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Reliable estimation of fracture network length and morphology in hydrofracturing is crucial
for controlling and optimizing fracturing effects. Hydraulic fracture propagation will be
affected by a variety of factors to produce deflection, resulting in different fracture network
morphology. To study the spatial deflection behaviours of multiple parallel hydraulic
fractures, three-dimensional engineering-scale numerical model for multistage fracturing
is established to study the induced shear stress disturbance and unstable spatial
propagation behavior of hydraulic fractures under different perforation cluster spacing.
In the model, the thermal diffusion, fluid flow and deformation of rock between the rock
matrix and fluid in pores and fractures are considered to describe the thermal-hydro-
mechanical coupling. In this study, the results show that the thermal effect between
fracturing fluid and rock matrix is an important factor affecting fracture propagation, and
thermal effects can increase induced shear stress area and promote fracture propagation.
The induced shear stress disturbance caused by fracture propagation is superimposed in
multiple fractures, resulting in stress shadow effect and spatial deflection of parallel
fractures. The stress shadow areas and the spatial deflection of parallel hydraulic
fractures will increase with the decrease of multiple perforation cluster spacing.

Keywords: spatial deflection of parallel hydraulic fractures, induced shear stress disturbance, thermal effects,
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INTRODUCTION

Reliable estimation of fracture network length and morphology in hydrofracturing is crucial for
controlling and optimizing fracturing effects. Hydraulic fracture propagation will be affected by
various factors, resulting in different fracture network morphology, including the coupling of
multiple physical fields in the formation. Multiple physical fields coupling in formation should be
considered to explain the fracture propagation behaviours. The linear thermal-pore-elastic effects
and a combination of fine and coarse meshes have been used to model thermal-hydro-mechanical
(THM) coupling processes in fractures (Kohl et al., 1995; Ghassemi and Zhou, 2011; Zhao et al.,
2015). Based on the mixed finite element-finite volume method, a three-dimensional (3D)
hydrofracturing model embedded in the natural fractures was proposed considering thermal
effects (Li et al., 2016).
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In addition to the coupling of multiple physical fields, which is
an internal factor affecting the internal properties of rock mass,
the interaction of multiple fractures in fracture propagation also
affects fracture propagation. In the process of hydraulic fracture
propagation, 3D fractures are accompanied by spatial deflection
and compression between fractures, resulting in unstable fracture
propagation (Wong et al., 2013; Manriquez et al., 2017). The
different perforation cluster spacing of multistage fracturing will
cause different degrees of of hydraulic fractures spatial deflection,
and the unstable propagation of fractures will affect control and
design of final fracture network (Zhang and Jeffrey, 2012; Bažant
et al., 2014). In the process of multi-fracture propagation, the
induced stress field around the fracture will superposition and
reduce to produce stress shadow effect. The spatial deflection of
hydraulic fractures and the evolution of stress fields under
different initial perforation forms become important factors
affecting fracture network morphology and fracturing effects
(Yoon et al., 2015; He et al., 2017; Sobhaniaragh et al., 2018;
Gutierrez et al., 2019). By using numerical methods (such as finite
element method, displacement discontinuity method and
boundary element method) and models, the interaction of
fracture network and stress shadow effect are quantitatively
analysed, and the mechanisms of fracture initiation,
propagation, and disturbance are investigated (Kresse et al.,
2013; Paluszny et al., 2013; Taghichian et al., 2014; Kumar
and Ghassemi, 2016). Besides, some high-performance mesh
optimization models have been developed and applied (Wang
et al., 2021).

In this study, an engineering-scale 3D numerical model of
multistage hydrofracturing of horizontal well is developed for the
study of spatial fracture deflection and induced shear stress
disturbance considering thermal effects, and the typical
perforation cluster spacing are set to study the influences of
cluster spacing on spatial fracture deflection and stress shadows.

NUMERICAL METHOD AND MODEL FOR
HYDROFRACTURING CONSIDERING
THERMAL EFFECTS

Governing Equations Considering Thermal
Effects
In this study, the physical fields involved in the fracturing process
of reservoir rock include the temperature field, fluid field, and
solid field (Wang et al., 2019; Wang, 2020). The matrix
deformation governing equation of reservoir rock is as follow:

LT(σ′ − αmpl) + ρBg � 0, (1)
where L is the differential operator, σ′ is the effective stress tensor,
α is the Biot coefficient, m is the element tensor, pl is rock mass
pore fluid pressure, pB is saturated bulk density of rock, and g is
the gravity vector.

The following Eqs. 2, 3 are the governing equations of rock
matrix seepage and fluid flow in fractures, respectively:

div[k
μl
(∇pl − ρlg)] � ( φ

Kl
+ α − φ

Ks
) dpl

dt
+ α

dεv
dt

, (2)
z

zx
[kfr
μn

(∇pn − ρfng)] � Sfr
dpn

dt
+ α(Δ _eε), (3)

where k is the inherent permeability of pore structure, μl is the fluid
velocity in the pore, Kl is pore fluid stiffness, Ks is solid skeleton
stiffness, εv is the volumetric strain, t is the current moment, kfr is
fracture inherent permeability, μn is fluid velocity in fracture, pn is
fluid pressure in fracture, ρfn is fluid density in fracture, Sfr is the
parameter describing rock compressibility under fluid action, and
Δ _eε is the fracture strain rate. Some detailed contents, such as
numerical implementation, proppant model, elastic constitutive
equation, and fracture criterion based on fracture energy, were
omitted to avoid redundancy, which could be found in the related
references (Wang et al., 2019; Wang, 2020).

The governing equation of thermal effects between the rock
matrix and fluid in pores and fractures is as follows:

div[kb∇Tf] � ρbcb
zTf

zt
+ ρfcfqf∇Tf, (4)

where kb is the thermal conductivity coefficient, Tf is the fluid
temperature, ρb is the volume density, cb is the specific heat
coefficient, ρf is the fluid density, cf is the specific heat coefficient
of fluid, and qf is the Darcy fluid flux.

The differential governing Eqs. 1–3 of solid deformation of the
rock matrix, fluid flow in pores and fractures, and thermal effects
are discretized using the conventional finite element method. The
form of heat transfer between element nodes is shown in
Figure 1, and the temperature and heat flux at the nodes are
as follows:

q1c � αc(TN)(TN − T1
f), (5a)

q2c � αc(TN)(TN − T2
f), (5b)

where q1c and q
2
c are the heat flux transmitted at the fracture plane

node, T1
f and T2

f are the temperature value at the fracture plane
node, TN is the temperature value of the node within the fracture,
and αc is the contact thermal conductivity. Temperature changes
in rock cause volume expansion and contraction:

ΔV
V

� αTΔT, (6)

FIGURE 1 | Heat transfer between finite element nodes in the formation
and network.

Frontiers in Built Environment | www.frontiersin.org September 2022 | Volume 8 | Article 8859932

Wang et al. Deflection of Hydraulic Fractures

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


where ΔT is the temperature change of the rock element, ΔV is
the volume change, V is the initial volume, and αT is the linear
thermal expansion coefficient of the rock matrix.

Three-Dimensional Numerical Model of
Multistage Hydrofracturing Under Different
Cluster Spacing
The engineering-scale 3D model of multistage hydrofracturing of
horizontal well with multiple perforation clusters in deep tight
rock is established, as shown in Figure 2. There are five

FIGURE 2 | Initial geometric engineering-scale 3D model of multistage
hydrofracturing of horizontal well with five perforation clusters.

TABLE 1 | Basic physical parameters of the model.

Parameter Value

Vertical in situ stress (z direction) Sv (MPa) 40
Horizontal minimum in situ stress (y direction) Sh (MPa) 46
Horizontal maximum in situ stress (x direction) SH (MPa) 60
Fluid injection rate Q (m3/s) 0.5
Pore pressure ps (MPa) 10
Biot’s coefficient α 0.75
Elastic modulus E (GPa) 31
Poisson’s ratio ] 0.22
Permeability k (nD) 50
Porosity φ 0.05
Dynamic viscosity coefficient of fracturing fluid μn (Pa · s) 1.67 × 10–3

Bulk modulus of the fracturing fluid Kfr
f (MPa) 2000

Perforation cluster spacing a (m) 100, 75, 50, and 25

FIGURE 3 | Thermal gradient on the 3D fracture surfaces and
surrounding rock.

FIGURE 4 | Final morphology of fracture network and stress in alternate
fracturing.
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perforation cluster locations, sequentially numbered from 1 to 5.
The basic physical parameters and perforation cluster spacing
settings of the model are shown in Table 1. According to the

different initiation sequences of perforation clusters, the
fracturing scheme can be divided into the sequential (fractures
are fractured in the order of 1→2→3→4→5), simultaneous
(fractures are fractured simultaneously), and alternate
fracturing (fractures are fractured in the order of
1→3→2→5→4 (Wang, 2020), and the model is analyzed by
finite element-discrete element methods in program package
ELFEN (Rockfield Software Ltd., 2016). In this study, the
three-dimensional deflection and induced shear stress
evolution of alternate fracturing with different perforation
cluster spacing are analyzed.

RESULTS AND ANALYSIS

Thermal Effects and Spatial Deflection of
Parallel Hydraulic Fractures
Figure 3 shows the thermal gradient on the 3D fracture surfaces
and surrounding rock. The value of thermal gradient can
represent temperature difference and thermal diffusion trend.
It can be seen that there is a significant temperature gradient at
the fracture surface due to the temperature difference, which
makes the temperature domain rapidly diffuse. The temperature
gradient of the rock mass from the fracture area to the periphery
gradually decreases until the far-field temperature gradient
disappears.

Figure 4 shows the final fracture morphology and stress field
results under different perforation cluster spacing in alternate
fracturing. When the cluster spacing is large, the fractures are
nearly parallel and stable. With the decrease of the perforation
cluster spacing, the mutual interference between fractures
gradually increases, and the deflection intensifies. The spacing
of perforation clusters is an important factor affecting the spatial
deflection behavior of spatial fractures.

FIGURE 5 | Dynamic propagation of fracture network in alternate
fracturing.

FIGURE 6 | Disturbance of shear stress (Pa) in sequential fracturing for a
cluster spacing of 100 m (“+” represents positive shear stress, and “−”

represents negative shear stress).
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Figure 5 shows the results of fracture propagation at each
stage of alternate fracturing. The first fracture propagates in space
close to the plane because there is no interference from other
fractures. The fracture 3 propagates in space close to the plane
due to the spacing between fracture 1 and fracture 3 is 100 m
(This is equivalent to increasing the spacing between sequentially
activated fractures). The fracture 2 is disturbed by fractures 1 and
3, and the deflection is intensified. Similarly, fracture 4 propagates
after fracture 5 has completed fracturing and is deflected by
disturbance from fracture 3 and fracture 5.

Shear Stress Disturbance Induced by
Multistage Hydrofracturing Under Different
Cluster Spacing
A comparison of induced shear stress disturbance under thermal-
hydraulic (HM) coupling and THM coupling is shown in

Figure 6. The upper left side of the fracture is positive shear
stress and the right side is negative shear stress. At the same time,
the shear stress is negative at lower left of the fracture, andshear
stress is positive at the lower right of the fracture. By comparing
Figures 6A,B, it is found that the induced shear stress field area
around the fracture is larger when the thermal effect is
considered, and the shear stress disturbance caused by the
reduction of induced shear stress superposition is stronger.

FIGURE 7 | Disturbance of shear stress σzx (Pa) in alternate fracturing for
different cluster spacing.

FIGURE 8 | Disturbance of shear stress σzx (Pa) in alternate fracturing.
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The degree of fracture propagation and spatial deflection also
increase. Therefore, thermal diffusion has a great influence on the
induced shear stress field disturbance around the fracture, which
needs to be considered.

Figure 7 shows the shear stress disturbance of alternate
fracturing at different spacing of perforation clusters. At 100
m of perforation cluster spacing, the induced shear stress field
around the fractures are slightly superimposed and reduced,
and the fracture propagation is less affected by stress shadow
effect. With the decrease of the spacing between perforating
clusters, the superposition and disturbance of stress field
between fractures gradually intensify. At 50 m of
perforation cluster spacing, the positive and negative shear
stress areas near the fractures superimpose obviously,
resulting in the shear stress field on the right side of
fracture 4 reduces obviously, and the fracture deflected to
the left side of the larger shear stress field. At 25 m of
perforation cluster spacing, the induced shear stress field
around the fractures are superimposed and reduced
seriously, resulting in the shear stress field on the right
side of fracture 4 reduces obviously, and the deflection
degree to the larger shear stress area on the left side
becomes larger.

Figure 8 shows the shear stress disturbance of alternate
fracturing. In the first stage, the stress around the first fracture
is almost symmetrical and the fracture propagates in a plane
direction. In the second stage, fracture 3 begins to propagate, and
since the two fractures are separated by uninitiated fracture 2, the
stress shadow area around fracture 1 does not cover the shear
stress area caused by fracture 3, so fracture 3 is not affected by
stress shadow and propagates in plane. In the third stage, the
shear stress field around fracture 2 is superimposed and reduced
with the stress shadow around fracture 1 and fracture 3, causing
fracture 2 to propagate and deflect towards the larger stress area.
Similarly, in the fifth stage, the induced shear stress field around
fracture 4 is superimposed and reduced with the stress shadow
around fracture 3 and fracture 5, and the fracture deflection is
intensified.

CONCLUSION

The conclusions of this study can be summarized as follows:

1) Fracture propagation results under different spacing of
perforation clusters show that the decrease of the spacing
of multiple perforation clusters in horizontal wells will
aggravate the mutual interference between parallel fractures
and lead to the increase of fractures spatial deflection. The
spacing of perforation clusters is an important factor affecting
spatial deflection of spatial hydraulic fractures. Alternate
fracturing can increase the spacing between sequentially

activated fractures and reduce the deflection of hydraulic
fractures.

2) As the spacing of perforation clusters decreases, the
superposition area of shear stress field will increase, and
the shear stress disturbance will become stronger, thus
increasing the mutual interference between parallel
fractures. In alternate fracturing, as fractures are activated
alternately, the superposition and reduction of shear stress
fields around fractures occur, decreasing the mutual
interference between parallel fractures.

3) The thermal effect between fracturing fluid and rock matrix is
an important factor affecting fracture propagation, and
thermal effect may promote fracture propagation, and
ignoring the thermal effects will underestimate the
propagation of fracture networks. To investigate the
mechanisms of thermal effects on stress variation, some
micro-scale modelling and analysis need to be studied in
the next work.
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