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Cognitive Digital Twins (CDTs) are defined as capable of achieving some elements of
cognition, notably memory (encoding and retrieval), perception (creating useful data
representations), and reasoning (outlier and event detection). This paper presents the
development of a CDT, populated by construction information, facility management data,
and data streamed from the Building Automation System (BAS). Advanced machine
learning was enabled by access to both real-time and historical data coupled with scalable
cloud-based computational resources. Streaming data to the cloud has been
implemented in existing architectures; to address security concerns from exposing
building equipment to undesirable access, a secure streaming architecture from
BACnet equipment to our research cloud is presented. Real-time data is uploaded to
a high-performance scalable time-series database, while the ontology is stored on a
relational database. Both data sources are integrated with Building Information Models
(BIM) to aggregate, explore, and visualize information on demand. This paper presents a
case study of a Digital Twin (DT) of an academic building where various capabilities of CDTs
are demonstrated through a series of proof-of-concept examples. Drawing from our
experience enhancing this implementation with elements of cognition, we present a
development framework and reference architecture to guide future whole-building CDT
research.

Keywords: cognitive digital twin, smart building, data visualization, data streaming, IoT

1 INTRODUCTION

The fourth industrial revolution, which has led to both Industry 4.0 (Lasi, et al., 2014) and
Construction 4.0 (Klinc and Turk 2019), is that of cyber-physical systems and digital
technologies (Sawhney, et al., 2020). Digital twins (DTs) are repeatedly identified as a key
enabler of this transition (Al Faruque, et al., 2021). The manufacturing sector led the early
development on digital twins (Fuller, et al., 2020), following the premise that machine-to-
machine (M2M) communication within factories and across supply chains would drive fewer
errors, less rework, and improved productivity for everyone involved. As available computing
resources and connectivity between devices and systems have increased, higher data volumes can be
obtained and analyzed, enabling the development of DTs. The past 5 years have seen increased
interest in DTs within the construction sector (Khajavi, et al., 2019; Caramia et al., 2021), where they
form the digital layer of Construction 4.0 alongside BIM and cloud-based common data
environments (Sawhney, et al., 2020).
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Both the definition and expectations for DT functionality have
evolved significantly over the past decade (Fuller, et al., 2020).
Much of what used to be considered a DT—i.e., an automatically
updated digital representation of a physical object—is now
considered only a ‘digital shadow’ when the DT does not
influence the physical object in return (Fuller, et al., 2020;
Sepasgozar 2021). The evolution of the Cognitive Digital Twin
(CDT) concept, see (Abburu, et al., 2020; Fuller, et al., 2020; Al
Faruque, et al., 2021), further extends this. CDTs are
distinguishable by six key functionalities defined by Al
Faruque et al. (2021):

1) Perception: the process of forming useful representations of
data related to the physical twin and its physical environment
for further processing.

2) Attention: the process of focusing selectively on a task or a
goal or certain sensory information either by intent or driven
by environmental signals and circumstances.

3) Memory: a single process that: holds information briefly while
working with it (working memory), remembers episodes of
the physical twin’s life (episodic memory), and knowledge of
facts of the environment and its interaction with the physical
twin (semantic memory). This remembering includes:
encoding information (learning it by perceiving and
relating it to past knowledge), storing and maintaining it,
and retrieving it when needed.

4) Reasoning: drawing conclusions consistent with a starting
point: a perception of the physical twin and its environment, a
set of assertions, a memory, or some mixture thereof.

5) Problem solving: the process of finding a solution for a given
problem or achieving a given objective from a starting point.

6) Learning: the process of transforming experience of the
physical twin into reusable knowledge for new experiences.

Several challenges have been identified in the literature that
must be overcome to fully implement CDTs. In their systematic
literature review, Semeraro et al. (2021) identify the improvement
of sustainability performance for each DT application context; the
development of standards-based interoperability to support the
interconnection of multiple DTs and systems; and the
modularization of DT development to improve DT flexibility
and re-usability. The questions of applicability, interoperability,
and integrability were core to Yitmen et al.’s (2021) investigation
to develop an adapted model of CDTs for building lifecycle
management. They defined these CDTs as DTs with physics-
based and analytical data-driven models endowed with cognitive
abilities, expert knowledge, problem solving, and understanding,
rendering it capable of responding to unpredicted and unknown
situations. This definition echoes that of Eirinakis, et al. (2020)
who summarized CDTs as an expansion of DTs that are able to
detect anomalies, learn behaviour, and identify physical (system)
changes to improve asset performance. Drawing from both the
academic literature and a series of expert interviews, Yitmen et al.
(2021) proposed a CDT architecture consisting of four layers: 1)
the Model Management layer combining physics-based,
analytical, and information-driven models; 2) the Service
Management layer combining the available data and machine

learning services to support the CDT; 3) the User Interaction
layer to permit human navigation of the CDT; and 4) the
Cognitive Twin management layer to model the physical
system’s behaviour, identify opportunities for improvement,
and modify the CDT to better reflect the current reality. This
paper complements and extends this body of research, presenting
the development of a full-building CDT through a case study
along with a reference architecture and development framework
to guide future research.

This paper is structured as-follows. Section 2 presents a review
of the literature, highlighting the state of the art in CDTs and
Industry 4.0, summarizing the key challenges in the development
of CGTs specific to the Buildings domain, and identifying
enabling research to help overcome them. Section 3 presents
the overall research methodology used to develop the CDT and
situates the current research in a longer-term project. Section 4
presents the case study: the implementation approach and the
results obtained. Section 5 summarizes the lessons learned from
this effort into a framework for CDT for Building Operations,
discussing best practices identified for each element. Finally,
Section 6 concludes this study, identifying the key findings,
current study limitations, and recommendations for future
research. Through this study, this paper provides the
scaffolding to support CDT development at scale.

2 BACKGROUND

2.1 Cognitive Digital Twins and
Construction 4.0
The manufacturing sector has led the development of CDTs with
significant research arising in this domain over the past 3 years
(Zheng et al., 2021). Several literature reviews have highlighted
the development of CDTs and the areas for further research e.g.
(Abburu, et al., 2020; Semeraro et al., 2021).

Two concepts are valuable in supporting the development of
CDTs: Digital Thread and Autonomous systems. The Digital
Thread is a framework that allows an integrated view of a physical
entity’s definition throughout its lifecycle across traditionally
siloed functions. The Digital Thread can be considered the IT
infrastructure backbone by which the information is collected,
stored, and disseminated across different functions. Within this
context, Digital Twins are users of the information in the Digital
Thread and are also themselves stored as models within the
Digital Thread for re-use by other functions (Singh and Willcox
2018).

The combination of Digital Thread and the notion of promise
of connectivity across the manufacturing supply chain has
spurred research on autonomous operations or autonomous
systems. An Autonomous System is self-governing, self-
sufficient, and independent in achieving its targeted outcome.
Such outcomes can include mobility (autonomous vehicles, aerial
taxis), smart electricity grids (demand response), robotics
(situational awareness, computer vision), supply chain
(intelligent inventory management), Industrial Internet (digital
twins of industrial equipment; see (Li, et al., 2017)), healthcare
(diagnostic imaging, precision medicine, drug discovery), and
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software and internet services (NLP, recommendation engines,
sentiment analysis, chat bots). In the context of physical-digital
systems, the autonomous system must gather information, create
a solution based on this information, and execute a task to achieve
an objective with a feedback loop to self-correct. The autonomous
system is designed to make independent decisions in an ever-
evolving, non-deterministic environment. Typically, it will use
probabilistic modeling and learning. For example, multiple
decades of effort have been devoted to the goal of reducing
the number of people required to run complex safety-critical
facilities such as oil platforms and power plants. Digital Twins
that accurately reflect a facility’s behavior would be able to
perform probabilistic estimations (Agrell et al., 2021) with
different scenarios and are considered key technology in
developing fully autonomous systems considered Cognitive
Digital Twins (CDT).

2.2 Key Challenges and Potential Solutions
in the Development of Cognitive Digital
Twins
Significant challenges are associated with the development of
CDTs. These are described for key functionalities (Al Faruque,
et al., 2021) in the following sections.

2.2.1 Perception
The CDT must perceive the various events occurring in the
physical building. To achieve this, the physical building is
equipped with sensor networks that periodically report all
variables of interest (sensor measurements, meter readings and
command points from the BAS; facility management records,
etc.) required to digitally replicate the building state. To acquire
data from these heterogeneous sources and standardize its
format, three technical elements are required: 1) a coherent
and interoperable data model, 2) the ability to acquire stream
data from the various IoT devices and sensor networks into this
model, and 3) data security.

Building data is challenging to structure due to its diversity
(multiple sources, formats, and vendors) and complexity
(interconnectedness of systems and elements). Two approaches
are used to structure building data from sensor networks: linked
data and ontologies. Linked data stores the data from individual
points separately, relying on an external software such as BIM to
integrate this data into a common environment; see Tang et al.
(2019), and Lu et al. (2019) for summaries of how BIM can enable
the integration of IoT data into a DT. Ontologies provide robust
data structures, and several broad ontologies have been developed
to integrate Building Automation System (BAS) and Internet of
Things (IoT) data (Bhattacharya et al., 2015).

Several ontology comparisons have been undertaken to
evaluate their potential for digital twins of buildings,
notably within a Smart and Ongoing Commissioning
(SOCx) context. Quinn and McArthur (2021) conducted a
detailed analysis of two industry-led ontologies, Brick and
Haystack, with IFC and the W3C ontology ecosystem (BOT,
SAREF, etc.) to compare their relative completeness (ability to
describe each building element), expressiveness (ability to

describe relationships between elements), interoperability,
and usability (practical impacts), recommending Brick for
Smart Building applications. In a systematic review of
SOCx-applicable ontologies, Gilani et al. (2020) noted that
the majority of existing ontologies were built using the W3C
ecosystem ontologies and most often used SPARQL Protocol
and RDF (Resource Description Framework) Query Language
(SPARQL) for queries. Several ontologies incorporating
cognitive functions were further identified, notably the
context-aware architectures proposed by Uribe et al. (2015)
and Han et al. (2015), Hu et al.’s (2018) ontology to support
automated time-series analysis for evaluating building
performance, and Li et al.’s (2019) KPI ontology permitting
multi-scale observation and performance analysis. Gilani et al.
(2020) identified six key requirements for future SOCx
ontologies that are also highly relevant to CDTs: 1)
Inclusion of both static and dynamic data types to support
context-aware decision making and real-time data analytics; 2)
full description of available data and their relationships; 3) a
modular approach ensuring compatibility with existing
ontologies and re-use wherever possible; 4) adoption of a
linked-data approach; 5) case study implementation; and 6)
full documentation to permit its extension and maintenance.

Static data may be obtained from BIM and other building
sources, but time-series data must be acquired in real-time.
Data streaming requires a unique approach because of both the
heterogeneity of data as noted above and the siloing of data in
different, proprietary, and closed systems (Misic et al., 2021).
The BAS provides a wealth of building performance data,
integrating both the controllers and sensors for all HVAC
equipment in the building using the BACNet protocol
(ASHRAE 1995), connected through field controllers, which
in turn connect to network devices. Historical (trended) data is
often limited due to computational cost but is extremely
valuable to support reasoning and learning. It is often
richer than streamed data because most BAS servers use
higher storage granularity (e.g., 5 min instead of 10 min)
and this is readily achievable as those servers are hosted in
the same subnet as the HVAC controllers. The same
granularity is often not achievable in streaming as only
limited bandwidth is available. This said, retrieving trended
data depends on the availability of export tools. Often vendors’
BAS servers use proprietary databases (e.g., MS SQL Server)
requiring credentials. To limit computational cost, time limits
must also be placed on trended data.

Maintaining network security, particularly when connecting
third-party IoT devices, is another core requirement for resilient
CDTs (Farahat, et al., 2019). Typically, HVAC controllers are
hosted on a private subnet but streaming may open a breach for
undesirable external access. An appropriate firewall is necessary
to prevent cyberattacks (e.g., DDOS) that may reduce the
efficiency of the network. IoT sensors beyond the HVAC
subnet also pose real security issues as they are often
connected to the building WiFi network, equipped with open
source kernels (e.g., Raspberry Pi) and disseminated in various
locations in the buildings. Their network should thus be
physically isolated from the central IT system.

Frontiers in Built Environment | www.frontiersin.org May 2022 | Volume 8 | Article 8568733

El Mokhtari et al. CDT Development for Building Management

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


As most IoT devices are resource constrained, Yaqoob, et al.
(2017) recommend lightweight security mechanisms with
minimal intelligence to recognize and counteract potential
threats. They also suggest that IoT systems must follow a
secure booting process, access control rules, device
authentication procedures, and firewalling, and must be able
to accept updates and patches of security software in a non-
disruptive way. (Li et al., 2016). classify security issues in IoT
environments into three categories: data confidentiality, privacy
and trust.

2.2.2 Attention
Once the CDT has perceived the network, it must determine
which data warrants its attention. Implementing this
functionality requires determining how to filter out irrelevant
data and format relevant data. Handling various types of data,
assessing the data volume, and encoding data for streaming
(Misic et al., 2021) has been investigated. Previous research
has indicated the value of Kafka for edge computing during
data streaming (Ramprasad, et al., 2018). Buffers should be
implemented in the edge machine (EM) as well as the cloud
to handle intermittent connections, connection issues, and error
detection. Outlier detection algorithms using machine learning
(Basu and Meckesheimer 2007; Li, et al., 2009) have proved
valuable for stripping out erroneous data prior to ingestion by
DTs (Miller et al., 2015).

Recorded observations are often aggregated as statistics (e.g.,
median, percentiles, standard deviation) and processed by ML
models defined in the supervised learning framework if data is
previously labelled by experts (e.g., deep models, regression,
classifiers), or in the unsupervised learning framework when
no or few labeled data points are available.

2.2.3 Memory
As the store of past and present states of the building, memory is a
crucial CDT component. It is materialized in sensor values,
actuators states, parameters, and settings, all associated with
timestamps. Memory is the main reservoir of data that serves
for visualization, learning and reasoning. Ingestion services
support the memory function by processing the receiving
buffer and uploading records to the time series database. A
time series database refers to any database able to store a high
volume of timestamped data in real time. NoSQL databases are
good choices as they have flexible schemas and can be scaled
horizontally (Oti et al., 2018), however, for increased
performance, databases that can natively handle queries on
timestamps are usually preferred. The use of distributed cloud
resources considerably helps in storing time series data, in its
simplest implementation, a table or index can be associated with
data streamed from one building (Kang, et al., 2016). The time
series database has to reply in a reasonable time to queries from
the digital twin users (Kang, et al., 2016; Lv, et al., 2019), and at
the same time keep data integrity by detecting duplicate records
and checking identifiers against the ontology model.

The full exploitation of data requires metadata that can be
stored in a traditional relational database that reflects the
ontology model of the building or campus (Quinn and

McArthur, 2021). Querying any resource starts by sending
appropriate requests to the ontology database to retrieve the
list of points associated with the query, a second query is then sent
to the time series database to retrieve the temporal data.

Memory and its supporting services reside in a data lake
(Miloslavskaya and Alexander, 2016). A cloud-hosted data lake
provides quasi-infinite resources for computing and storage and
allows to balance loads and allocate new resources to the
memory cluster in a transparent and efficient way.
Depending on the type of computation performed on the
data, cloud providers offer object, file, or block storage for
both throughput and transaction-intensive workloads.
Memory has several levels ranging from the raw data
received from streaming to the episodic memory that handles
aggregated sensor data for defined episodes or periods, e.g.,
week, season (Al Faruque, et al., 2021). Visualizations are
necessary to fully benefit from a CDT’s memory as they
constitute a way to interactively display the content of all
memories, for example with a 3D model viewer coupled with
data extracted from the ontology and the time series databases.

Many challenges are related to memory, such as: the
heterogeneity of data originating from various sources, the
need to ensure a secure and reliable data transmission, and
the need to feed a queue that efficiently ingests data from all
sources. For CDT success, low latency in processing queries from
data consumers, analytic dashboards and machine learning
models is critical.

2.2.4 Reasoning and Problem Solving
Reasoning and problem solving is a key difference between
traditional DTs and CDTs. This capability allows a CDT to
apply reasoning by taking a set of recent observations from
thousands of points, transform them into relevant indicators
and compare them with existing KPIs to make decisions.
Reasoning can be based on induction or deduction, and can
use probabilistic frameworks such as Bayesian networks for
conditional relationships (Al Faruque, et al., 2021). Reasoning
often relies on existing data from episodic or semantic memory; it
uses simple or complex rules or machine learning algorithms to
provide insights on the problem in hand. For cost effectiveness,
cloud resources are periodically invoked to run models then
revoked after data processing. Such flexibility is only
achievable on cloud structures that can scale resources in and
out in a very short time.

Recent CDT frameworks have recommended graph learning
to support this function (Mortlock, et al., 2021; Zheng et al.,
2021). Predictive algorithms with demonstrated value for
reasoning and problem solving in the building domain include
random forest (Smarra, et al., 2018; Shohet, et al., 2020)
convolutional neural networks (El Mokhtari and McArthur
2021), deep reinforcement learning (Mocanu, et al., 2018; Liu,
et al., 2020), particle swarm (Delgarm, et al., 2016) and LSTM (El
Mokhtari and McArthur 2021). Several optimization approaches
have been compared for their applicability for buildings (Waibel,
et al., 2019; Si, et al., 2019; Magnier and Haghihat, 2020) with a
high frequency of researchers adopting Bayesian optimization
(Khosravi, et al., 2019; Lu et al., 2021; Stock et al., 2021).
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2.2.5 Learning
The last concept of CDT is learning, defined by (Al Faruque, et al.,
2021) as transforming the experience of the physical twin into
reusable knowledge for a new experience. While reasoning is based
on previous knowledge, its outcomes are recorded as new learned
experiences. The main focus of learning is summarizing reasoning
and problem-solving results and providing the best ways to save
them for further exploitation in subsequent episodes in the
building lifetime. Learning is also interrelated with memory as
new experiences are stored in the episodic or semantic memories,
while resulting knowledge is stored in other memories called
knowledge memory. Knowledge can be stored as a set of rules,
full models, sets of parameters or statistics.

Knowledge can also be modeled as a network, for example, the
Bayesian network created from the fault detection study noted
previously. Knowledge is not immutable; the content of this
memory must be updated from new learning experiences. A
weighted combination of old and recent data - with more weight
given to recent experiences - can be used to update the knowledge
memory and reflect new behaviors that may have never been
observed. The learning may require human feedback in case
brand new behaviors are observed, indeed, models may not be
able to distinguish between new experiences and faulty ones, in
this case human expertise can solve the issue by manually labeling
faulty behaviors.

Lee et al. (2020) proposed an architecture relying on learning
agents monitoring the performance of actual and digital models and
using transfer learning to enhance model building and increase
efficiency by retrieving knowledge/data from a base model. From
another perspective, knowledge graphs (Nguyen et al., 2020) were
employed to enable formal, semantic, and structured representation
of knowledge. In some cases, knowledge graphs are associated with
ontologies to create a knowledge base or a knowledge management
system where a reasoner is executed to derive new knowledge
(Ehrlinger and Wöß., 2016). Abburu et al. (2020) described the
task of creating a functional and comprehensive knowledge base as
themost challenging task for CDTs to realize the cognitive capability
and summarized the associated challenges as: 1) knowledge
representation, 2) knowledge acquisition and 3) knowledge
update. The last is the most complex, consisting of knowledge
extension, forgetting, evolution, and discovery of the right time to
apply the needed changes. For this, two strategies are recommended:
usage-driven based on experts’ feedback and structure-driven and
based on detecting conflicting rules by ontology reasoners (Abburu,
et al., 2020).

3 RESEARCH METHODOLOGY

This research was conducted through a series of proof of concepts
(POCs) applied to a full-scale case study of a mixed-use academic
building. A multi-disciplinary Smart Campus Digital Twin
(SCDT) for the Ryerson University campus has been
developed, integrating 66 campus buildings with various
degrees of data, as summarized in Table 1.

Within the SCDT, the Daphne Cockwell Complex (DCC;
Figure 1) is the most developed and was used to create the
initial CDT. Built from the as-built BIM model, it was enhanced
with the addition of semantic data from the space management
database (new parameters mapped to rooms) and BAS points
(new parameters mapped to rooms, systems and equipment as
appropriate). To facilitate the latter while minimizing
computational cost of the CDT, new equipment families were
created with simplified geometry and assigned unique equipment
identifiers, rather than the ‘type’ tagging in the initial BIM.
Additional equipment parameters provided additional
information such as make and model descriptions provide full

TABLE 1 | Data integrated into SCDT by number of buildings.

Data Types Number of Buildings Comments

BIM 66 created from available floorplans and drawings
Space Management 66 from centralized database
Work Orders 66 from centralized database
Energy metering 1 broader campus mapping in progress
Water metering 1 broader campus mapping in progress
Streamed BAS data 1 Case study building only

FIGURE 1 | DCC at ryerson university Ryerson, 2019; (c) Perkins + Will.
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equipment geometric information and system associations.
Together, this semantic, geometric, and topological
information necessary to support a comprehensive quasi real-
time context-aware decision platform for campus management
that provides a virtual simulation environment for physical
buildings.

DCC consists of a 16,300 m2 (175,000sf) academic podium
with lab space, classrooms, offices, and a 19-storey residential
tower housing 332 student rooms in 2- and 4-bedroom
apartments. Developed by the university to be a ‘living lab’,
the building incorporates “a comprehensive sub-metering
system that collects real-time data about energy consumption
and climate control (that) can be used to identify opportunities to
improve sustainability and inform decisions for future buildings”
(Ryerson University, 2019), integrated into the BAS (Johnson
Controls ‘Metasys’ system). Because of this extensive additional
metering and monitoring, a wealth of data is available to support
the development of a broad array of CDT use cases, despite the
DCC having not being designed as a fully-integrated Smart
Building. The DCC CDT is supported by a global DT platform
enabled with IoT devices and sensor networks permitting
complex analysis of system performance, operational
awareness, and energy optimization. This is achieved through
online diagnostics and complex event processing and prediction
of future behaviour with machine learning algorithms. This CDT

is a proof of concept for any campus context related to assets such
as university campuses, hospitals, and industrial plants, and can
be further extended to smart neighbourhoods and smart cities.

The CDT implementation methodology relies on the five
components discussed above: perception, attention, memory,
reasoning & problem solving, and learning. These components
are distributed over two segments securely linked over the internet.
The first is the physical building equipped with the HVAC
installation and edge hardware to collect and processes sensory
data, while the data lake is the second segment where building
structured and unstructured data is stored. The data lake is part of a
Virtual Private Network (VPC) in Amazon Web Services (AWS)
cloud and allocates extensible resources to process, store and
visualize data. It also provides endpoints for a variety of end
user applications, two of them are described in the case study.
Throughout the next section, we present the detailed development
of the CDT, the key decisions made and rationale for each.

4 CASE STUDY

This section provides insight on the issues addressed in the CDT
development, summarized in Figure 2, and details the technical
solutions implemented for each within the case study
building (DCC).

FIGURE 2 | Overview of CDT approach and technologies used in the case study.
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To help contextualize the relationships between the various
elements, the data streaming approach and a sample KPI
visualization are shown in Figures 3, 4, below.

4.1 Perception
To implement the perception functionality, the SCDT needed to
perceive the various events occurring in the physical building. To
determine the types of data to consider, KPIs were developed with
the FM team to define DT goals for simulation, event detection,
and learning. These informed the data model development, which
had to include three basic types of data: static data such as space
utilization reports, historical (trended) data, and dynamic data.
Static data sources relevant to each KPI was identified and
mapped directly into the SCDT BIMs using the Lean-Agile
process (McArthur and Bortoluzzi 2018). Historical data was
obtained from the BAS, using the “Export utility” tool to parse the
HVAC equipment hierarchy and selectively export subsets of
data; this batch processing was required because it became
evident that large data exports (over 500 MB) can critically
impact on the BAS server. Dynamic data was either batch
exported (e.g. from the work order system) or streamed as
discussed below.

The implementation of the data model and secure streaming
are summarized in the following sections.

4.1.1 Ontology/Data Model
To create a comprehensive, coherent, and interoperable data
model, a W3C-compatible approach was used, drawing from
the simplicity of the BOT ontology and integrating Brick
semantic relationships as the core of the data model. By
simplifying the asset class hierarchy, this approach allowed the
same SQL tables {asset, asset type, relationship, relationship type,
location, location type, measurement, measurement type, etc.} to
be used across domains. Here, ‘asset’ is used for all physical
components, for example it can designate either a piece of
equipment or its subcomponent (e.g., the return fan in an air-
handling unit). The ontology includes an assets hierarchy that
specifies how assets relate to each other (e.g., is part of, contains),
the relationships between assets and locations (e.g., serves, is
located in), and point relationships (e.g., measures, is controlled
by). This ontology model was physicalized in a relational database
(mySQL) to support different kinds of queries involving
locations, asset hierarchy, and end points.

Figure 5 illustrates an example of a logical identifier where one
can easily identify the campus name (RyersonUniversity), the
building name (DCC), the location type (RM: Room), the
location reference (DCC01-01F), and the sensor type (DA-T:
Discharge air temperature). These differ from the points’ network
address as-obtained from the data streaming protocol.

FIGURE 3 | Overview of CDT implementation architecture.
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4.1.2 Data Streaming
Streamed data was defined using a unique identifier (the pointID
that includes both source and point identifier) and a querying type
(polling or change of value (COV)). The BACnet service on the EM
collects data from these COV notifications or periodical polls,
which is read by EMs in near-real time. These EMs support the
handling of different protocols, securely send data to the cloud, and
manage buffering and streaming to a time-series database. One of
themost important challenges found in our implementation was to
support different protocols (BACnet, TCP, HTTPS, MQTT) to
collect and stream data, defining appropriate polling periods and
handling COV appropriately. Data is collected and processed by
EMs on site before streaming. Data collection strategy and
protocols are implemented in the EM as well. While a single
EM was required here, multiple parallel EMs may be necessary to

manage siloed data sources; all need to communicate with the
cloud queue to publish data that often needs to be normalized from
all sources and respect predefined schemas.

The first EM (basstream) is on the same private network as the
BAS and supports the BACnet protocol (see Figure 6). When first
added to the subnet, basstream was configured by: 1) discovering
all devices in the network, 2) retrieving all controllers’ points, 3)
determining points that support the Change Of Value (COV)
protocol, and 4) saving all discovered devices and points in a local
database. Once configured, the Amazon Kinesis family of services
was used for data streaming.

Because the BAS was located on the critical systems network
for the campus, the security of data streaming was critical. The
solution depicted in Figure 6 ensures a reliable and secured
tunnel for streaming data over the internet with one or more

FIGURE 4 | Sample implementation: occupant dissatisfaction dashboard and relationship with CDT.

FIGURE 5 | Points identification.
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EMs in the building and a managed service for streaming on
the cloud side. Basstream stores data in a local buffer and has a
unidirectional tunnel of communication with the second
machine basgateway placed on an internet-enabled segment.
This machine manages a second buffer, formats data, then
sends it through a secured connection to the cloud. Standalone
IoT devices in Figure 6 provide a solution to stream data from
sensors not supporting the BACnet protocol.

The various buffers (the two EMs and the cloud) ingest data
asynchronously providing resilience against temporary node
failure. The implemented notification system alerts system
administrators of any streaming exceptions or decrease in
ingestion volume or speed. Securing data is another
important aspect, the current implementation uses HTTPS
API calls to managed cloud services which proved to be more
efficient than a previous VPN-based solution. Because
basstream is located on a private wired network, it is
protected from external attacks such as DDoS (Distributed
Denial of Service), sniffing, fake network message or replay
attack (Li et al., 2016). Basgateway and other IoT devices do
not use wireless communication and are behind the corporate
router. All communication with the data lake (AWS cloud) is
encrypted with the TLS (Transport Layer Security) protocol
version 1.2 and leverages the AWS Identity and Access
Management (IAM) for device authentication. AWS IAM
assigns unique credentials, controls permissions for devices
or groups of devices streaming data to the cloud (Varia and
Mathew, 2014).

4.2 Attention
To determine which data is most critical, the attention function
filters is the total sum of all operations applied to data from

perception to memory and was implemented using EMs in the
case study.

4.2.1 Data Filtering and Transformation
Because EMs have the advantage of being close to the data source
(HVAC equipment), they can query points for their current
values, retry querying the same point multiple times if
readings are erroneous, periodically check if all points and
devices in the network are alive (pinging IP addresses,
querying last values), and apply prior transformations to data
(e.g., rounding float values, converting categorical into ordinal
values). Unresponsive points are communicated and stored. EMs
also apply proper formatting to records to make them compatible
with the streamingmanager requirements (e.g., adding time zone,
adding BACnet controller ID).

4.2.2 Aggregation
Because most building analytics involve comparing the building
performance at different time scales, jobs are programmed to run
periodically to aggregate data. Calculated max/min, mean,
percentiles, standard deviation, counts, etc., are stored for each
subset (sensors, controllers commands, rooms, floors) in the
episodic memory in the time series database to enable
analytics to be run on aggregated data.

4.3 Memory
Multiple levels of memory were defined as-follows to support the
full range of required CDT functionality:

1) Transient memory: contains data that is still processed from
the perception stage into the EM buffers, streaming pipeline
and cloud queue

FIGURE 6 | Global architecture showing in-premises machines and the data lake.

Frontiers in Built Environment | www.frontiersin.org May 2022 | Volume 8 | Article 8568739

El Mokhtari et al. CDT Development for Building Management

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


2) Working memory: contains data after ingestion and storage in
the cloud, this memory exists in the form of time stamped
events

3) Episodic memory: generated from data ingested from the
working memory at the end of each predefined episode

4) Semantic memory: where rich experiences from interrelated
assets and points are recorded and serve to characterize
known events and their impact at a large scale (e.g. student
entering or leaving the building, break time, lunch time,
working days, weekends). Semantic memory is fed by
learning models that ingest working and episodic data to
retrieve summarized knowledge, which can be used in
building KPIs, event or fault detection, etc.

The streaming manager is based on Amazon Kinesis and
represents the transient memory. It directs the data flow to an
Amazon S3 bucket (or any equivalent cloud block storage). In
parallel, appropriate cloud services ingest records, apply ETL
(Extract, Transform, Load) transformations before uploading the
data sequentially to the time series database - Elasticsearch in our
implementation. Elasticsearch encompasses the working, episodic
and semantic memories. It is a distributed, scalable, free, and open
search and analytics engine for structured and unstructured data
handling queries over time intervals. Queries are based on REST
APIs that can be sent over the HTTPS protocol. SDKs are available
for most of the programming languages.

4.3.1 Data Lake Structure
. In the architecture depicted in Figure 6, the ontology model is a
relational database that processes queries in SQL. The second
database is the so-called time series database that falls into the
category of NoSQL databases. Data in Elasticsearch is organized
into indices (the equivalent of databases in the relational model)
that allow to partition data according to their intended use.
Different indices can be associated with each type of memory
in a CDT: working, episodic, and semantic. Additional indices
may include other unstructured data such as technical data,
documents, initial parameters, etc. Latency was reduced by
allocating sufficient hardware resources and cache size,
optimizing queries and avoiding complex aggregations.

4.3.2 Visualizations
Dashboards are delivered by a web server hosted in the cloud that
extracts data from the data lake, and loads the 3D model securely
from another cloud (Autodesk Forge). Users can select a building
from the campus, select the building floor, the date interval and
other filters such as the desired variables and the aggregation type.
A 3D view enables geometric transformations as well as a set of
tools to show and filter static data stored in the BIM (e.g., Revit
model). Alternately, the room view of this dashboard (Figure 7)
updates the rooms color in the model to reflect their average
temperature and highlights rooms in red if their average
temperature was above the accepted level, in blue if it was
below the normal range, or in shades of green (brighter means
higher temperatures) if it was in the normal range. The charts
show the variation of the temperature as a function of time or in
box plots for easy comparison between rooms.

Figure 8 depicts two additional views of the CDT. In the asset
view (Figure 8A) where the user can walk virtually inside the
building, select one or multiple assets, and display the recorded
data on the graphics to the right. In the area view (Figure 8B) to the
right highlights rooms according to static data stored in the 3D
model like in this case the division owning the space. The interaction
between the user and this dashboard is translated by the web
application into API (Application Programming Interface) calls
(Figure 3). APIs ensure data protection by exposing a limited set
of functionalities to client applications. Two APIs were developed.
The first allows querying the ontology database based on user
selection (e.g., query the list of temperature sensors of the
selected building floor), the second serves to query sensor data
from the time series database (e.g., retrieve temperature readings in
the user selected date/time interval).

4.4 Reasoning & Problem Solving
Two reasoning POCs were developed to implement different
aspects of fault detection. The first is reactive, mapping occupant
dissatisfaction tracked through work order complaints to identify
areas of concern. These analytics both helps prioritize responses
and supports root cause analysis. This is complemented by the
latter, which applies reasoning to proactively monitor building
systems and equipment to identify early signs of failures or
deviations from their normal range of observations that could
contribute to occupant dissatisfaction.

In the following, these two applications of analytics and fault
detection will be described.

4.4.1 Work Order Analytics
Analyzing the satisfaction of campus occupants is a key priority of
the FM team. Satisfaction of campus occupants is a key priority of
the FM team. By applying the core principles of the CDT, the
occupant satisfaction dashboard depicted in Figures 4, 9 was
implemented. Data is extracted from a table/index in the time
series database referred to as work orders DB. This table receives in
real time all occupants’ complaints recorded from emails or phone
calls at the Facility Management Department (FMD) after being
filtered and converted to work orders. A Natural Language
Processing (NLP) model using a Convolutional Neural Network
(CNN) classifies each work order and assigns it to one of the
following categories: Acoustic, Function, indoor air quality/Odor,
Thermal, or Visual. This model was trained previously on labeled
orders by FMD operators. As new orders are generated by FM, they
are automatically labelled by the classifier and stored in the time
series database. The web application is hosted in the cloud and
shows a dashboard that provides analytics on customer satisfaction
based on the time stamped data in the time series database.

This figure presents three views: the campus view (Figure 9A)
shows KPIs for a given month where buildings are highlighted
with shades of color that depend on the general indicator called
OD (Occupant dissatisfaction). Darker shades indicate higher
OD values, in other words, buildings with higher numbers of
complaints. A group of indicators on the top panel displays the
campus performance for each complaint class. The three-color-
coded indicators red, white and green respectively show whether
the current month is worse, similar or better than the last 6-
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month average. The details of the top five buildings in terms of
complaints are shown as stacked bar plots in the left panel. When
clicking on any building, the same metrics are displayed per floor
(Figure 9B), and when clicking on a floor, metrics are shown per
room (Figure 9C). A 3D viewer color-codes the rooms to
visualize the degree of severity with regards to the selected metric.

4.4.2 Fault Detection
Fault detection is a second application where machine
learning algorithms and analytics can be efficiently applied

to monitor the behavior of building equipment and sensors.
Having different instances of the same equipment is helpful
for the CDT to learn the normal behavior by equipment type
over a defined period of time, then compare new observations
with those previously recorded. A simple method to monitor
temperature and CO2 levels in rooms compares current
observations with such recorded profiles. Figure 10 shows
the temperature daily profile recorded for two rooms from the
last 2 years of data. The light green interval shows the 5th to
95th percentiles, the dark green zone is delimited by the 25th -

FIGURE 7 | Dashboard overview.

FIGURE 8 | Asset view (A) and area view (B).
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75th percentiles, while the blue line is the median. The second
and third columns represent the same profile for working days
and weekends. One can observe more variance in the first
room observations than the second, which suggests more
activity in the first room. A basic anomaly detection
algorithm consists in comparing the temperature
observations at any time with this profile recorded in the
CDT memory, then raise a warning when the measured
temperature is between the 5th and 25th or the 75th and
95th percentiles, and generate an alert when the temperature
is below the 5th percentile or above the 95th as these
observations are unlikely to occur.

Figure 11 shows similar profiles for CO2 levels. It is important
to note the use of appropriate CO2 level profiles for working days
and weekends as percentiles are different due to absence of
occupants during the weekend.

The application of this simple yet powerful algorithm for
reasoning allowed the CDT to detect a failure in a CO2 sensor
that was sending continuous erroneous readings due to dust
accumulation. In a second case, anomalous ambient and
discharge air temperatures were detected in the machine
room, and the fault was due to a damaged belt in the
associated Fan Coil unit. In a third case, higher temperatures
were observed in one of the learning areas of the building, and the
issue was related to a broken window causing external hot air
infiltration.

A more elaborated MLmethod was applied to building data to
classify and cluster BAS data; this was published in (El Mokhtari
and McArthur 2021). This method uses Convolutional Neural
Networks to learn time series patterns characterizing each HVAC
equipment and is applied to recognize faults in Fan Coil Units.
Refer to this study for further details. An additional study is

FIGURE 9 | Occupant dissatisfaction dashboard: campus (A), building (B), and floor (C) views.

FIGURE 10 | Temperature profile for two rooms.
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underway to explore the use of Bayesian Networks for
probabilistic fault detection and classification.

4.5 Learning
The focus of learning in the case study is fault detection. Statistical
knowledge developed from rooms, equipment, groups of both are
stored daily, weekly, monthly, and bi-annually is used to detect
deviations from the normal range of values. Semantic knowledge
for fault detection is also stored by running clustering algorithms
over multiple variables related to the same asset, saving the model
parameters in the knowledge memory. Figure 12 is an example of
a knowledge graph instantiated as a Bayesian network learning

the operational behavior of an HVAC equipment. Edges
represent conditional probabilities between nodes and their
predecessors. These probabilities are continually updated from
streamed data and can serve many purposes such as fault
detection.

In this case study, knowledge resulting from machine learning
models was internalized by updating each sensor’s daily profile
for workdays and weekends. Two years of data were stored and
recent data assigned a higher weighting with profiles updated
daily. New profiles are stored as a list of 144 rows (1 row for a 10-
min period) with 5 values for each row (5th, 25th, 50th, 75th and
95th percentiles). The parameters of the CNN in the NLP
classifier are saved in the knowledge memory. Occasionally,
this classifier is retrained when new labeled instances are
provided by FMD, and its set of parameters updated in the
knowledge memory.

It is clear that knowledge data is unstructured, therefore it will
be stored in a NoSQL database in the data lake (e.g. MongoDB)
where parameters are directly recorded in CSV or JSON formats,
while binary files (e.g. neural network weights) will be serialized
prior to being stored in the database.

5 RECOMMENDATIONS FOR COGNITIVE
DT DEVELOPMENT

Based on the case study, a standardized architecture for Building
CDTs is illustrated in Figure 13.

To support this architecture, a generalized framework has
been developed to define the key attributes and
functions required for CDT development, as presented in
Figure 14.

The key technologies and approaches identified in this case
study and recommended to support this framework described in
the following sections.

FIGURE 11 | CO2 level (Q) profile for two rooms.

FIGURE 12 | Bayesian network for a Fan Coil Unit.
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5.1 Perception
The three biggest challenges for perception of a CDT are to
identify, collect, and structure the relevant information. Data
identification consisted of itemizing the computer-aided FM data
available for the campus, discovering the BAS points, and
integrating additional IoT sensors required to supplement the
research. Accessing BAS legacy data has historically been

inefficient, both due to proprietary encoding of BACNet data
beyond the field controllers and because of inconsistent data
point classification or nomenclatures. New cloud services such as
AWS IoT Core/GreenGrass address the former by facilitating the
discovery of—and COV data streaming from - BACNet devices
on a connected network. Classification of these points used the
CNN and LSTM approach developed in previous research (El

FIGURE 13 | Building CDT reference architecture.

FIGURE 14 | Framework for cognitive DT development.
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Mokhtari and McArthur 2021). For non-digital data, cloud-
hosted computer vision and pattern recognition services are of
significant value, permitting image and video processing. By
locating these at the edge, automated inspection and defect
detection results are obtained with minimal latency, allowing
for root cause analysis of unexpected changes in system behaviour
and the triggering of corrective action. Data structuring remains
the most effort-intensive task, but this can be minimized by the
use of established ontologies (Brick, W3C, etc.) or simplified
versions thereof.

5.2 Attention
The CDT use case revealed many challenges related to attention that
can be summarized in two areas: data and edge computing. In thefirst
area, the key question is to determine how much data is enough to
digitally replicate the physical building. Selection of relevant sensory
points as well as their sampling rate are a key prerequisite in CDT
modeling. Outlier detection and removal as well as aggregation
schedules (e.g., hourly, daily) are then defined to provide
consistent data streaming with different time-scaled views.

The second area is related to the design of the edge computing
network. EMs are a vital part in collection and streaming data to
the cloud and require several considerations prior to their design
and deployment:

1) Design: The number of EMs and their processing capability
depend on the number of sensors managed by each EM, their
type, and the volume of data they generate. Computational
power is also dictated by the pre-processing needed for each
data packet.

2) Communication: EMs must support communication
protocols compatible with sensors and the cloud (e.g.,
BACnet, HTTPS, TCP). As EMs live in the edge separating
sensor networks and the cloud, they may become vulnerable
points. Exchange with the cloud streaming manager must be
encrypted and proper firewall rules instantiated in the main
building routers. Security prequisites include: authorizing the
minimum number of ports in firewall, exchanges based on
encrypted certificates and time-limited tokens instead of user/
password-based connections.

3) Management: EMs must implement basic management routines
for proper streaming. Local buffers for collected data must be
sized proportional to the daily streamed volume. A good buffer
ranges between 1 day to many days’ worth of data depending on
the connection quality. All operations must be logged locally with
logs accessed remotely with a notification service implemented to
inform the streamingmanager and human operators of failures or
exceptions. EMs must also handle poor connections with sensors
(retries and timeouts) and notify for dead sensors. Additionally,
regular updates must be planned for EMs. EMs software core
requires regular updates to avoid vulnerabilities and version
mismatches. Some streaming managers can update the
streaming core in the EM remotely (e.g., AWS IoT Core/
Greengrass). Rules related to data management must comply
and be updated after any ontology model’s upgrade. Other
technologies such as FreeRTOS also provide operating system
capabilities to microcontrollers, making small, low-power edge

devices easy to program, deploy, secure, connect, and manage.
Continuous health indicator monitoring including resources
usage such as CPU, memory, disk space, disk I/O, and log
sizes is also recommended.

5.3 Memory
The challenges found in relation to memory can be classified in three
categories: data lake design, data ingestion, and visualization.Data lake
is often addressed first as it contains all data models as well as
streaming and ingestion services. As explained previously, the CDT in
this case is implemented with cloudmanaged services which is a good
choice in terms of efficiency, availability, scalability, and cost. The
Time series database is a non-relational data store (e.g., NoSQL
database) that requires support for time-based queries, high
availability and low latency, horizontal scaling, as well as a
seamless data movement from working memory to other
memories (episodic, semantic) or archives for obsolete data. For
the episodic and semantic memories, episodes length has to be
defined as well as the relationships between variables and what
semantics mean in the CDT use case. A significant side of the
data lake operations is the streaming management, data ingestion,
and ETL processing that are implemented in the cloud and edge
machines.Managed services (e.g., AWSKinesis, AWS IoTCore, AWS
Glue) can seamlessly handle these transformations. Retention policies
must be defined for all memories: how far in the past should the CDT
recall events with all details? Is a compressed version of the data in the
episodic or semantic memories sufficient? Those memories can have
longer retention periods (up to 10 years), while working memory
would require a shorter retention period (two to 5 years) before
archiving. CDT can suffer from cold start (Lika et al., 2014)
problem when no historical data is available. This will preclude
learning algorithms from running until enough data is available
(e.g., 2 months to 6months of data collecting). It is important to
find any existing data stored in BAS servers or other local databases
and export it to the working memory to avoid this issue.

Visualizing data is important in communication on
monitoring. Solutions can vary from open source viewers such
as GLTF/Open GL, full software packages (e.g. Autodesk Revit,
Grafana, MS PowerBI, Tableau), cloud storage + viewer API (e.g.,
Autodesk Forge, ESRI) or fully managed services (e.g., AWS IoT
TwinMaker). The first three solutions will require simultaneous
access to the data lake to overlay data on the building 3D model.

5.4 Reasoning & Problem Solving
The challenges related to reasoning and problem solving are related to
the definition of the various models to enrich the cognition layer.
Unsupervised learning hasmore applications compared to supervised
as most data is not labelled. In fault detection, faults are rarely labeled
in raw data, therefore, models need to apply statistical methods or
unsupervised learning algorithm to define the edge between
acceptable and anomalous behaviour. Reinforcement learning is
only possible to apply on emulators built around existing data.
Because the learning model needs to run periodically on episodes/
subsets of data and store results in episodic and semantic memory,
each learning algorithm requires the allocation of scalable resources
and specific time for training and testing. In this case also, managed
services (e.g., AWS SageMaker) allow a good balance in terms of cost
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and efficiency, especially given that many learning models require
over a year of data to avoid bias and poor operation. For each such
model, performance should be monitored and documented to
establish the minimum data collection period required for
acceptable performance.

5.5 Learning
The key questions to be answered while implementing learning
relate to the models’ retraining frequency, defining metrics to
detect whenmodels need to learn new knowledge, and developing
knowledge storage and management protocols.

For the retraining frequency, a balance of computational cost
and algorithm accuracy must be considered; varying this
frequency, storing the trends, and learning the resultant
relationship effects permits its optimum to be determined. The
knowledge accuracy dictates whether it can be used with
confidence to predict future events or make reliable
simulations. Expert feedback is of great value in interpreting
this, supplementing insights from trend analysis with operational
insight to inform retraining frequency and providing human-in-
the-loop insight to interpret and determine actions for low
confidence results.

Metrics need to be defined based on the accuracy of the models
that generated the results. KPIs developed in associated with the
FM team inform the development of such KPIs and acceptable
accuracy thresholds.

Finally, knowledge storage and management practices include
defining strategies to identify and forget obsolete knowledge while
updating existing knowledge. This knowledge can be stored as
model parameters, analytics by location and asset, semantic
relationships, set of deducted rules, or full models. Because
knowledge is unstructured by definition, it can be stored in
various formats; of these, NoSQL databases and knowledge
graphs offer particular value.

5.6 Maximizing Cognitive Digital Twin
Effectiveness and Efficiency
The business outcomes of CDTs can be classified in two
categories: improving operational efficiency and providing new
capabilities. Efficiency includes optimizing operations and
predicting failures, reducing energy usage and costs, and
improving building user experience. Collaboration with FM
teams is invaluable to inform the appropriate KPIs and
associated metrics and gain access to the data sources
necessary to support CDT development.

Regarding computational cost issues, CDTs allow for
incremental buildout as different systems are brought online
and integrated into a single solution. The outlined framework
allows for CDTs to be adapted to changing business needs
without upfront budget commitments. This allows
organizations to plan their deployments and provision only
the ingestion, storage, and computing capacity needed to bring
critical capabilities to life. It is noteworthy that cloud providers
typically use sublinear pricing, unit costs are lower with higher
volume of usage so volume forecasting is recommended to
identify the cost-optimal cloud approach.

6 CONCLUSION

This paper explores the key concepts and challenges of
designing and implementing Cognitive Digital Twins
(CDTs). Framed by Al Faruque, et al.’s (2021) identification
of essential cognition capabilities—perception, attention,
memory, reasoning, problem solving and learning—we
present a full-building case study with POCs relevant to
each. For each POC, we present its implementation to
address the barriers to CDT development identified in the
literature: data modeling, collection and secure streaming,
low-latency storage, appropriate reasoning and problem
solving, and learning. We found that by using paired EMs
to provide robust and secure data streaming, cloud services
provided the best advantages in terms of scalability,
availability, performance, and maintenance of CDTs.
Further, cloud-managed artificial intelligence (AI) and
machine learning (ML) services are particularly valuable,
enabling DT designers and builders to easily add the
cognitive layers of the CDTs.

Based on the lessons learned from this implementation, we
developed a reference architecture and a development framework
to support future research into CDTs, including
recommendations for key attributes, functions, and
technologies. In doing so, we provide insight on the
applicability, interoperability, and integrability of CDT
concepts, demonstrated in a full-scale case study, addressing
the current discourse regarding how to incorporate and
implement cognitive attributes for buildings.

6.1 Limitations
While the CDT presented here went through several stages in its
development, there are several limitations that prevent it from
being considered it as a complete and generalizable case study.
The first is the use of a single cloud platform (AWS) for the case
study, which necessarily biased the investigation toward the
services available on this platform. Other providers may offer
cloud services that might equally or better serve the purpose of
cognition in this CDT. Additionally, while some use cases are
implemented at the campus scale, BAS data is only available to a
single building, narrowing the CDT implementation significantly.
Finally, the presented CDT is preliminary, integrating limited
data and use cases.

6.2 Future Work
The expansion of the CDT across the full campus is in-
progress, including the integration of transportation and
infrastructure elements as well as BAS data streaming from
additional campus buildings. These will permit the CDT to be
expanded and address broader range of use cases and shed new
light on challenges and constraints arising at this scale. To
enable this scaling, the CDT data model is being translated into
neo4j (a graphDB) to reduce computational cost and simplify
quality checking. Other future research will incorporate new
types of data sources—for example design and sourcing
decision-making processes and embodied carbon data—to
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integrate carbon-reduction KPIs into the CDT. Learning is
also being expanded through the scaling of the Bayesian
Network FDD proof-of-concept to the building scale and
through the development of an autonomous SOCx system.
The latter requires not only learning but new developments in
M2M communication to permit machines to inform each
other of performance status and adjust their behaviour
independently.
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