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Asphalt mixture comprising waste glass as an aggregate is referred to as “glasphalt”.
Limited studies have been oriented to investigate the Marshall test results of dense-graded
glasphalt mixes considering a wide range of variables. This study aims to utilize the artificial
neural networks (ANNs) to develop predictive models for Marshall stability and Marshall
flow of dense glasphalt mixes based on a large experimental database collected from the
literature. Eight independent variables covering the material and mix properties were
utilized as inputs in the models. The proposed models resulted in an experimental-to-
predicted ratio of 1.00 and 1.00, coefficient of variation of 8.6% and 8.7%, RMSE of
1.63 kN and 0.54 mm, and R-squared of 93.6% and 85.7% for the glasphalt stability and
flow models, respectively. Comprehensive parametric analyses have been conducted to
further validate the models by investigating the sensitivity of their parameters to the
predicted stability and flow values. The analyses revealed some desirable design
values that could be considered for a better performance of dense glasphalt mixes.
The results indicate that 4% is the desired design air void content of glasphalt mixes. High
stability value can be achieved for glasphalt mixes containing a crushed aggregate of
12.5 mm maximum size and 50% glass cullet of 4.75 mm maximum size. Lower viscosity
asphalt binder would provide uniformly compacted mixes. Furthermore, glasphalt flow
increases as the maximum size of ingredient particles, the penetration grade of asphalt
cement, asphalt cement content, and VMA% increase.
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INTRODUCTION

Environmental waste materials increase every day as a result of domestic and industrial waste
production, and landfill areas for those wastes are limited continuously (Ektas and Karacasu, 2012).
Incorporating waste materials into asphalt mixtures has been investigated worldwide (Rahman et al.,
2020). It has significant benefits in reducing the adverse impacts of waste materials on the
environment, saving raw construction materials, using sustainable and cost-effective materials in
asphalt mixes (Jony et al., 2011; Anochie-Boateng and George, 2016; Almuhmdi et al., 2021), and
mitigating the high cost of landfill disposal (Disfani et al., 2011).

Many researchers have investigated the feasibility of utilizing waste crushed glass for road
materials. Viswanathan (Viswanathan, 1996) investigated the applicability of utilizing glass cullet as a
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highway material and found that the glass waste has properties
similar to natural aggregates and could be used as a highway
construction material. As the awareness on environmental and
natural resource issues increases, waste materials such as glass
powder can be beneficially used in road construction (Finkle and
Ksaibati, 2007; Arabani et al., 2017), and the use of glass cullet,
with a maximum size of 12.5 mm (1/2 inch) and up to 20%
replacement rate, was recommended as a supplement to the road-
base materials. The high angularity of the glass cullet can enhance
asphalt mix stability. Other characteristics of the waste glass such
as low absorption, low specific gravity, and low thermal
conductivity could offer better heat retention for asphalt mixes
(Salem et al., 2017). Furthermore, constructing asphalt
pavements with recycled glass offers an appropriate light
reflection that enhances night visibility (Su and Chen, 2002).

Asphalt mixture comprising waste crush glass as an aggregate is
referred to as “glasphalt” (Kandahl, 1992; Flynn, 1993). Alhassan
et al. (Alhassan et al., 2018) investigated the feasibility of
incorporating fine cullet from waste glass bottles with a
maximum size of 4.75 mm into asphalt mixes at different
percentages of 5%–10%. The study proved the applicability of
using waste cullet as a partial replacement of fine aggregate in
asphalt mixes. The results of Marshall stability, flow, bulk density,
and air void content achieved their best values at 8.0% glass content.
Dalloul (Dalloul, 2013) has also studied the effect of adding a crushed
glass with a maximum fraction size of 4.75 mm into asphalt mixes at
different percentages ranging from 2.5% to 15% by aggregate weight.
His study indicated that 7.5% is the optimum content for waste glass
fractions in asphalt mixes, where the stability and bulk density of
HMA satisfied the standard limits of acceptance.

Arabani (Arabani, 2011) assesses replacing partial aggregate of
both wearing and binder course mixes with 5%–20% waste glass
fractions with a maximum size of 4.75 mm. The Marshall test
results revealed that 15% is the most suitable glass content for the
tested mixes. Su and Chen (Su and Chen, 2002) studied the
applicability of recycling waste glass into asphalt pavement. They
concluded that the stability values of asphalt mixes utilizing 5%–
15% recycled glass (4.75 mmmaximum size) are lower than those
of control mixes. However, the obtained values by glasphalt mixes
satisfied the acceptance limit for Marshall stability.

Waste crushed glass can be utilized in asphalt mixtures with a
maximum size of 2.36 mm and an optimal replacement ratio of
10% (Salem et al., 2017). However, the Marshall stability of
glasphalt mixes increased when waste glass fractions with a
maximum size of 2.36 mm were added to the mixes with a
20% replacement rate (Almuhmdi et al., 2021). An opposite
trend was also noticed for glasphalt density, VMA, and air
void content with a 10%–25% replacement rate (Almuhmdi
et al., 2021). A study conducted by Aashish et al. (Aashish
and Tamrakar, 2019) showed that 10% was the desired
percentage to achieve high stability and low flow for HMA
containing 1.18–0.075 mm glass fractions. Issa (Issa, 2016)
concluded that a significant improvement in the Marshall
properties was achieved in glasphalt mixes when compared
with control asphalt mixes.

Moreover, the feasibility of incorporating glass powder as a
mineral filler (passing 0.075 mm, sieve (No. 200)) into asphalt

mixtures has been investigated in several studies. Jony et al. (Jony
et al., 2011), Arabani et al. (Arabani et al., 2017), Kifile et al. (Kifile
et al., 2020), and Saltan et al. (Saltan et al., 2015a) have added the
glass powder into asphalt mixes at different percentages to assess
the mixes’ performance in terms of the Marshall test properties.
Jony et al. (Jony et al., 2011) found that using 7% of glass powder
as a mineral filler in asphalt mixes is sufficient to provide a high
average value of Marshall stability and lower average values of
flow and density when compared to asphalt mixes containing
Portland cement or limestone powder as fillers. A study
conducted by Arabani et al. (Arabani et al., 2017) also showed
that utilizing 6% of glass powder as a mineral filler in asphalt
mixes provides the best stability and lowest flow values among
other mixes containing waste brick powder, rice-husk ash, and
stone dust powder. Kifile et al. (Kifile et al., 2020) investigated the
effect of replacing crushed stone-dust filler with waste glass
powder in asphalt mixes at different replacement rates. They
concluded that as the glass powder content increases in asphalt
mixes, the Marshall stability, bulk density, and voids filled with
asphalt values increased, whereas the values of Marshall flow, air
voids, and void in mineral aggregates decreased. The results
proved that the 75% replacement rate can provide optimum
performance for heavy traffic conditions (Kifile et al., 2020).

Proper mix design of asphalt mixes with suitable ingredients
and proportions enhances pavement performance (Brown et al.,
2009; Asphalt Institute, 2014). Marshall’s design method has been
widely adopted for asphalt mix design. It is essentially used for
designing dense-graded asphalt mixes that have well-graded
aggregate particles distributed from course to fine throughout
the entire range of sieves (Garcia and Hansen, 2001; Brown et al.,
2009; Asphalt Institute, 2014). In general, the method involves
several steps including aggregate and bitumen evaluation, test
specimen preparation, density and void analysis, Marshall
stability and flow tests, and data interpretation (Brown et al.,
2009). The Marshall stability is defined as the maximum load
carried by a test specimen of asphalt concrete before failure when
tested at 60 °C and 51 mm/min loading rate. The flow is the
amount of the specimen’s deformation before failure. Both
properties are determined physically from the Marshall test.
Other test parameters such as bulk specific gravity of asphalt
mixture (Gmb), voids in mineral aggregate (VMA), voids filled
with asphalt (VFA), and air void content (Va) are determined for
the design by carrying out extra calculations of volumetric
analysis (Brown et al., 2009; Asphalt Institute, 2014).

Recently, the machine learning approaches have been utilized
in several studies to predict models for different aspects of
construction materials and civil engineering applications
(Murad et al., 2021; Al Bodour et al., 2022; Iftikhar et al.,
2022; Momani et al., 2022). The artificial neural networks
(ANNs), which is a recent learning machine tool, was also
utilized by researchers in asphalt mix design applications
(Tapkın et al., 2010; Ozgan, 2011; Singh et al., 2013; Ozturk
and Kutay, 2014; Shafabakhsh et al., 2015; Ozturk et al., 2016;
Zavrtanik et al., 2016; Pasetto et al., 2019; Fadhil et al., 2022;
Othman, 2022). An ANN–based model to predict the Marshall
mix volumetric properties has been proposed by Ozturk et al.
(Ozturk et al., 2016). Ozgan (Ozgan, 2011) modeled the Marshall
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stability of asphalt mixes under different testing temperatures and
exposure time conditions using the ANN technique. Tapkın et al.
(Tapkın et al., 2010) proposed a neural-network model to predict
the Marshall stability, flow, and Marshall quotient for
polypropylene-modified asphalt mixtures. Some physical
properties of standard Marshall specimens such as asphalt
content, specimen height, unit weight, VMA, VFA, Va,
polypropylene types, and percentage were used as inputs in
the proposed model (Tapkın et al., 2010). Fadhil et al. (Fadhil
et al., 2022) have utilized the ANN approach as a tool for HMA
design based on actual data of 252 mixes following the Marshall
design method. They used five parameters including asphalt
penetration, kinematic viscosity, aggregate surface area,
abrasion, and binder content as inputs in the models to
predict five parameters of HMA design including the bulk
density, air voids, Marshall stability, Marshall flow, and
Marshall stiffness. Othman (Othman, 2022) has predicted the
optimum asphalt content (OAC) based on different aggregate
gradations using ANN approaches of different activation
functions, number of hidden layers, and number of neurons
per layer. The volumetric properties of Superpave asphalt mixes
were also modeled utilizing the ANN approach at different
gyration levels (Ozturk and Kutay, 2014). In addition, the
performance of asphalt pavements incorporating waste
materials has been predicted using the ANN approach in
several studies (Xiao et al., 2009; Ektas and Karacasu, 2012;
Azarhoosh et al., 2018; Mansourian et al., 2018; Keskin and
Karacasu, 2021). The fatigue behavior of glasphalt mixes has
been modeled analytically by Arabani et al. (Arabani et al., 2012).

Previous studies in the literature indicate that incorporating
glass waste in asphalt mixes, either as an aggregate or mineral
filler substitute, provided some promising results, especially in
terms of Marshall stability and Marshall flow. However, there is
no mutual agreement on the effect of contributing different
variables on glasphalt stability and flow. In addition, there is a
lack of studies evaluating the behavior of glasphalt based on a

large database with a wide range of variables including the
maximum aggregate size (MAS), the maximum size of waste
glass fractions (MSGF), average penetration grade of asphalt
(AP), asphalt content (AC%), waste glass content (WGC%),
the bulk specific gravity of the glasphalt mixture (Gmb), air
void content (Va%), and voids in mineral aggregate (VMA%).
This study utilizes the ANN technique to develop the robust
predictive models for the Marshall stability and Marshall flow of
the dense-graded glasphalt mixes based on a large experimental
database collected from the literature. In addition, the study
conducts parametric analyses to evaluate the effect of each
variable on the predicted stability and flow values.

METHODOLOGY AND EXPERIMENTAL
DATABASE

Figure 1 outlines the research program followed in this study.
The study started with studying the previous literature on dense
glasphalt mixes, their properties, and prediction models. A large
worldwide database of 136 reliable experimental data points was
then collected from thirteen different studies (Malisch et al., 1970;
Arabani, 2011; Jony et al., 2011; Arabani and Kamboozia, 2013;
Dalloul, 2013; Saltan et al., 2015b; Arabani et al., 2017; Salem
et al., 2017; Al- Jameel and Al- Saeedi, 2018; Alhassan et al., 2018;
Aashish and Tamrakar, 2019; Kifile et al., 2020; Almuhmdi et al.,
2021) available in the literature and were carried out according to
ASTM D1559 and ASTM D6927 testing procedures. Natural
crushed aggregate, waste crushed glass, and asphalt cement were
the main ingredients for the dense-graded glasphalt mixtures of
the database test specimens. The specimens were prepared using a
standard Marshall mold of 4 inches (101.6 mm) in diameter and
2.5 inches (63.5 mm) in height.

The experimental studies showed that the dense glasphalt
mixes are mainly influenced by a wide variety of design and
material properties. Therefore, eight independent variables
including MAS, MSGF, AP, AC%, WGC%, Gmb, Va%, and
VMA% were utilized as inputs in the models to predict the
Marshall stability and Marshall flow of dense glasphalt mixes.
A summary of the collected database with range values of
variables is presented in Table 1. It should be mentioned that
the database includes 24 data points of control mixes, that is, 0%
WGC. The range and distribution of variables are shown in
Figure 2. The collected data were then utilized to develop ANN
models to predict Marshall test results of dense glasphalt mixes.
Finally, comprehensive parametric analyses were performed to
validate the models by investigating the sensitivity of each
variable to the predicted stability and flow values.

ARTIFICIAL NEURAL NETWORK

ANN is a relatively new soft-computing method that has been
utilized in several fields of civil engineering. The ANN is known
for its ability as a powerful prediction tool that describes the
relationship between input parameters and the output. The ANN
is a multilayer perception-based procedure as shown in Figure 3.

FIGURE 1 | Research program of this study.

Frontiers in Built Environment | www.frontiersin.org July 2022 | Volume 8 | Article 9491673

Jweihan et al. Perdition Glasphalt Stability and Flow

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


The first layer is called the Input Layer, which includes the inputs
(independents) of the problem, a hidden layer, and an output
layer that contains the output of the problem of interest. Each
layer consists of processing units that are fully connected with the
processing units in the subsequent layer.

Each signal or input xi that reaches the processing units is
multiplied by a calibration weight wji that controls the signal’s
behavior and significance. The calibrated signals are added to a
calibrated bias value Bji at each processing unit, as shown in Eq.
(1). The combined input Ij is then sent through a nonlinear
transfer function f(Ij) to generate the processing output, which
will be used as the input for the following layer’s processing units
(Figure 3). This research uses a hyperbolic tangent transfer
sigmoid function.

Ij � ∑wji xi + Bji. (1)
An algorithm adjusts the input weights and bias values using

the Levenberg–Marquardt optimization approach to train the
ANN model. To construct a network that generalizes well, the
optimization technique minimizes a combination of squared
errors and weights and then selects the optimum combination.
The method is known as Bayesian regularization. The mean
square error (MSE), also known as the performance function
(Eq. (2)) [X], is used to express the error. The training procedure
will continue until the MSE converges and no more improvement
is possible. Eighty percent of the data was used for training, and
the rest was used for testing and validation. MATLAB software
was used to conduct the analysis.

TABLE 1 | Collected database used in the ANN models.

Reference No.
of data
points

MAS
(mm)

MSGF
(mm)

AP
(0.1 mm)

AC% WGC
%

Gmb
(g/cm3)

Va% VMA%

Dalloul Dalloul, (2013) 19 25 4.75 75 5.1 0–15 2.32–2.38 1.63–5.68 13.37–17.16
Almuhmdi, et al. Almuhmdi et al. (2021) 5 25 2.36 45 5 0–25 2.394–2.4 3.12–3.42 13.7–14.06
Aashish et al. Aashish and Tamrakar, (2019) 4 20 1.18 60 4.5–5.22 0–14 2.39–2.4 3–4 14.55–15.56
Arabani and Kamboozia Arabani and Kamboozia,
(2013)

20 19 4.75 65 5–6.5 0–20 2.283–2.351 3.42–5.22 14.17–17.04

Arabani Arabani, (2011) 20 25 4.75 65 4–5.5 0–20 2.275–2.34 3.25–6.87 13.31–15.93
Alhassan et al. Alhassan et al. (2018) 7 19 4.75 65 5.9 0–10 2.31–2.35 3.17–4.36 15.94–16.99
Salem et al. Salem et al. (2017) 5 19 2.36 92.5 5.35–5.75 0–20 2.213–2.248 2.5–4.4 15.2–16.5
Jony et al. Jony et al. (2011) 4 19 0.075 45 5 0–10 2.09–2.35 3.29–5.2 12.79–21.67
Arabani et al. Arabani et al. (2017) 2 19 0.075 65 5.1–5.4 0–6 2.511–2.6 3.3–3.67 14.46–16.19
Kifile et al. Kifile et al. (2020) 5 25 0.075 92.5 5.1 0–6.5 2.35–2.36 4–4.3 14.4–14.8
Malisch et al. Malisch et al. (1970) 12 12.5 12.5 92.5 4–7 100 2.202–2.267 0.98–6.57 13.89–16.61
Saltan et al. Saltan et al. (2015b) 15 19 0.075 85 5.8–5.94 0–9 2.35–2.416 3.4–4.4 14.1–17.43
Al-Jamee and Al-Saeedi Al- Jameel and Al-
Saeedi, (2018)

18 37.5 0.6–12.5 45 3.8 0–100 2.235–2.391 2.3–5.9 11.2–14.25

FIGURE 2 | Distribution of the selected variables used in the ANN models.
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MSE � 1
N

∑N

k�1(Actual − Predicted)2 . (2)

Several iterations were used to choose the needed number of
processing units in the hidden layer to represent and approximate
the relationships between variables. The best number of layers
was encountered by trying processing units from 1 to 10 while
monitoring the MSE to minimize overfitting. Due to the use of
Bayesian regularization and the amount of data in the current
case, overfitting was not an issue.

In this study, two ANN models with two processing units in
the hidden layers were constructed to predict the stability and
flow of the dense glasphalt. The input layer for each model
includes MAS, MSGF, AP, AC%, WGC%, Gmb, Va%, and
VMA%. The proposed models resulted in an experimental-to-
predicted ratio of 1.00 and 1.00, coefficient of variation (CoV) of
8.6% and 8.7%, and RMSE of 1.63 kN and 0.54 mm for the
glasphalt stability and flow models, respectively. This indicates a

good agreement with the test results. The prediction models are
presented in Figure 4.

PARAMETRIC ANALYSES

The developed ANN models are used to perform parametric
analyses to evaluate the effect of each independent variable on the
Marshall stability and flow values of dense-graded glasphalt
mixes. The parametric analyses were conducted by fixing the
mean values of all variables and then varying the values of each
concerned variable independently. Figures 5 and 6 show the plots
of each independent variable on the stability and flow values of
the dense-graded glasphalt mixes, respectively. These plots are
useful as they enable better and simple visualization of the
influence of each studied variable on the output parameters.

It can be seen from Figure 5A that the stability of dense-
graded glasphalt mixes of small maximum aggregate size (MAS)

FIGURE 3 | General structure and processing unit of ANNs.

FIGURE 4 | General structure and processing unit of ANNs.
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FIGURE 5 | Parametric study for glasphalt stability versus (A) Maximum aggregate size (MAS), (B) Maximum size of waste glass fractions (MSGF), (C) Average
penetration grade of asphalt (AP), (D) Asphalt content (AC%), (E)Waste glass content (WGC%), (F) Bulk specific gravity of glasphalt mixture, (G) Air voids content (Va%),
and (H) Voids in mineral aggregate (VMA%).
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FIGURE 6 | Parametric study for glasphalt flow versus (A) Maximum aggregate size (MAS), (B) Maximum size of waste glass fractions (MSGF), (C) Average
penetration grade of asphalt (AP), (D) Asphalt content (AC%), (E)Waste glass content (WGC%), (F) Bulk specific gravity of glasphalt mixture, (G) Air voids content (Va%),
and (H) Voids in mineral aggregate (VMA%).
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would have better stability than that with large MAS. The stability
of mixes reaches its peak value at about 12.5 mm (1/2 inch) and
then decreases gradually as the maximum size increases to about
25 mm (1.0 inch). No considerable change in the stability was
observed when the MAS reaches 37.5 mm (1 ½ inch). Figure 5B
indicates that glasphalt stability improved by increasing the
maximum size of waste glass fractions (MSGF) to 4.75 mm
(Sieve No. 4). Then, the stability maintains at a constant level
for mixes incorporating glass fractions larger than
4.75 mm MSGF.

Figure 5C shows the relation between the average penetration
grade of asphalts (AP) and glasphalt stability. The plot indicates
that the stability increases as the AP increases, especially when the
AP is higher than 60 (0.1 mm). This may be attributed to the low
viscosity of the high penetration grade of asphalt cement, which
provides proper coating and uniform dispersion of the angular
glass cullet and aggregate particles that result in high stability.
While the assumption that “soft” asphalt cement with a high
penetration number is recommended to use in cold climate
regions to resist thermal cracking (Brown et al., 2009), it can
be argued that constructing glasphalt pavements with appropriate
asphalt cement in cold regions would provide better stability than
in warm regions.

As expected, in Figures 5D and F, the stability increases as the
asphalt cement content (AC %) and bulk specific gravity of the
glasphalt mixture (Gmb) increase to a certain limit and then
decrease. This appreciable increase in the stability is attributed to
the hot asphalt cement that initially lubricates the particles,
enhances the interlock, and compacts them to a high density.
The gradual decrease in the stability after that refers to the
additional asphalt cement that produces thicker films around
particles, pushing them apart and resulting in lower stability. It
should be mentioned, however, that the considerable changes in
the glasphalt density can be attributed to the waste glass content
in the mixes, where the density of the glasphalt mixes reduces as
the glass content increases (Al- Jameel and Al- Saeedi, 2018).

Figure 5E shows a gradual increase in the stability by
increasing the waste glass content (WGC) up to 50%, and
then the stability decreases as the WGC% achieves 100%. This
behavior refers to the high angularity of the glass cullet compared
to the crushed-stone aggregate, which increases the interlock
between particles. After that the stability decreases gradually by
increasing the WGC% because the crushed glass has less
capability to bear the load (less abrasion) than the crushed
aggregate in the mixes. It can be stated that a 50%
replacement rate might be the ideal rate for incorporating
waste crush glass as an aggregate substitute in glasphalt mixes.

Figure 5G shows the relation between the air-void content (Va
%) and glasphalt stability. It can be seen that increasing the air
voids up to 4% will keep the stability at a constant level. However,
a gradual decrease is observed in the stability by increasing the air
voids up to 7%. This agrees with the conventional design value of
4% air void content for a dense-graded asphalt mix design.
Finally, the effect of VMA on glasphalt stability is shown in
Figure 5H. The stability increases as the VMA increases. While
the VMA represents the amount of space available for bitumen to
properly coat each aggregate particle, sufficient asphalt film

thickness around the glass and aggregate particles promotes
good adhesion between them and increases the mix stability. It
should be mentioned that the VMA refers to the total volume of
air voids and effective (non-absorbed) asphalt cement between
mineral particles of a compacted mix. Thus, the design should
consider the minimum VMA values needed to achieve a durable
asphalt film thickness around particles, which is determined
based on the nominal maximum particle size and the design
air voids of the mix (Brown et al., 2009; Asphalt Institute, 2014).

According to the flow results of the glasphalt mixes, Figures
6A and B indicate that the flow increases as the maximum size of
used aggregate and glass cullet increases in the mix. This increase
indicates that the larger the MAS and MSGF, the better the
flexibility of the glasphalt mixes since the flow represents the total
amount of vertical deformation of a test specimen. Figures 6C
and 6H also show that the glasphalt flow increases linearly as the
penetration grade of the used asphalt cement and the VMA%
increases. This increase in the flow is expected since a higher
penetration grade of asphalt cement indicates a lower viscosity of
asphalt cement. Also, higher VMA% indicates a compacted mix
with more spaces filled with non-absorbed asphalt cement and air
voids, which provides better flexibility to the mixes. Figure 6D
shows that the flow increases gradually as the AC% achieves 6%,
and then no considerable change in the flow values was noticed.

Opposite to the stability trends, the flow values stood generally
at a certain level as the waste glass content (WGC%) increases in
the glasphalt mixes, as shown in Figure 6E. The flow values were
also decreased gradually by increasing the bulk density of the
glasphalt mixes (Gmb), as shown in Figure 6F. This decrease is
attributed to the good compaction of glasphalt mixes, where the
asphalt cement lubricates the mix ingredients and compacts them
together to the dense state of high density. Figure 6G shows that
the flow values maintain marginally at a constant level as the air-
void percentage (Va%) increases to about 4%, which also agrees
with the typical design values of air void content for the dense-
graded asphaltic mixes.

CONCLUSION

As the awareness on environmental and natural resource issues
increases globally, the waste glass cullet is used as an aggregate
substitute in asphalt pavements. Asphalt mixture comprising
waste crushed glass as an aggregate is referred to as
“glasphalt”. This study aims to investigate the feasibility of
utilizing the ANN learning machine tool to predict new and
effective models to predict the Marshall stability and Marshall
flow of the dense-graded glasphalt mixes. The developed ANN
models utilized a wide range of related Marshall test results
collected from previous studies available in the literature. Eight
independent variables were selected in this study as inputs for the
models. They include the maximum aggregate size (MAS), the
maximum size of waste glass fractions (MSGF), average
penetration grade of the used asphalts cement (AP), asphalt
cement content (AC%), waste glass content (WGC%), bulk
specific gravity of the glasphalt mixture (Gmb), air void
content (Va%), and voids in mineral aggregate (VMA%).
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The proposed ANN models proved their high accuracy to
predict the Marshall stability and Marshall flow of the dense
glasphalt mixes. The results show an experimental-to-predicted
ratio of 1.00 and 1.00, coefficient of variation (CoV) of 8.6% and
8.7%, RMSE of 1.63 kN and 0.54 mm, and R-squared of 93.6%
and 85.7% for the glasphalt stability and flow models,
respectively. The sensitivity of each variable on the Marshall
stability and flow was investigated by conducting parametric
analyses, and the following conclusions were obtained:

1) The desired maximum size of the used aggregate and waste
crushed glass in glasphalt mixes is about 12.5 and 4.75 mm,
respectively, where maximum stability values are achieved.

2) Using low viscosity asphalt cement would provide better
coating and uniform dispersion of the used angular crushed
glass and aggregate in the mix, resulting in high stability.

3) Glasphalt stability increases to a certain limit and then
decreases gradually as the asphalt cement content and the
bulk specific gravity increase for the mix.

4) The optimal content for incorporating waste crushed glass
as an aggregate substitute in asphalt mixes is limited to 50%.
This may refer to the high angularity and less bearing
capability of the crushed glass compared to the natural
aggregate, which limits mixing asphalt mixes with only
waste crushed glass as an aggregate.

5) A 4.0% is the typical design content for the air voids in
glasphalt mixes.

6) The stability increases as the VMA% increases. However,
the minimum VMA% value that is required to assure a

sufficient asphalt film thickness around the mix’s
ingredients should be considered while designing.

7) The flow increases as the maximum size of crushed glass
and aggregate, the penetration grade of asphalt cement,
asphalt cement content, and VMA% increase.

8) Varying the content of the waste glass in glasphalt mixes
does not affect the flow values, whereas increasing the mix
density reduces the flow values.

The developed ANN models are very important in the sense that
they provide accurate, rational, general, and simple visualization for
the performance of the dense glasphalt mixes in terms of Marshal
stability and flow considering a wide range of different parameters.
They are also helpful in saving time and effort to estimate theMarshall
test properties of glasphalt mixes. It would be recommended to
develop mathematical equations for estimating the performance of
dense glasphalt mixes based on a wide range of design variables.
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