario, and
the columns for the same period scenario. The results are obtained for variations in control step Δts and prediction horizon Δth for the same MPC.
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same action-value function at the expected following state. The
network architecture configuration used to represent the state-
action value function (or the RL agent policy) is usually chosen to
be arbitrarily large. The motivation is to ensure that the function
approximator provides enough degrees of freedom to capture the
necessary correlations between states, actions, and returns.
However, a too large network architecture may preclude

convergence as it increases the number of parameters that
need to be optimized.

In REF, the network consists of an MLP architecture that
contains two hidden layers of 64 neurons each and a rectified
linear activation function for the nodes. MLP has outperformed
other typical network architectures for a similar application.
Particularly, Patyn et al. (Patyn et al., 2018) showed that the
use of MLP leads to cost savings in the operation of a building
when compared to the use of CNN, and its associated
computational cost is about half as large when compared to
LSTM. The number of neurons in the input layer is the sum of the
state and action spaces, and the output layer estimates the
Q-value.

Three variations are explored from the network used in the
reference case. The first variation (NN1) reduces the network to
use only one hidden layer of 64 neurons. The second envisaged
architecture (NN2) further decreases the size of the network by
using only one hidden layer of 32 neurons. The third variation
(NN3) uses the original network architecture but applies
normalization to the intermediate layers. That is, the output of
a layer is normalized to improve convergence during training. It is
worth mentioning that the AL2 variant also required a reduction
of the size of the network architecture from the one used in the
reference case (1 instead of 2 hidden layers). The reason is that the
original network architecture made this agent diverge at early
stage during the training process. All variations exploring the
effect of different network architectures are marked green.

FIGURE 8 | Step response evolution of the BESTEST Hydronic Heat
Pump case for different values of ΔTi. The “measured” temperature shows the
temperature output of the emulator, and the “modeled” temperature shows
the output from the system modeled with Eq. 1.

FIGURE 9 | Evolution of the average episodic return during learning for each trained agent.
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3.8 Training of the RL Agents
Each instance of an RL agent interacts with the BOPTEST
building emulator for a number of episodes until the
maximum number of steps for training is reached. Each
episode lasts for 2 weeks and is initialized with 1 day of
simulation. The episodes are not allowed to overlap the testing
period of the BOPTEST case to ensure that the model is tested in
conditions that have not been encountered during learning. The
state and action spaces are always normalized to [ − 1, 1] and the

electricity price tariff is chosen to be the one from the highly
dynamic price scenario of BOPTEST for training.

Note that it is of interest to find precocial RL agents to be used
for actual building climate control implementations. Moreover,
in our prior work (3) it was shown no significant improvements
for training periods of over 300.000 interaction steps and it was
indicated that longer training periods did not necessarily lead to
better control performance results during testing. Hence, we set
the maximum number of training steps to 300.000.

FIGURE 10 | RL performance results for different test case runs in each of the BOPTEST scenarios. The rows show the results for the same pricing scenario, and
the columns for the same period scenario. The results are obtained for different configurations of the state space, action space, learning algorithm, and neural network
architecture.
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The actual environment Ef is used here to train the considered
RL agents. The reason not to use the simplified simulation
environment EF (which is more likely to be available in
practice) is that we are interested in investigating whether RL
can be competitive with MPC at any extent, even when using the
most favorable conditions for learning an RL agent. We thus let
the RL agent learn from the actual environment and explore
whether any variation of the controller hyperparameters could
lead to results similar to those obtained with MPC. Contrary to
common practice in literature, we still perform testing by using a
building emulator with realistic dynamics. The learning curves
and the performance results obtained for all testing scenario
periods are analyzed for every case.

3.9 RL-MPC Implementation
The RL-MPC algorithm, as described in Arroyo et al. (2022) is
also implemented for each of the testing scenario periods. We
refer to Arroyo et al. (2022) for details about the algorithm and its
implementation, but provide here a brief description for clarity. A
high-level representation of the RL-Algorithm is shown in
Figure 6, where k is the control step index, m is the vector of
measurements, x̂ is the estimated state of the controller model, d
is the forecasted set of disturbances, s is an agent’s observation, a
is the action decided by the agent, and r is the obtained reward.

RL-MPC is an algorithm that combines elements from MPC
and RL. Particularly, the MPC non-linear program that needs to
be solved every control step is truncated with the expected one-
step ahead value as estimated by as estimated by a value-based RL
algorithm. Hence, RL-MPC uses value-based RL to estimate the
value of being in a specific state as obtained by the MPC when
using a prediction horizon of only one control step. Therefore, the
main components of the MPC remain active in RL-MPC, namely
the state estimator, forecaster and optimizer, but the value
function is used to shorten the non-linear program and to
enable learning.

The implementation of the RL-MPC algorithm in this study
inherits all attributes and hyperparameters of the REF case, which
was defined to be equivalent to the MPC formulation. This means
that the same control step, prediction horizon, and state estimator
as in the MPC is used. The value function of the RL-MPC
algorithm is pretrained with the same DDQN algorithm used
to train the RL agents described above. However, in this case we
let the agent interact with the simulation environment EF instead
of the actual environment Ef . Therefore, it should be noted that,
contrarily to the RL agents previously considered in this study,
the RL-MPC agent uses a realistic amount of data for learning
because it pretrains its policy using the simulation environment
only, instead of interacting with the actual environment.

4 RESULTS

4.1 Analysis of the MPC Results
Figure 7 shows the control performance results for the baseline
controller and for MPC variations in each of the six BOPTEST
case scenarios analyzed. In Figure 7, the baseline performance is
represented by a green dot, the different prediction horizons are

distinguished using different colors, and variations of the control
step are indicated by different marker shapes. From the six core
KPIs that BOPTEST provides, we show total thermal discomfort
and total operational cost per zone, since those are the
performance targets of the control problem formulated in
this study.

The results show that the baseline controller obtains the same
total discomfort independently of the pricing scenario since its
control logic ignores the pricing signal. The MPC generally
outperforms the baseline controller with discomfort savings up
to 90.8% and with cost savings up to 27.2% when using a
prediction horizon of 48 h and a control step of 15 min on the
peak heat period with dynamic pricing. However, the baseline
controller already performs well, and designing the predictive
controller to beat the baseline has proven to be a challenging task,
especially in terms of operational cost. It is worth noting that the
inclusion of the fan and pumping powers in the objective function
is key to obtaining operational cost savings. Neglecting these
terms makes the MPC working at low partial heat pump load,
without considering the low but steady energy use of auxiliary
equipment. Another critical aspect to achieve cost savings is to
train the controller model not only to fit the zone operative
temperature, but also the electrical and thermal powers of the
heat pump. This way, the controller model learns an accurate
representation of the heat pump COP behavior, which is
exploited during operation later on.

More dynamic pricing scenarios only result in small
operational cost savings for the typical heating period
scenarios. The main reason is that the relative pricing
variations are hidden by the high constant pricing component
for transportation fees and taxes included in all scenarios, which
is relatively large in most of the European countries, including the
one where the test case of this example is located. This reduces the
monetary incentive to load shifting. Notice that the peak heating
scenarios are even less sensitive to pricing variations since they do
not offer much freedom to operate without hampering comfort.
The exploitation of flexibility is further limited in this test case by
higher electricity prices occurring when the ambient temperature
is higher, and therefore when the heat pump could benefit from a
larger COP.

Shorter control steps usually lead to higher performance,
especially for the peak heating period scenarios. The relevance
of the prediction horizon length for the peak heat scenario period
is clear: a prediction horizon below 6 h is not enough for the MPC
to anticipate the thermal load and successfully maintain thermal
comfort, although this effect is mitigated by shorter control step
periods. Shorter control step periods usually lead to the best
performance results for the same scenario and MPC prediction
horizon.

The time constant is calculated as explained in Section 3 to
generalize these findings. The aim is to find the shortest
prediction horizon delivering good performance relative to the
time constant of the building, such that other MPC
implementations can benefit from this insight. Note that
shorter prediction horizons alleviate the computational burden
of the online optimization required in implicit MPC. The step
response of the zone operative temperature is studied for the
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envisaged building from 10 different values of the initial
temperature difference ΔTi, from 1 up to 10 °C. We choose
the peak heating period scenario to carry out the experiments and
20°C as the temperature reference. For each ΔTi, the temperature
setpoint is set to be 20 + ΔTi °C during the first 4 days of the
testing period, and the emulator is led to free floating for the
remaining 10 days by overwriting the heat pump modulation
signal: uhp = 0. The temperature trajectory when using a
temperature setpoint of 20°C is subtracted from each
temperature evolution to eliminate the effect of disturbances.

The temperature response for each temperature difference
ΔTi, as determined by the emulator, is shown in Figure 8. In every
case, the time constant is estimated by approximating the
trajectory by the step response of a first-order system as was
shown in Eq. 1. The time constant is taken to be the average of all
obtained values, which is 3.03 days with 0.84 h standard
deviation. The modeled response is also shown in Figure 8 for
each value of ΔTi. Figure 8 shows that when using a reciding
horizon the shortest prediction horizon leading to good control
performance is 6 h, which is 12 times shorter than the time
constant of the building. Longer prediction horizons do not seem
to provide added value for this particular building type, as we
observe similar results when using the same control step with
different prediction horizons.

4.2 Analysis of the RL Results
The performance results of the RL agents described in Section 3
are now assessed. First, the learning curves obtained with each
agent during training are analyzed. These curves are shown in
Figure 9 and they represent the exponential moving average of
the episodic return during training. The initial steps of operation
determine the initial value of the learning curves during training.
Since the RL agents follow a random exploration schedule, it is
expected that the initial values vary from one agent to another. A
steep curve indicates a fast-learning agent, which means that the
associated learning algorithm is sample efficient.

In general, it is observed that the agents tend to increase their
expected average episodic return during training, which indicates
that they succeed in learning from the interactions with the
environment. Only the AL2 and AL3 variants do not show a
steady increase in their expected episodic return. These variants
correspond to the implementations of the A2C and the PPO
algorithms, respectively. Both algorithms differ from the others in
that they lack a replay buffer and follow an on-policy method for
learning. Note that AL1 implements SAC, which is also another
learning algorithm than the one in the reference case (DDQN).
However, similarly to DDQN, SAC uses a replay buffer and
follows an off-policy method for learning. Contrarily to off-policy
algorithms, the exploration of the A2C and the PPO algorithms is
based on their policies, which become less random as training
progresses. This effect makes them more sensitive to local optima
than off-policy algorithms.

SS8 is probably the configuration that leads to the fastest
learning, which is logical since it uses the largest control step from
all variants, namelyΔts = 60 min. A larger control step reduces the
size of the state space dimension and, more importantly, it
enables the agent to explore longer periods of experience than

other agents for the same amount of interaction steps. A similar
rationale can be followed for variant SS7 whose steepness is not
that outspoken but the agent also benefits from using a longer
control step period. Other variations of the observed state space,
e.g., reducing the number of observed variables or the forecasting
period do not seem to have a major influence on the learning rate.
The choice of the neural network architecture used as a function
approximator does not significantly influence the learning rate
either since these variants learn at a similar pace as the
reference case.

What clearly influences the learning process are the variations
in the action space. AS1 reduces the action space dimension, but it
shows a similar learning rate when compared to the reference case
because it also uses direct control. The largest difference comes
from implementing indirect control for configurations AS2 and
AS3. In these two cases, the episodic return is the highest at the
start of the training process because operation with indirect
control is much safer than with direct control. It is much
easier for the learning agent to avoid discomfort by controlling
the temperature setpoint than by controlling the heat pump
actuator. This effect is even more significant for AS3 where a
backup controller is implemented that ensures that the setpoint
sent by the agent is always within the allowed comfort range.

Figure 10 shows the performance results of all trained agents
in each of the BOPTEST case scenarios. The MPC results serve as
a new benchmark with improved performance compared to the
baseline controller, and are thus shown again in Figure 10.
However, since the MPC results are only shown for
benchmarking, they are all indicated in grey, without
distinguishing between prediction horizons or control steps.
Additionally, the RL-MPC algorithm from (3) is tested in all
scenarios and its performance results are also shown in Figure 10
using the star marker.

What stands out from Figure 10 is that the performance
results from the RL agents are more scattered than those obtained
with MPC, which consistently outperforms both the baseline and
the RL agents.None of the RL variants achieve the optimality level
of the MPC or RL-MPC. The scale of Figure 10 has been limited
for clarity leaving out a few cases like AL2 or AL3 during the
typical heating period. In general, it is observed that the agents
struggle more during the typical heating period because the effect
of ambient temperature and solar irradiation is more prominent
during this period. An example is the reference case that can
achieve good comfort levels during the peak heating period but
fails to meet comfort constraints during the typical heating
period. A similar effect is observed for NN1, NN2, and NN3.
Only the agents handling small state space dimensions from
reduced prediction horizons or increased control step sizes like
SS4, SS5, SS6, or SS7 appear all within the scale depicted in
Figure 10, but most of the times, they do not show satisfactory
performance levels.

It is worth noting that the variants implementing indirect
control (AS2 and AS3) achieve low discomfort levels during the
peak heating period but at a considerably higher operational cost
compared to MPC. This emphasizes the larger potential for
implementing direct control. Moreover, variants AS2 and AS3
increase their discomfort levels during the typical heating period
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because this period requires a more accurate control strategy
taking care of disturbances to avoid overheating.

Contrary to the cases commented above, RL-MPC shows an
excellent control performance during the typical heating period.
Specifically, RL-MPC performs as well as the best MPC from all
MPC variants during the typical heating period, and similarly to
the general MPC results during the peak heating period. The
outstanding performance during the typical heating period
indicates that the value function can incorporate the effect of
the weather conditions, i.e., of the ambient temperature and solar
irradiation.

4.3 Analysis of the Computational Cost
The main differences between the computational cost of the
implemented algorithms relate to their offline and online
computational needs. RL has a high offline computational
demand because the algorithms need to interact with the
building environment for several episodes of experience during
the training process. Once the policy or the value function has
been trained, the online computational demand of RL agents is
very low because calculating the control action only comes at the
cost of a function evaluation. On the contrary, MPC requires
almost no offline computation but has a higher online
computational demand. The reason is that an optimization
problem needs to be solved every control step. RL-MPC has
an equivalent offline computational demand as the one of RL
since it also needs a value function to be trained beforehand, and
an online computational demand as the one of MPC since it also
needs an optimization to be solved every control step. In the latter
case, however, the optimization is truncated along the prediction
horizon with the value function, which eases the solution of the
associated non-linear program.

One of the core KPIs provided by BOPTEST is the
computational time ratio, which calculates the average ratio
between the controller computation time and the test
simulation control step period. More specifically, the
computational time ratio κtimr is calculated as

κtimr �
∑k∈K

Δtc,k
Δts,k

|K | , (3)

whereK is the set of all control steps, Δtc,k is the elapsed controller
computational time at step k, and Δts,k is the interval of control
step k. This ratio indicates the remaining time that a controller
has to compute a control action every control step. The ratio has
been collected for all controllers in this study. The RL agents show
a computational time ratio in the order of O(10−4). The MPC
implementations range between O(10−3) and O(10−4). Finally,
the implementations of RL-MPC have a computational time ratio
in the order of O(10−3). As expected, the online computational
demand of RL agents is the lowest of all controllers. MPC shows
the widest range of variation because the non-linear program of
the online optimization is significantly affected by the variations
of the prediction horizon and control step period. RL-MPC
consistently shows the highest computational demand among
all controllers, which is explained by the exhaustive search
algorithm used for optimization, which is less efficient than

the gradient-based method implemented by the standard
MPC. In all cases, the controllers show a reasonable online
computational demand.

5 DISCUSSION

The use of RL for BEM is appealing because of its model-free
approach and its learning capabilities. Many studies have
investigated the use of RL for BEM e.g., for their application
in DR settings. However, reduced order models are used to test
the effectiveness of their RL algorithms and they claim that
performance improvements can be attained with the model-
free approach. The work presented in this paper has shown a
different reality when implementing RL for direct building
climate control in a reliable building emulator from the
BOPTEST framework. Despite using state-of-the-art RL
algorithms and the same environment for learning and testing,
the RL agents seriously struggle to perform well in an
environment characterized by realistic building dynamics.
Variations in the learning algorithms and their
hyperparameters have been explored, but they generally score
worse than the consistently performant results of the MPC
approach.

It has been shown that indirect control leads to a safer
operation within the constraints set but limits the performance
potential of an agent. Hence, classical model-free RL is not a valid
option for direct control of building systems. It is likely that the
discrepancy between these findings and those from prior
literature stems from the use of a detailed testing emulator
with realistic building dynamics. RL algorithms are
appropriate for learning environments with a clear causal
relation between actions and rewards but fall short when
learning environments where the causal relation is not as clear
or is delayed in time (Dulac-Arnold et al., 2019). Reduced-order
models simplify the dynamic coupling between actions and
rewards which facilitates the agent’s learning. However, these
simplifications should not be used for testing as the associated
models are not representative of actual buildings.

RL may still serve in combination with model-based
approaches using more sophisticated methods to combine
operational safety and learning simultaneously. An example of
this practice is the RL-MPC algorithm as proposed in (Arroyo
et al., 2022). RL-MPC has shown similar performance results as
those from MPC for all testing scenarios of the considered
building case. However, these approaches require tuning from
an expert so that their expert-free property cannot be claimed
anymore. Perhaps further RL research leads to significantly
sample efficient algorithms that can be directly implemented
for direct climate control. However, the results of this paper
indicate that we are not yet at that point.

A limitation of this work is that it lacks testing in multi-input
building systems. RL agents are expected to be substantially more
challenged in those cases since the curse of dimensionality
compromises their scalability. The study conducted in this
paper is also limited by a deterministic setting. RL techniques
are expected to excel for those scenarios involving uncertainty,
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although they first need to prove their performance in a
deterministic setting. Future research should compare these
approaches in stochastic settings with regulated levels of
uncertainty. It is expected that RL algorithms may improve
their relative performance when compared to MPC in
stochastic settings because RL methods can naturally learn the
uncertainty of their environment. Standard MPC does not
typically learn from its environment unless machine learning
methods are implemented to mitigate the uncertainty associated
with the forecast of the disturbances. In these cases, supervised
learning algorithms can be used to estimate and correct the
forecasted disturbances based on historical data, but the
controller does not improve its control policy from rewards
that are directly perceived from the environment.
Furthermore, only a few hyperparameter settings have been
explored from all those that could be investigated. Examples of
other hyperparameters that should be considered for their
evaluation in future research are the MPC transcription
optimization techniques or the use of FQI RL techniques for
direct building climate control. We hope that BOPTEST and
BOPTEST-Gym will facilitate further exploration of different
combinations of hyperparameter settings of optimal control.

6 CONCLUSION

This paper implements and compares MPC, RL, and RL-MPC
for building control. MPC is implemented for different
combinations of the prediction horizon and control step
period. All MPC configurations outperform the baseline
controller of the building except those with a prediction
horizon period that is 12 times shorter than the time
constant of the envisaged building. The BOPTEST-Gym
interface is used to explore variations of the RL agents.
Particularly, it is analyzed variations of their state-action
space, learning algorithm and value function network
architecture. From all tested variants of RL, most of them
struggled to provide comfort during testing, and none of them
was able to outperform the results of MPC for the same
building case and testing scenarios. These results were
found even when conditions favored the implementation of
RL by letting the agent interact with the testing environment
for substantial training periods. Letting the agents interact
with the environment for prolonged time periods is unlikely in
practice but reveals an upper performance bound of the RL

algorithms when tested in a deterministic setting with a perfect
model representation that has realistic dynamics.

From all hyperparameters explored, the learning algorithm
had the highest effect on training and testing performance,
indicating that off-policy algorithms are more suitable for the
envisaged application. It is also shown that indirect control (a
common practice when applying RL to buildings) offers safer
operation but lowers the optimality potential of the controller.

Although the above conclusions are not very promising for
applying model-free RL to direct building climate control,
machine learning methods may still be helpful for this
application, specially when combining these methods, e.g., as it
is done in the RL-MPC algorithm that truncates the MPC
objective function with a value function learned from using
value-based RL methods.
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