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Cities today encounter significant challenges pertaining to urbanization and

population growth, resource availability, and climate change. Concurrently,

unparalleled datasets are generated through Internet of Things (IoT) sensing

implemented at urban, building, and personal scales that serve as a potential

tool for understanding and overcoming these issues. Focusing on air pollution

and thermal exposure challenges in cities, we reviewed and summarized the

literature on IoT environmental sensing on urban, building, and human scales,

presenting the first integrated assessment of IoT solutions from the data

convergence perspective on all three scales. We identified that there is a

lack of guidance on what to measure, where to measure, how frequently to

measure, and standards for the acceptable measurement quality on all scales of

application. The current literature review identified a significant disconnect

between applications on each scale. Currently, the research primarily considers

urban, building, and personal scale in isolation, leading to significant data

underutilization. We addressed the scientific and technological challenges

and opportunities related to data convergence across scales and detailed

future directions of IoT sensing along with short- and long-term research

and engineering needs. IoT application on a personal scale and integration of

information on all scales opens up the possibility of developing personal

thermal comfort and exposure models. The development of personal

models is a vital promising area that offers significant advancements in

understanding the relationship between environment and people that

requires significant further research.
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1 Introduction

The United Nations projects that 68% of the population by

2050 will live in the cities (UN, 2018). Numerous challenges arise

for the cities that will need to provide a livable environment for

such a large portion of the human population housed in a high-

density environment. The global increase in air pollution

represents one of the world’s growing concerns. WHO states

“almost all of the global population (99%) breathe air that

exceeds air quality limits (WHO, 2021).” Air pollution

impacts cardiovascular health (Mills et al., 2009), pulmonary

health (Pope, 2000), and cognitive performance (Peters et al.,

2015). Sources of indoor pollution are cooking, cleaning, candle/

incense burning, smoking (Habre et al., 2014), and building

materials (Liu et al., 2013) while ambient sources include

combustion products, photochemical reaction products, and

metals (Habre et al., 2014). A combination of ambient and

indoor air pollution exposure is associated with (Liu et al.,

2013) million premature deaths annually (Air pollution,

2022), highlighting the significance and magnitude of the

problem. On the other hand, cities face significant challenges

of urban overheating driven by global climate change and urban

development (Nazarian et al., 2021a). These compounding

effects represent a threat to human thermal comfort in

outdoor spaces as well as indoor environments where

buildings have to provide comfort under warmer summer

conditions utilizing low-energy design strategies (Holmes and

Hacker, 2007). One of the critical problems in alleviating the air

pollution exposures and thermal comfort is understanding the

complete set of contributing factors that impact the entire

ecosystem and the effectiveness of potential mitigation

strategies. The effectiveness of mitigation strategies needs to

be quantified to implement solutions based on the knowledge.

This requires the ability to quantify various aspects of the urban

environment, motivating integrated and multi-scale

environmental sensing in cities. The Internet of Things (IoT)

technologies are the paradigm that emphasizes such ubiquitous

sensing installed using modern wireless communications

enabling quantification of a full set of environmental

parameters that affect air pollution exposure and thermal

comfort. It is a novel approach to monitoring, assessing, and

ultimately addressing challenges related to air pollution exposure

and thermal stress and comfort (Grimm et al., 2008; Bibri, 2018).

Compared to conventional sensing, IoT sensing offers increased

environmental information with higher spatial granularity and

reduced and less centralized resources. These sensor networks

focus on data volume and the potential to train machine learning

models to allow informed decision-making.

The emergence of new green certification schemes for

buildings and communities, businesses that offer IoT

environmental sensing, analytics, and building management

system integration, alongside wearable tech ecosystems

focusing on human wellness, increased concerns about the

indoor air quality in the COVID-19 pandemic, represent the

driving forces behind widespread IoT adaptation (Parkinson

et al., 2019a). These new trends, however, do not come

without challenges. At the moment, there is still a set of

technological, scientific, and legal challenges regarding data

acquisition and analytics that provides critical information

necessary to solve environmental challenges on the human,

building, and urban scales.

1.1 Systematic review

Existing reviews focus on either urban scale (Jovašević-

Stojanović et al., 2015; Muller et al., 2015; Kumar et al., 2016;

Morawska et al., 2018), intended to address outdoor air quality

and comfort, building scale (Schieweck et al., 2018; Parkinson

et al., 2019a; Cahill et al., 2019) that deals with the indoor air

quality and comfort, or personal scale (Ghahramani et al., 2019a;

Nazarian and Lee, 2021). This separation between scales of the

application keeps the research areas completely isolated. Several

existing reviews summarized the conceptual application of IoT

technology, sensor accuracy, challenges of field calibration, data

acquisition, and storage (Morawska et al., 2018; Ullo and Sinha,

2020; Hajjaji et al., 2021). Moreover, despite the ongoing

expansion of knowledge, challenges regarding data analytics

and convergence perspectives across various spatial and

temporal scales, which enable the conversion of data into

knowledge, are yet to be addressed.

This paper fills the knowledge gap by synthesizing research

and applying IoT sensing for air quality and thermal comfort

indoors and outdoors. The presented research evidence is based

on a critical synthesis of the existing literature drawn from

broadly used databases such as Web of Science, Scopus, and

Google Scholar. The selection process intended to identify

relevant, high-quality papers on which the authors could base

their conclusions. Each section of the current review covers a

fairly distinctive area of research. Therefore, each section had a

different and unique literature search that covered the

application of IoT sensing on air quality and thermal comfort.

The selection of papers was generally done in two steps: by

systematic bibliographic search and supplementary literature

additions. The systematic bibliographic search relied on a

combination of the following keywords: IoT sensing, low-cost

sensing, indoor air quality, thermal comfort, urban heat,

exposure, sensors, MRT, and proxy sensing. Based on the

author’s expert knowledge in each area of the current review,

we included supplementary literature additions. The search

included papers published between 2008 and March 2022, but

more recent papers received substantial emphasis given the

novelty and recent research and application development in

IoT sensing. Since this review covers interdisciplinary

research, where each discipline has a unique publishing

culture, we need to emphasize that supplementary literature
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additions were crucial to cover all relevant papers in the field. We

were extra careful to cite previous review papers in each of the

disciplines covered in this review.

Criteria for exclusion from the review included papers that

only presented frameworks without demonstrating

implementation and precise data collection and analysis

methods. In order to give recommendations that could be

relevant to building monitoring and benchmarking and

uptake of IoT sensing implementation, the present authors

decided to go beyond the simple synthesis of the otherwise

sparse and broadly archival literature. Instead, the study also

relied on the ‘grey’ literature (e.g., government reports, white

papers, and other documentation, etc.) and on the authors’

collective long-term practical experience in the field globally.

1.2 Objectives

To bridge the knowledge gaps and respond to the fast-

emerging trends, this review aims to interpret and synthesize

the current state-of-the-art research on developing, employing,

and assessing IoT technologies from the data convergence

perspective for better assessment and response to issues

related to human health and comfort. The current review

aims to highlight the key scientific and technological questions

that form an integrated vision for future directions in the field.

We categorize three spatial scales for assessments: urban,

building, and human scales (Figure 1). Based on the published

literature for each scale, we evaluated the level of development of

the field. In assessing air quality and thermal comfort in the

urban (Section 2) and building context (Section 3), we focus on

mapping the environment that causes “an exposure” of a

population subgroup. Centered on assessing personal comfort

and exposure directly at the point of contact with a specific

individual, Section 4 addresses the emergence of the “Human-

Centric” IoT sensing that overcomes the one-size-fits-all

solutions promoted by traditional guidelines and measurement

approaches. Section 5 addresses challenges related to data,

technology, academic, and industry silos, privacy security, and

human and data interaction. Although we mention issues

involving privacy detail review of this complex legal topic is

outside the scope of this review. Technological and scientific

needs, challenges, and opportunities for cross-disciplinary

advancement in short- and long-term future research efforts

are further discussed in Section 6. We summarized our

conclusions in Section 7.

FIGURE 1
Schematic of IoT sensing applied to the built environment at the urban, building and human scales. The three scales encompass variations of
environmental parameters, while the human scale also includes biometric (physiological) and behavioral data.
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2 IoT sensing applied to urban scale

Urban scale sensing network in the city-state of Singapore

covers 142 km2(Haze - The National Environment Agency,

About Singapore), with the singleair quality measurement

stations, the San Francisco Bay Area air quality network

covers 47.6 km2 (Wikipedia contributors 2022, BAAQMD -

Air Quality Data)per station while the state of Nebraska air

quality monitoring network covers 10543.7 km2 (NDEE home)

with the single station. These examples depict challanges in

precisely defining urban scale as a particular surface area or

distance.

Motivated by pressing environmental issues such as air

pollution and thermal stress, this section discusses the

emerging IoT technologies applied to air quality and thermal

comfort sensing at the urban scale. In addition to summarizing

the current state-of-the-art knowledge, issues related to the

granularity of sensing, field calibration of sensors, existing

methods for the IoT-based description of the urban

environment, and the utility of collected information to

improve air quality pollutants and heat exposure are reviewed.

Lastly, we discuss the development of air quality exposure and

thermal comfort models while highlighting the need for future

developments.

2.1 Outdoor IoT sensing of air quality

Increasingly frequent episodes of elevated air pollution across

different cities have evoked new questions related to the

concentrations of urban air pollutants and their spatio-

temporal patterns. Traditionally, information about human

environmental exposure outdoors has been derived from the

data gathered from governmental or environmental weather

stations (Baxter et al., 2013; Özkaynak et al., 2013). Such

information typically comes from gravimetric techniques and

high-grade optical and chemical analyzers capable of integrated

or longitudinal detection of a bouquet of ambient air pollutants.

Collectively, this approach has offered important insights into

ambient air quality that have been used to regulate air pollutant

emissions, to propose control measures, and evaluate their

efficiencies. Also, such monitoring stations have been long

utilized as a benchmark for epidemiologists and public health

authorities to produce formal guidelines for population

exposures to specific air pollutants (Ott and Roberts, 1998;

Xie et al., 2017; Dias and Tchepel, 2018; Caplin et al., 2019).

However, traditional monitoring of urban air quality faces

several shortcomings. First and foremost, the conventional

monitoring of urban air is stationary, sparse, and typically

remote from human activities, and as such, it poorly

resembles air inhaled by people (Miller et al., 2007; McKone

et al., 2009; Goldman et al., 2010; Harrison et al., 2015; Pearce

et al., 2016). This has been confirmed in studies that deployed

wearable monitors and samplers for measuring PM10 (Jenkins

et al., 1996; Scapellato et al., 2009; Broich et al., 2011), PM2.5

(Andresen et al., 2005; Crist et al., 2008; Steinle et al., 2015), PM1

(Williams et al., 2000; Johannesson et al., 2007; Velasco and Tan,

2016), CO2 (Gall et al., 2016), CO (Huang et al., 2012), NOx (Xu

et al., 2017) and various volatile organic compounds (Rotko et al.,

2000; O’Connell et al., 2014; Manzano et al., 2018). Failure of

traditional approaches in representing the air pollution gradients

at the urban, neighborhood, and parcel of land level points to a

need for increased measurement granularity. Second, the high

cost of conventional monitoring equipment (Clemitshaw, 2004),

which includes costs related to instrument maintenance, data

collection, and processing impedes their ubiquitous deployment.

Finally, the information acquired is typically used by experts only

and there is a lack of accessibility and interpretation of the

information that supports citizen activities.

With the recent emergence of low-cost IoT sensors applied to

urban scale, an opportunity has opened up to make use of

affordable, accessible, robust, and non-expert friendly

solutions. Dozens of projects have investigated the application

of IoT sensing in urban environments, pointing toward the need

for a paradigm shift in air quality monitoring that creates new

information services tackling human needs, management of

urban spaces, and environmental policies (Kumar et al., 2015;

Castell et al., 2017; Schneider et al., 2017; Morawska et al., 2018).

The specific goals are set at refined spatio-temporal air pollutant

mapping of urban spaces in order to 1) pinpoint localized air

pollution hotspots, 2) improve source apportionment, 3)

enhance assessment and predictive models for air pollutant

exposures. In addition, easy-to-use ubiquitous IoT sensing

technologies can raise citizen awareness and enable both

professionals and non-experts to acquire insights.

To date, the air quality IoT sensing deployment at the urban

scale has been mostly based on the high placement density of

stationary IoT sensors in areas commonly occupied by humans

(Gao et al., 2015; Moltchanov et al., 2015; Castell et al., 2017;

Zikova et al., 2017; Ahangar et al., 2019; Bulot et al., 2019;

Johnston et al., 2019). These studies conclude that optimal

granularity of low-cost IoT sensors can drastically improve 2D

and 3D air quality mapping, which is essential information to be

translated to urban planners, building designers, the general

public, and other stakeholders. Without optimal sensing

granularity that results in considerable spatial data gaps, it is

impossible to accurately map the urban air quality—a challenge

that can be overcome by combining the crowdsourced

measurements with model data with comprehensive spatial

coverage (Schneider et al., 2017). Other deployment methods

include IoT sensor installation on mobile sensing platforms such

as bicycles, cars, buses, and trams that can improve spatial

coverage (Devarakonda et al., 2013; Mead et al., 2013; Castell

et al., 2015; Hasenfratz et al., 2015; Lim et al., 2019). While

economically more appealing due to the significantly reduced

number of sensors, the mobility of the platform in conjunction
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with a prolonged response time of typical sensors can cause large

signal distortion—an issue that can be overcome through the

application of active sampling that employs pumps/fans as

actuators (Arfire et al., 2016). Finally, urban air pollution

mapping has also been conducted by means of wearable IoT

sensors and smartphones (see Section 4.2) (Zhang et al., 2017;

Nyarku et al., 2018; Ueberham and Schlink, 2018).

Despite the rapid progress in method development for IoT

sensors in an urban context, several challenges persist. First, the

identification of air pollution hotspots is limited as both scientific

literature and regulations lack approaches to provide optimal

spatial sensor granularity and placement across different urban

typologies (Castell et al., 2017; Schneider et al., 2017). In addition,

a disconnection between urban and building scales impedes our

ability to better design and operate buildings. For example,

building ventilation standards such as ASHRAE 62.1 requires

a two-step investigation of outdoor air quality—1) compliance

verification with the national outdoor air quality standards, and

2) an observational survey of the building site (American Society

of Heating and Engineers, 2016). But for 1) the verification is

based on measurements only at remote governmental stations

and for 2) the building site survey lacks guidance on the type,

duration, and location of measurements. Additionally, once the

IoT-based information is acquired at the urban scale, it is

necessary to trigger the right chain of actions, either via a

feedback loop to encourage human actions and/or through an

IoT gateway that links a cloud platform with automated

controllers and devices. At present, methodologies on how to

utilize that information are sparse, resulting in enormous data

sets that are heavily underutilized (Zanella et al., 2014). The other

challenges include a need for a framework to integrate different

types of existing air quality sensors into a single monitoring

network and a lack of standardized protocols that specify the

required sensor robustness and data quality (Morawska et al.,

2018). Lastly, the spectrum of air pollutants that should be

monitored by IoT sensors is relatively vague with regard to

environmental health knowledge. While it is neither practical

nor technically feasible to measure all the air pollutants relevant

to humans, future research should examine how to optimize the

types of sensors to capture relevant air quality indicators.

2.2 Outdoor IoT sensing of the thermal
environment

Similar to air quality monitoring in urban areas, the

information regarding outdoor thermal environments is often

derived from the stationary and at times remote, weather

stations, neglecting the significant intra-urban variability of

temperature, humidity, wind and radiation exposure (Fenner

et al., 2017a). The advantages of IoT-based sensing in addressing

such shortcomings are indisputable: crowd-sourced

measurements 1) provide real-time data from various cities

around the globe (inter-urban variability in urban temperature

(Wörner et al., 2014), 2) span a wider range of spatial and

temporal distributions within the built environment (intra-

urban variability in thermal environment (Meier et al., 2017),

3) overcome the high and centralized costs for installation and

maintenance over time (low-cost sensing and/or Web

2.0 technologies (Dayan and Hartley, 2013; Young et al.,

2014), and 4) provide dynamic information regarding heat

exposure and the population impact of thermal comfort

(Grasso et al., 2017).

Accordingly, in the last few years, several studies have taken

crucial steps in tackling the challenges in IoT thermal sensing in

the built environment. Previous research was mainly focused on

monitoring of environmental parameters primarily temperature

and humidity and largely divided into the employment of

stationary or mobile sensors, with only a few studies

combining the two to span a larger spatial and temporal

distribution to improve accuracy (Muller et al., 2015; Shi

et al., 2021). Among stationary amateur thermal sensors

applied outdoors, there has been the emergence of low-cost

citizen weather stations with connectivity to smartphones,

local Wi-Fi networks and cloud in real time. Such units have

become mainstream consumer peripherals in recent years with

tens of thousands now deployed in cities across the world,

including the United Kingdom (Chapman et al., 2017;

Chapman and Bell, 2018), Germany (Meier et al., 2015;

Fenner et al., 2017b; Meier et al., 2017), France (Napoly et al.,

2018), Russia (Varentsov et al., 2021), and the Netherlands (de

Vos et al., 2017). The crowdsourced datasets have also been

combined with high-resolution data on urban form and fabric to

provide more in-depth analyses of urban design impacts on

thermal environments (Potgieter et al., 2021); or compared

with remotely-sensed measurements of urban thermal

environments globally (Venter et al., 2021) demonstrating the

shortcomings of satellite data for urban heat risk assessments.

Although the low cost and ease of use of citizen weather

stations have promoted their widespread use, they are largely

focused on urban temperature and humidity as a proxy for

thermal comfort, while other environmental parameters (such

as radiation and wind speed), as well as physiological and

behavioral factors, are often neglected. Several efforts are

emerging to crowdsource urban wind (Droste et al., 2020;

Chen et al., 2021), focusing on quantifying the uncertainty in

wind speed data based on the realistic application of sensors in

the built environment. Overall, such quantification of bias

appears to be one of the key challenges of using citizen

weather stations. Bell et al. (2015) provided a detailed

assessment of data accuracy and concluded that any

application of such low-cost sensing monitoring stations will

require a quality-control system capable of removing gross

errors, correcting instrument bias, and providing an

uncertainty estimate, which is collectively needed to ensure

effective outdoor IoT sensing of the thermal environment.
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Responding to this need, more holistic quality-control measures

for crowdsourced air temperature observations are recently

developed (Fenner et al., 2021), enabling a more consistent

use of citizen weather station data in worldwide applications.

IoT platforms’ reduced size and cost further enable

distributed and mobile deployments at the urban scale.

Several mobile sensing methodologies deployed to date can be

categorized in four major formats: 1) portable amateur weather

stations, 2) smartphones, 3) vehicle-based sensors, and 4)

wearable devices (Section 4). It is worth noting that compared

to the IoT air quality measurements (Section 2.1), the portable

and smartphone sensors for thermal comfort are distinguished

from wearables, as the latter can provide physiological

parameters, such as heart rate and skin temperature,

corresponding to the thermal environment.

In the first category, the National Science Experiment in

Singapore (low-cost wireless SENSg devices (Wilhelm et al.,

2016) is arguably the largest deployment of portable amateur

weather stations with 50,000 sensors employed in Singapore for

the assessment of thermal comfort among various other

objectives (Monnot et al., 2016a; Happle et al., 2017).

However, the data regarding the thermal environment has not

been extensively utilized, perhaps due to measures required for

data quality controls in dynamic use. Second, temperature and

pressure obtained from smartphone batteries are proposed to

obtain a spatial and temporal map of air temperature in cities

(Overeem et al., 2013; Pape et al., 2015; Droste et al., 2017;

Martilli et al., 2017). Although this methodology provides an

unprecedented dataset on city-scale thermal environment, the

uncertainties of data collection are of concern and increase in

cities with more extreme weather and higher precipitation when

the smartphone is most likely to be held enclosed (Martilli et al.,

2017). A closer comparison of mobile measurements with

scientific-grade sensors reveals that, even when smartphones

are exposed to ambient air, uncertainties are increased with

higher humidity (where the smartphone hygrometer is

saturated) and bias corrections are needed for Sun exposure

and high wind speeds (Cabrera et al., 2021), which is yet to be

developed for realistic and dynamic data measurements. In the

third category, mobile sensors mounted on vehicles, bicycles, and

public transit systems have been used to make strategic transects

through cities to observe thermal comfort variables, providing

valuable real-time data, particularly in the face of extreme events

in cities (Heusinkveld et al., 2014; Castell et al., 2015;

Anjomshoaa et al., 2018). Lastly, vehicle-based data, while still

understudied, are more comprehensive in obtaining behavioral

patterns and can be used to develop personal comfort models

given a rich dataset (Mahoney and O’Sullivan, 2013; Fugiglando,

2018). Overall, it is important to consider that if the spatial

distribution of thermal exposure in urban areas is of interest, data

collected using mobile sensors require post-processing in the

form of time-detrending and sensor lag correction (Häb et al.,

2015; Middel and Krayenhoff, 2019).

In addition to stationary and mobile IoT environmental

sensing, a few novel data-driven analyses can be noted which,

in combination with previously described methods, represent a

paradigm shift in thermal comfort assessments at the urban scale.

First, IoT technologies have enabled the assessment of thermal

comfort on human activity and behavior in the built

environment. For instance, in addition to environmental

measurements, Wi-Fi connectivity data in outdoor spaces

have been used to obtain real-time occupancy data and to

explain outside dwelling patterns modified by thermal

environments (Reinhart et al., 2017; Dhariwal et al., 2019).

Using Wi-fi scanners in public courtyards, Reinhart et al.

(2017) recorded occupancy patterns over 10-month in

addition to measurements of air temperature, relative

humidity, wind speed and direction, and solar radiation. The

thermal environment (characterized by biometeorological

thermal comfort indices) was found to strongly correlate with

lunch-time activity by regular users. These correlations suggest

that IoTmeasurements of the thermal environment outdoors can

be used by designers and planners to predict the spatiotemporally

differentiated use of outdoor areas. Second, in the last decade,

additional proxy datasets, such as social media data on Facebook

and Twitter have introduced an alternative approach to

crowdsensing urban heatwaves and the consequent impact on

human activity (Grasso et al., 2017). Lastly, methodologies in

urban climate informatics (Middel et al., 2022), such as

crowdsourcing urban form information in the WUDAPT

project (Bechtel et al., 2019) and crowdsourcing the Street

View Imagery (Juhász and Hochmair, 2016; Middel et al.,

2019) have enabled the city-scale calculation of thermal

comfort parameters such as sky view factor and mean radiant

temperature (MRT), which can complement low-cost IoT

sensing of air temperature and humidity implemented across

cities to achieve a comprehensive analysis of thermal comfort

outdoors.

Despite a great deal of progress, the assessment of thermal

comfort has been slow in harnessing crowdsourcing and IoT-

based technologies for data collection (Chapman et al., 2017).

Several challenges contribute to this fact. The first challenge

pertains to the extent of the parameters that need to be

monitored: an accurate thermal comfort assessment requires a

range of environmental, behavioral, and physiological (Section 4)

parameters which are complex to include in one sensing unit. Air

temperature and humidity are far easier to obtain than radiation

exposure and wind speed. Additionally, thermal comfort is

defined as the “state of mind” (ASHRAE Standard 55) in

response to the thermal environment, and therefore, the heat

transfer in the environment cannot sufficiently describe the

“comfort for all” (Nikolopoulou et al., 2001). The

characteristics of urban spaces and the mode of activity of the

occupants dramatically influence the thermal comfort

perception, increasing the need for comprehensive, yet

accurate, data collection mechanisms that include subjective
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feedback. The second challenge relates to the ease of use for

widespread adoption of sensing units. The size of the devices,

power (cordless vs. corded) and the lifetime of the devices in the

field, and more importantly, the data communication method

(wired vs. wireless) are crucial factors for long-term and scalable

employment. Ideally, the IoT-based thermal comfort sensor that

can record all relevant parameters is 1) of a size that is

employable in a non-intrusive way 2) able to log data with

sufficient storage for the long term, and 3) able to

communicate the data wirelessly with a sufficient frequency.

Lastly, even when all the above-mentioned conditions, the

cost must not be prohibitive. Large city-scale deployment of

IoT sensing for thermal comfort still faces substantial price

barriers, particularly in research.

3 IoT sensing applied to building scale

Since people spend around 90% of their time indoors

(Klepeis et al., 2001), building scale thermal environments and

air quality have proportionally the highest influence on

occupants’ thermal comfort and one if not the most

important influences on air pollution exposure. Therefore, it is

absolutely critical to characterize the indoor environment. IoT

environmental sensing has the goal to enable an understanding of

the dynamics of building operations. This section summarizes

the capabilities of IoT sensing to characterize the thermal

environment and indoor air quality, sensing methodologies

for longitudinal evaluation of buildings operations, and the

field of proxy sensing.

3.1 State-of-the-art continuous
measurement capabilities indoors

Several IoT platforms for monitoring air quality and thermal

environment have been deployed in residential and commercial

buildings (Edirisinghe et al., 2012; Abraham and Li, 2014; Kim

et al., 2014; Salamone et al., 2015; Ali et al., 2016; Scarpa et al.,

2017; Pantelic et al., 2018a; Carre and Williamson, 2018;

Coleman and Meggers, 2018; Idrees et al., 2018; Martín-Garín

et al., 2018; Parkinson et al., 2019a), educational facilities

(Palacios Temprano et al., 2020; Ulpiani et al., 2021),

industrial settings (Li et al., 2018), occupant exposure

assessments (Jackson-Morris et al., 2016; Kelly et al., 2017;

Curto et al., 2018; Pantelic et al., 2020) and on mobile

platforms (Jin et al., 2018a).

With regard to assessing thermal environments, indoor IoT

sensing platforms typically measure air temperature and relative

humidity and often lack the capabilities to measure

comprehensive sets of thermal environment indicators that

include air velocity or mean radiant temperature (MRT).

Monitoring air velocity is particularly important in spaces that

use elevated air movement as a means to achieve thermal comfort

(Zhai et al., 2015; Schiavon et al., 2017). Advancements in air

velocity measurements have been made with the development of

low-cost ultrasonic velocity sensors (Ghahramani et al., 2019b)

and the integration and deployment of 2D hot-wire

anemometers in indoor sensing platforms13. With the

increasing popularity of high-rise glass towers, radiative heat

transfer can make up approximately half of the heat transfer

between occupants and the surrounding indoor environment

(Teitelbaum et al., 2019), making MRTmeasurements critical for

indoor thermal comfort assessments. The black globe

thermometer provides a reasonable and affordable solution for

MRT measurements (Thorsson et al., 2007; Parkinson et al.,

2019a) but recent works have shown that black globes cannot

accurately measureMRT due to the significant impact of airspeed

on the measurement (Guo et al., 2018; Teitelbaum et al., 2020a;

Teitelbaum et al., 2020b; Teitelbaum et al., 2022). Uncertainty of

MRT measurement is proportional to globe diameter and

depends on the convection regime (Teitelbaum et al., 2022).

When ambient air velocity is lower than 0.2 m/s, the black globe

sensor used for MRT measurement is in the mixed convection

regime that is challenging to account for using the correction

factor (Teitelbaum et al., 2022). Accurate measurement of MRT

on a building scale can be achieved with infrared thermal

scanning and mapping of the physical environment with

LiDAR (Light Detection and Ranging) technology (Houchois

et al., 2019).

With regards to air quality, the common air quality indices at

the building scale include CO, CO2, PM2.5, PM10, TVOC, O3,

CH2O, NO2, and radon. The current IoT sensors for PM2.5 have

reasonable accuracy, within a factor of 2 from a reference, which

suggests their suitability for indoor air quality management;

however, their accuracy can be compromised if the dominant

source includes particles of the ultrafine size range (Wang et al.,

2015; Manikonda et al., 2016; Singer and Delp, 2018; Wang et al.,

2020; Demanega et al., 2021). A more recent study showed very

good agreement between low-cost IoT PM2.5 sensors with

scientific-grade instruments (Hegde et al., 2020; He et al.,

2021) especially after applying RH corrections (Tagle et al.,

2020; Zou et al., 2021). The CO2 sensors generally have good

agreement with reference monitors (Demanega et al., 2021).

Measurement of PM10 in most proposed platforms is based

on models that derive concentration from the same dataset as

PM2.5 (Kim and Oh, 2018), and not from direct measurement.

Although studies indicated that low-cost TVOC sensors can be

deployed indoors despite their poor quantitative agreement

(Moreno-Rangel et al., 2018; Demanega et al., 2021), the

common issue is that they cannot differentiate

physicochemical properties of hundreds of individual organic

compounds (Jackson-Morris et al., 2016; Kelly et al., 2017; Curto

et al., 2018) some of which are strongly linked to health effects

(Schieweck et al., 2018). O3 sensors have been utilized in several

studies (Firdhous et al., 2017; Zhang et al., 2021). Low-cost O3
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sensors can be calibrated to measure concentrations encountered

in indoor environments (Pang et al., 2017) with recent studies

addressing machine learning-based learning-based calibration

improvements (Ferrer-Cid et al., 2020). A review of low-cost

IoT sensor operation by the Air Quality Sensor Performance

Evaluation Center suggested that O3 sensors are able to provide

useful qualitative and quantitative measurements when used off

the shelf (Collier-Oxandale et al., 2020). Measurement of indoor

radon with IoT environmental sensing has been recently

proposed (Blanco-Novoa et al., 2018; Pereira et al., 2020) CO

sensor detection range is a topic that needs further research

(Nandi et al., 2019) and both metal-oxide and optical-based

sensors need improvement on the lower end of detection limit

(Nandy et al., 2018). At the moment a low-cost IoT CH2O sensor

capable of measuring CH2O is under development (van den

Broek et al., 2020). NO2 was previously measured (Coleman and

Meggers, 2018; Collier-Oxandale et al., 2020), but general

methods for calibration are still missing for these sensors

deployed on a building scale. Based on scientific evidence it

can be argued that IoT sensing of indoor chemistry is still in its

early stages.

Existing IoT sensing platforms can measure the basic

parameters of the indoor air quality matrix (Pantelic et al.,

2018b). Various studies have used different evaluation methods

to assess IoT environmental sensors’ accuracy and reliability.

The sensing drift of low-cost sensors over time is yet another

unknown that requires further investigation (Chojer et al.,

2020). Nonetheless, the quality and variety of the low-cost

sensors have been increasing over the years, but the

development of standards and guidelines for testing

methods, sensing network accuracy, repeatability, and

reliability should be considered a priority (Schieweck et al.,

2018; Chojer et al., 2020). Further research efforts are necessary

to understand the relationships between single point sensor

accuracy (Rackes et al., 2018) and the whole network accuracy

(Parkinson et al., 2019a).

3.2 Characterization of indoor air quality
and thermal comfort

Monitoring air quality and thermal environment enable

characterization of buildings performance, which is useful for

management and benchmarking. Measurement with

conventional methods and instruments can provide a

temporal snapshot of building operation. Similar to the urban

scale, limitations of conventional methods include cost, the time

necessary to measure a large number of points in time and space

(Parkinson et al., 2019a; Parkinson et al., 2019b), size and noise of

equipment, and accessibility of sampling locations (Kumar et al.,

2016). The low-cost IoT sensing has the potential to overcome

some of these limitations and provide a longitudinal evaluation of

building performance with refined spatio-temporal

representation. Certification schemes offer credits for the

implementation of continuous monitoring (RESET, 2022;

WELL, 2022) and represent one of the key drivers of the

widespread application of IoT sensing (Parkinson et al.,

2019a; Parkinson et al., 2019b). The development of

continuous monitoring guidelines for temporal and spatial

sensing resolution has become one of the critical research

priorities (Heinzerling et al., 2013; Parkinson et al., 2019b;

Licina and Bhangar, 2019). At the moment the set of

indicators required by standards is not covered by available

IoT sensing platforms which present another area that needs

development.

Some of the most used current indoor air quality continuous

monitoring guidelines/standards are summarized in Table 1.

These consider air pollutants that need to be measured, the

accuracy of equipment, sensor placement, measurement time,

and analytical tools. Guidelines summarized in Table 1 describe

different approaches, data collection methodologies, instrument

requirements, and various analytical performance indicators.

The development of these guidelines is largely expert-based

and usually not scientifically validated. Regarding sensor

density and placement, several research studies explored

sensing densities from ~9 m2 up to ~100 m2 per sensor (Ali

et al., 2016; Pantelic et al., 2018a; Li et al., 2018; Parkinson et al.,

2019b; Clements et al., 2019). Although some of these studies

demonstrated significant spatial variation of measured

parameters, their results cannot be used for the validation of

existing continuous monitoring guidelines/standards due to

significant differences in objectives and sensor placement

methodologies. The failure of the well-mixed assumption in

some environments (Pantelic and Tham, 2013) brings

additional potential complexities to the sensor granularity and

placement problem. Other location recommendations for

example to place a sensor 1 m away from doors, windows,

and diffusers are simply practice-based, and not grounded in

research. The upscaling sensor deployment sensors have to be

named systematically so that data collected in multiple buildings

can be correctly understood and interpreted. Naming schemas

are a critical aspect of integration and are addressed later in

Section 5. Measurement frequency is another variable where the

recommendation of 1 min or 10 min sampling frequency is not

well-grounded in research. From the certification perspective as

discussed earlier the current IoT technology cannot capture all

relevant parameters. As a result, for proper characterization of

the indoor environment, we still need to couple continuous

monitoring with conventional industrial-hygienist practices

like measuring individual VOCs. This also extends to the

thermal environment and the necessity for the maturation of

measurement technology. Considering the speed with which the

industry adopts green building certification schemes and the

impact they have on the built environment, the development of

science-based validated building benchmarking should be made

a top priority.
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Thermal environment and thermal comfort studies that

address the application of IoT sensing on the building scale

can be classified into two groups. In the first group of studies, the

objective of continuous monitoring of the thermal environment

is to provide information as an input parameter to estimate

thermal comfort (Parkinson et al., 2019b; Valinejadshoubi et al.,

2021). Although the effectiveness of PMV/PPD models to

estimate occupant satisfaction in the field using thermal

environment measurement can be questioned (Cheung et al.,

2019), this approach is used to assess building operation

compliance with certification schemes and standards (Revel

et al., 2014a; Parkinson et al., 2019b; Wang et al., 2019). The

second group of studies surveys individuals alongside thermal

environment monitoring to obtain assessments of thermal

TABLE 1 Summary of guidelines/standards available for deployment of air quality sensors for continuous monitoring in buildings.

Arc scoru ASHRAE/
USGBC PMP
(2010)

RESET v2.0 WELL v2 LEED v4

Quantities to
measure

C Outdoors: None C Outdoors: EPA
nonattainment
zones

C Outdoors: None COutdoors*: PM2.5, CO, NO2,
SO2, O3

C Outdoors: PM2.5,
O3, CO

C Indoors: CO2, VOC C Indoors: PM2.5,
CO2, TVOC,
bioaerosols

C Indoors: PM2.5, CO2,
TVOC, CO

C Indoors**: PM2.5 CO2, CO,
TVOC, NO2, O3, CH2O

C Indoors: PM2.5, CO2,

TVOC, CH2O

C T, RH - suggested (not
required)

Data Collection C Physical measurement C Continuous
monitoring

C 3 levels accuracy C Accuracy defined for each
pollutant

C Physical measurement

C Occupant satisfaction survey
min 25% response rate

C Data loss–not
defined

C Cloud Interface; Data
Structure; Resolution;
Frequency

C 10 min minimal collection C Occupant satisfaction
survey

C Occupant
satisfaction survey

C 3 levels of data loss

Measurement
density and
location

C In locations representative of
all occupied spaces

C Representative
locations in space
(not specified)

C 80% of occupants
represented

C 325 m2 per sensor; or one
sensor per floor at
1.1—1.7 m height (if floor is
smaller)

C Not specified

C Within the breathing zone C Ducts C All space types
represented

C During occupied hours C 500 m2 per sensor

C Under typical minimum
ventilation conditions

C Specified measurement
technologies

Measurement
time

C Not specified C 7 days minimum C Continuous C Continuous C Not specified

C Continuous

Analytics tools C Arc performance score:
Perceived occupant
satisfaction and

C Communicating
data to occupants -
not encouraged

C Communicating data
to occupants via
display

C Communicating data to
occupants via display

C Benchmarking
measurement against
different levels of
thresholds during
occupied hours

C Variance CO2 and VOC
concentration >95% of the
time normalized for floor area
and occupancy

C ASHRAE
62.1 compliance

C Calculating daily
averages from IAQ
monitors during
occupied hours

C Benchmarking
measurement against
thresholds at 3 levels
(Platinum/Gold/Silver)
during occupied hours

C Consider outdoor air
quality (2 levels of
indoor conditions)

C Time weighted
exposure

C Consider data
loss (>20%)

C Annual Report

C Exceedance C Thresholds standard/
high performing
buildings

Outdoor*: WELL, does not explicitly ask for continuous monitoring on the building, but does require continuous information from the weather station within a 4 km radius; WELL**

requires monitoring of 3 of listed pollutants.
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comfort and develop personal comfort models (Kim et al., 2018a;

Kim et al., 2018b; Kim et al., 2019). Utilization of this approach

demonstrated that personal comfort devices can increase

occupants’ satisfaction by over 95% (Kim et al., 2019). The

use of infrared thermography for real-time monitoring of

personal thermal comfort (Revel et al., 2012; Revel et al.,

2014b) represents another opportunity for human-centric

assessments of comfort at the building scale, but so far has

mainly relied on a single parameter (e.g., skin temperature)

tracking of thermal environment and is yet to be integrated

with comprehensive IoT thermal environment monitoring.

Published studies point towards the development of

personalized thermal comfort models, but actual use in the

building operation of these models is still unclear. The

combination of thermal environment mapping and survey of

occupant satisfaction is an important research area that can

improve the operation of existing and new buildings by

providing optimal thermal comfort setpoints.

3.3 Proxy sensing

When several environmental parameters are measured in

space and that information is used to infer knowledge about

some other property or process, that can be considered proxy

sensing or context-aware computing. Prior research suggests that

humans have a unique environmental footprint, including CO2

(Persily and de Jonge, 2017), particulate matter and bioaerosols

(Bhangar et al., 2016; Licina et al., 2016), various volatile organic

compounds (Tang et al., 2016), as well as sound (Li et al., 1991;

Sabatier and Ekimov, 2008), that can form a basis for the use of

context-aware computing to detect occupants and their activities

in the space. Occupants proxy sensing was explored using a

combination of CO2, Lux, T and RH (Candanedo and Feldheim,

2016), passive infrared, TVOC, and CO2 (Pedersen et al., 2017),

only CO2 (Dong et al., 2010; Jin et al., 2018b), CO2, energy

consumption of lighting, and energy consumption of appliances

(Ryu and Moon, 2016), CO2, RH, T and pressure (Chen et al.,

2016), passive infrared, CO2 and RH (Han et al., 2012), PM2.5,

PM10, T and RH (Jeon et al., 2018). The number of occupants in a

building is an important parameter for understanding space

utilization and energy use patterns. The presence of people

can be measured directly with the surveys, based on radio

frequency signals, passive infrared, ultrasonic, video cameras

or global positioning information, Bluetooth, wireless local

area network signals (Yang et al., 2016), but all these methods

require significant labor and are usually very costly to perform,

especially at the large scale. The use of proxy sensing with

environmental IoT sensors has the potential to significantly

reduce the cost of these processes. Besides the detection of the

number of occupants in the space, Ghahramani et al. (2018) used

environmental sensing to detect occupants’ workplace social

interactions. The challenge remains to demonstrate that proxy

detection of the number of occupants and type of social

interactions can be generalized and upscaled.

4 IoT sensing applied at the human
scale–Wearable IoT sensing

Unlike stationary IoT sensing which often aims to assess

exposures of a population subgroup, wearable devices,

i.e., smart electronic devices that can be worn or be integrated

into clothing (i.e., standoff sensors), are at the heart of new

capabilities that pervasive connectivity can bring at the human

scale. Currently, various health- and fitness-oriented wearables are

commercially available which can sense, store, and track the

temporal variability in human activities (such as steps and

locations) and biometric data (including heart rate, perspiration

levels, and oxygen levels in the bloodstream). The potential of

wearables in promoting positive health outcomes and enhancing

human comfort and well-being is indisputable and scientific

research has been able to evaluate and validate various wearable

technologies. This section aims to review such applications in

wearable IoT sensing, particularly focused on air pollution

exposure, physiological monitoring, and thermal comfort.

4.1 Physiological and health monitoring

It is likely that the impending increase in air pollution and

urban overheating in many cities around the globe will

discourage outdoor physical activity and therefore impact the

health of individuals (Chan and Ryan, 2009; Paulin and Hansel,

2016; Nazarian et al., 2021b; Romanello et al., 2021). Generic

recommendations and guidelines have been developed to address

these concerns, but given the fact that environmental health

impacts vary greatly for individuals, the adoption of general

guidelines often does not optimize the health and performance of

every individual and even can at times induce negative health

implications (Tan et al., 2015). As there is extensive variability

intolerance to a given absolute level of stress, individual

monitoring of physiological status has the potential to

optimize health and performance (Piwek et al., 2016; Notley

et al., 2019). The development of individualized guidelines for

environmental health through IoT sensing at a human scale that

accounts for intrinsic and extrinsic factors is envisaged.

In recent years, the use of smart devices is becoming more

prevalent to provide users with personalized data for self-

diagnosis and behavior alterations to optimize health and

performance (Piwek et al., 2016). In occupational settings,

smart devices can be used to monitor workers in real-time

and therefore protect them from excessive heat strain (Notley

et al., 2018), which is particularly useful for high-risk workers.

These smart devices offer unprecedented opportunities to collect

rich sources of data to guide interventional strategies.
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While the proliferation of smart devices at times serves as

motivational tools to initiate health and performance programs,

accuracy can be lacking, and more importantly, there is an

absence of validated models to translate the raw data to

actionable advisory for the users. Dias and Paulo Silva Cunha

(Dias and Cunha, 2018) reviewed important aspects of smart

devices for health, listing the state-of-the-art wearable vital signs

sensing technologies, including their system architectures and

specifications. There are also a number of concerns about the

safety, reliability, and security of using consumer wearables in

healthcare (Piwek et al., 2016), which are similarly applicable to

the use of wearables for environmental monitoring at the human

scale. To this end, the Electronic Patient-Reported Outcome

Consortium proposed a framework by listing a set of

recommendations in relation to the selection of and

evidentiary considerations for wearable devices to ensure

adequate precision, accuracy, and reliability of data collected

(Byrom et al., 2018), which to date are not widely used in

wearable environmental sensing.

Prospectively, as smart devices become more accurate, more

sophisticated modeling techniques will also be harnessed. For

example, an artificial intelligence platform solely based on patient

data is used to prospectively guide drug dosage to the patient with

prostate cancer, resulting in durable response and no disease

progression (Pantuck et al., 2018). Instead of using population-

based algorithms, this platform only harnesses data from the

individual of interest to enable small data set-driven

optimization. This could be particularly amenable to human

performance and health optimization, considering the fact that

human responses to a given stressor are varied. In addition, the

profile of an individual is expected to shift during the course of

time. The ability to dynamically modulate inputs to affect

optimal outcomes therefore will drive a powerful and unique

ability to truly personalize health and performance in a sustained

manner.

4.2 Wearable sensors for air quality

Direct assessment of personal level exposure accounting for

the dynamic nature of human activities has been identified as a

central area in air pollutant exposure research (Steinle et al., 2013;

Health Effects Institute, 2015; Marć et al., 2015; Borghi et al.,

2017; Spinelle et al., 2017). Portable air quality monitors with

local data storage have been previously used in air quality studies

to quantify individual exposures (Steinle et al., 2013; Marć et al.,

2015; Borghi et al., 2017; Spinelle et al., 2017). The use of portable

air monitors with local data storage is associated with a limited

number of study participants, laborious manual work, frequent

data download, cataloging, and keeping of activity diaries which

prevents real-time use of the data (Steinle et al., 2013; Marć et al.,

2015; Borghi et al., 2017; Spinelle et al., 2017). On the contrary,

wearable IoT sensors represent the progression of technology for

personal exposure estimation and offer a promise for automation

of environmental data collection, simultaneous GPS tracking

(Predić et al., 2013; Antonić et al., 2014; Wong et al., 2014;

Zhuang et al., 2015; Tian et al., 2016; Zhang et al., 2017; Yang

et al., 2018), and upscaling to citizen scientist data collection

strategies (Piedrahita et al., 2014; Nikzad et al., 2012; Jerrett et al.,

2017; von Schneidemesser et al., 2019). Improvements in

personal exposure assessment were suggested by combining

(wearable/portable) behavioral sensors with wearable sensors

that capture environmental and biometric data (Fletcher et al.,

2014; Hu et al., 2014) as illustrated in Figure 1. A recent survey of

occupant needs rated wearable PM2.5 sensors just behind

wearable air cleaners (Wang et al., 2021) indicating an

increase in population awareness of the importance of

environmental impacts on health.

There has been significant development of wearable IoT

environmental sensors in recent years. Deng et al. (2016)

developed a portable wireless VOC sensing kit and

demonstrated its application for measuring personal exposure.

Zhang et al. (2017) show the application of wearable IoT sensors

for PM2.5 monitoring integrated with location and temperature

data and demonstrated how they can be used for IAQmapping of

underground stations. Hojaiji et al. (2017) develop wireless

wearable PM and N2 sensors for personal exposure

measurement. Xu et al. (2019) developed a wearable PM2.5

sensor and demonstrated how crowdsourcing can be used to

detect large variations of air pollution in the city. Zhong et al.

(2020) used wearable CO2 sensors for monitoring and

forecasting the indoor environment. Cureau et al. (2022)

developed and implemented a wearable wi-fi connected

system for mapping urban environments from the pedestrian’s

perspective as an aid to city planners. Kane et al. (2022)

developed wearable IoT PM sensors for personal exposure

measurement and modification of people’s behavior based on

the results of communication. Kortoçi et al. (2022) showed how

wearable air quality monitors provide insights into personal

pollution exposure and the micro-climates of the city

measuring PM, CO, NO2, and O3. Besides insight into

personal exposure through crowdsourcing wearable air quality

sensors is a useful tool in mapping air pollution hot spots on the

urban scale (Buehler et al., 2021; Hernández-Gordillo et al., 2021;

Cureau et al., 2022).

In a recent systematic review of the environmental

monitoring with the wearable sensor application, Salamone

et al. (2021) included 39 papers that address air quality

monitoring among them 5 addressed wearable IoT sensors

and pointed out that air quality monitoring calibration is an

issue and not often reported. Hernández-Gordillo et al. (2021)

reviewed recent advancements in low-cost IoT wearable sensors

and pointed out that sensors still have challenges related to

sensitivity, selectivity, measurement accuracy, and drift.

Authors also concluded that further development of models

for data processing in addition to lack of community
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engagement is the challenge to overcome. Abboushi et al. (2022)

reviewed the use of wearable devices for studying the connection

between personal exposure and health and reported issues related

to missing data points, data resolution, and measurement of a

limited number of pollutants. Narayana et al. (2022) reviewed

state-of-the-art low-cost IoT environmental sensing and

concluded that sensing quality is still an issue and proposed a

framework for enhancing data reliability. To address issues

related to wearable low-cost IoT sensor drift due to sensitivity

to environmental conditions Buehler et al. (2021) an online

calibration method. Wearable devices with sensors for real-

time gas-phase air pollutants measurement have issues with

calibration (Cao and Thompson, 2016).

Wearable air quality IoT sensors are still facing significant

challenges in application. The accurate positioning on humans

that can capture true exposures still remains a research question.

Human micro-environment concentrations are influenced by

chemical and particle emissions from skin oils, clothing,

cosmetics, and exhalation (Rim et al., 2009; Licina et al., 2017;

Licina et al., 2019). These local emissions create a cloud of TVOC,

CO2, and particles (Pantelic et al., 2020) that can affect the

readings of other air pollution sensors (Maag et al., 2018). For

air pollutants coming from exhaled breath, determining accurate

sensor location is the key open challenge. For instance, when

personal exposure to CO2 was estimated with sensors worn

around the neck, results showed that exhaled CO2 from some

of the users directly impacts sensor reading, which led to a

personal exposure overestimation (Ghahramani et al., 2019a).

Wearable IoT air quality sensors offer great potential for

determining and potentially mitigating personal air pollutant

exposures, and through crowdsourcing, increasing spatio-

temporal air pollution mapping on building and urban scales.

To be successfully implemented, they require further

development on the hardware side to improve sensing

accuracy, an array of pollutants they can measure, size, and

battery life. On the application side, determining a wearable

sensing location on a person that best represents personal

inhalation exposure at the minimal level of physical

intrusiveness represents a key open research question.

Wearable air quality sensors have not reached measurement

accuracy and non-intrusiveness levels that would enable their

massive deployment and ultimately, refinement of personal

exposure models.

4.3 Wearables for thermal comfort
prediction

Unlike the air quality measurements in the built

environment, thermal comfort is highly subjective and greatly

depends on the individual’s physiology and psychology.

Conventional methods of thermal comfort assessment,

however, are often either based on the thermal physical

models of the environment or focused on the physiological,

behavioral, and psychological factors that form the

individual’s thermal comfort perception (Rupp et al., 2015).

To address this shortcoming, wearable technologies have

introduced a more comprehensive perspective of thermal

comfort in the past few years by combining environmental

measurements with physiological and behavioral assessments.

A combination of these factors leads to personal thermal

exposure assessments, aiming to determine how different

individuals and subpopulations not only experience different

heat exposures but also experience different levels of discomfort,

physiological strain, or psychological stress when subjected to the

same thermal environments (Nazarian and Lee, 2021). For

instance, wearable sensing of skin is proposed, as human skin

is considered the mediator between the environment and the

human body, and therefore, skin temperature and conductance

play a major role in thermoregulatory processes involved in

thermal comfort and heat stress (Zhang et al., 2010; Takada

et al., 2013; Dai et al., 2017). Studies such as Sim et al. (2016)

showed that wrist skin temperatures can be used to predict

whole-body thermal sensation. Additionally, several recent

studies have identified the potential of heart rate and heart

rate variability data to indicate thermal sensation in the built

environment (Buller et al., 2013). This, in addition to the

advancement of ubiquitous sensing and IoT in the built

environment domain, has opened new doors for the use of

wearables in thermal comfort assessments. A range of

wearable solutions, either for activity (fitness) or health-

tracking, has gained traction in the market and is enabling a

shift in approaches presented in thermal comfort assessment and

physiological assessments.

Wearable technologies represent a range of opportunities for

comfort and health assessments in the built environment. The

most prominent opportunity, perhaps, is to approach thermal

comfort analysis as “human-centric” as opposed to “one-size-

fits-all” by adding behavioral and physiological components.

Incorporating an integrated monitoring approach to thermal

exposure, physiological and behavioral parameters can be

recorded alongside environmental conditions, providing

opportunities for detection of heat impact as well as

personalized comfort classification (Jayathissa et al., 2019;

Nazarian et al., 2021b). Additionally, wearables travel with the

individuals in the realistic exposure scenarios, and therefore, data

collected by wearables combined with the GPS data can provide

the spatiotemporal distribution of environmental parameters as

well as the ways in which individuals respond to that

environment. Nonetheless, the use of wearable solutions for

thermal comfort is an emerging field, and only a handful of

studies propose wearable solutions for thermal comfort

assessments (Nakayoshi et al., 2015; Hasan et al., 2016;

Moatassem et al., 2016; Liu et al., 2018; Salamone et al., 2018;

Ojha et al., 2019). Among these, Nakayoshi et al. (2015)

represented the most comprehensive measurements of thermal
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comfort, incorporating all the relevant thermal variables,

including environmental parameters (air temperature, relative

humidity, wind speed, and MRT) in the proximity of a human

body, physiological measurements (such as heart rate and skin

temperature), and subjective feedback, which found a correlation

between skin temperature and thermal comfort index (SET) with

dependencies on gender. The unique wearable system that was

developed in this study involved five sensing units that were all

worn by the participants in multiple locations: hat, belt, hand,

and forehead skin and carried in a small sash. However, this

methodology, although comprehensive for research purposes, is

considered impractical for implementation in real-life

applications and limits the scalability of IoT sensing. Other

studies further relied on a combination of fixed and wearable

sensors to enhance feasibility. Studies for example, combined

wearable devices for skin and heart rate monitoring with fixed

indoor sensing to evaluate the distinction between different users

in an indoor building space (Moatassem et al., 2016; Chaudhuri

et al., 2018; Salamone et al., 2018). Lopez et al. (2018) further

developed a neck-mounted wearable thermo-conditioning

system that directly cools or warms the human body based on

the estimation of the user’s thermal sensation by biological

information (such as real-time heart rate interbeat interval

recorded at the earlobe). However, the efficacy of this method

is not validated and is similarly facing challenges in application.

The interest in wearable solutions for thermal comfort in the

built environment has grown massively, but the challenges are

still manifold. As noted in several examples, scalability presents

one of the main limitations. To date, the deployment of wearable

technologies is done for a limited number of participants under

the supervised experimental setting due to the challenges in

design and performance. The limitation on the ease of use

(such that participants are willing to wear the devices for an

extended amount of time), reliability, and robustness under the

dynamic conditions of use and data communication restrictions

significantly contribute to the scalability challenge. Additionally,

although the costs of wearables are lower than standard

references for thermal comfort assessment, they are still

significantly high compared to other IoT monitoring solutions

and cannot be regarded as “low-cost” sensing. In addition to the

challenges of scalability, many critical research questions still

hold: There is an urgent need to assess the wearable devices

developed in the commercial market to ensure that they provide

accurate physiological, environmental, and behavioral

parameters for thermal comfort assessment. This involves

quantifying the biases associated with individual sensing as

opposed to fixed/portable IoT environmental sensors.

Additionally, in the absence of universal heat indices for

personal exposure (Notley et al., 2019), it is crucial that future

research assess the best way to describe the personalized data

obtained from wearables in a comprehensive and consistent way.

Accordingly, in addition to more progress on sensor solutions for

monitoring personal exposure and comfort, there is a need for a

quantitative specification of the performance of wearable devices

with respect to thermal comfort.

5 Challenges of multi-scale and
interdisciplinary IoT

This paper has covered studies focused on the use of IoT for

thermal comfort and air quality at three scales: urban, building,

and human levels. The value achieved in each of these scales

through the use of IoT is maturing, yet important practical

challenges persist that impede the maximization of its

potential through the convergence of data from the three

domains. This section outlines the major barriers to the

research and industrial application of IoT for addressing

human thermal comfort and air quality issues at the urban,

building, and human scales. The consistent theme that was found

in the literature was the lack of interoperability and

communication between various systems, industry

stakeholders, and research cultures.

5.1 Data silos

The literature shows that IoT data sources are commonly

found in various self-contained systems that collect, process, and

visualize the collected, continuous IoT streams for specific

purposes (Tang et al., 2019). The lack of data integration and

interoperability in the United States building industry has shown

to cost up $15.8 billion per year (Gallaher et al., 2004). There are

several examples in the literature of manual data convergence

after data collection (Monnot et al., 2016b; Wilhelm et al., 2016;

Benita et al., 2019; Ojha et al., 2019), but only a handful of studies

used a combination of multi-scale sensing in an integrated

manner (Pantelic et al., 2019; Jayathissa et al., 2020; Luo et al.,

2021; Miller et al., 2021). Pantelic et al. (2019) and Luo et al.

(2021) used indoor and outdoor air quality data measured with

devices from different vendors stored in separate databases. The

outdoor dataset stored in one database had a machine learning-

based real-time correction factor applied while indoor sensors

did not. Since inputs from both sensors were required for the

calculation of performance indicators authors had to use a set of

sensors placed next to each other to obtain correction factors

necessary for the meaningful comparison. The necessity to

provide correction factors as a part of data integration

represents a significant challenge in upscaling even for the

same type of data. The isolated or self-contained nature of

these data sets results from fragmented implementations of

IoT solutions from different vendors and stakeholders that

create parallel, independent databases of data.

Jayathissa et al. (2020) developed and method to converge

Micro Ecological Momentary Assessment of thermal comfort

with environmental IoT sensing. The convergence of these two
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data silos creates opportunities for the development of personal

comfort models. Miller et al. (2021) developed a data

convergence platform that combines momentarily thermal

comfort assessment with Cozie Fitbit smartwatch,

environmental data collection with outdoor and indoor IoT

sensing network, and location data collection using Bluetooth

technology mapped spatially and temporally to Building

Information Model. Predicting which building zones would

best fit a particular individual based on data inputs suggested

byMiller et al. (2021) required significant effort to overcome data

silos and integration issues. Although papers by Jayathissa et al.

(2020) and Miller et al. (2021) represent significant steps towards

the development of personal thermal comfort models both

studies are experimental and use enrolment of a controlled

number of participants. Scalability to a large population and

the necessity to dynamically respond to changes in data

collection are still work in progress.

5.2 Technology and industry silos

The primary reason data silos occur in the IoT domain is the

lack of incentive for industry players to create solutions that

emphasize data exchange and interoperability (Gallaher et al.,

2004; Shen et al., 2010; Costa et al., 2013). The various

stakeholders at each scale (urban designers, building

architects, engineers and operations, and individual

consumers) are not demanding solutions that require the

convergence of data, mostly because these markets do not

exist yet. Industry silos are well depicted in the design of

natural and hybrid ventilated buildings where although

government-owned and operated ambient air quality stations

are distributed across the whole United States, a review of the

pollution patterns based on those measurements is not

considered, while values for indoor air quality are defined but

monitoring is not required (ASHRAE Design Guide for Natural

Ventilation).

A good example is the building management system (BMS)

industry. Each modern commercial building with a BMS system

is essentially containing an IoT system that could be a source of

environmental sensor data that could enhance the data from

other scales and applications (Miller et al., 2021). The interplay

between lack of standardized naming schema (Quinn and

McArthur, 2021) that allows making sense of the data by

other machines and/or humans and any guidelines for

strategic sensor placement that would generate meaningful

data (Balaji et al., 2018; Wang et al., 2018; Quinn et al., 2020).

This situation is increased further with the ubiquitous

deployment of sensors beyond traditional BMS. The lack of

unified meta-modeling schemas results in huge amounts of

IoT data available, but with a limited practical overlap of use

due to interoperability problems (Balaji et al., 2018; Wang et al.,

2018; Quinn et al., 2020).

5.3 Research silos

Reviews of IoT implementation exclusively address urban

scale (Kumar et al., 2015; Morawska et al., 2018), building scale

(Kumar et al., 2016; Schieweck et al., 2018), or personal scale

(Mamun and Yuce, 2019). We located only two research papers

Pantelic et al. (2019) and Luo et al. (2021) that address the

application of IoT environmental sensing on multiple scales

simultaneously. This suggests that the current research

landscape fosters traditional delineation between urban,

building, and personal scales as separate research fields with

marginal attempts to perform research across scales. This is an

interdisciplinary field comprising of environmental, building,

communication, and artificial intelligence scientists. Research

communities use diverse methodologies, and experimental

approaches, rank the importance of factors differently and

have their own set of conferences and journal outlets as well

as cultures for publication. From a technical perspective IoT

environmental sensing has its foundation in computer science

and electrical/electronic engineering disciplines that value

conference publications hosted by the Association for

Computing Machinery (ACM), where a majority of the

technical innovation from the hardware, software and data

science aspects of wide-scale IoT deployment is made. The

conventional built environment, engineering, and air quality

domains, on the other hand, value journal publications and

often do not put the same emphasis on conference

publications. Additionally, urban scale and building scale

phenomena is kept separate by addressing exclusively ambient

air quality as an environmental problem and indoor air quality

referring to air inside the buildings as an engineering problem.

This difference creates a gap between these categories of research

that impedes the progress of interdisciplinary innovation.

5.4 Privacy, security, and liability

Onemay imagine that full-scale IoT integration and alignment

could occur by breaking down the silos. This convergence would

create a plethora of opportunities to solve major problems related

to air quality, human health, and the other benefits that are

discussed in this paper. For example, having the building

management system understand the metabolism and activity

level of its occupants using wearable devices would highly

improve the ability of that building to provide thermal comfort.

However, these converged data can also be used in ways that are

not in the best interests of the humans involved (Atlam andWills,

2020; Tawalbeh et al., 2020). As these scales become increasingly

interconnected, challenges will increase around data ownership,

data storage, access, privacy protection, and security. This ongoing

digitalization must be performed with strong security and privacy

guarantees that permit occupants to trust the new features and

services that smart buildings offer to them. Furthermore, an
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important question arising from this is whether access to the new

information created by these convergences produces liability to act

on the part of governments and companies. The present legal and

institutional laws do not create liability for municipalities, building

owners, and managers. Any future changes towards increased

liability will need to be accompanied by additional guidance.

5.5 Human-data interaction

People become aware of pollutants in the air when

concentration levels go beyond the odor thresholds (Wolkoff,

1998; Wolkoff and Nielsen, 2001). Considering that people do

not have great sensitivity to air pollution detection meaningful

communication about ambient and indoor air quality represents

an important tool that will help people to modify behavior and

reduce their exposure (Wargocki and Da Silva, 2015). With the

increased spatial and temporal granularity of air quality

information, IoT sensing enables real-time data communication.

On an urban scale, air quality information is communicated to

occupants usingAirQuality Index (AQI) connects air pollution and

health (Plaia and Ruggieri, 2011). A traditional approach to the

relationshipbetweenbuilding scaledataandstakeholderswas to silo

them apart to avoid any potential occupant’s concerns and

complaints (ASHRAE, 2010). ASHRAE Standard 62 (Castell

et al., 2015) does not address the communication of building

indoor air quality and thermal comfort information to occupants.

Recently developmeasurement protocolsWELL (Manikonda et al.,

2016) and RESET (RESET, 2022) suggest communicating data to

occupants but theydonot specify how.Adashboard’s objective is to

convert measured data into meaningful information for

stakeholders (Marini, 2011). To be effective dashboard design

have to match specific users (Marini, 2011; Petersen et al., 2017).

An environmental dashboard designed for community education

and awareness resulted in community-level energy and water

savings (Petersen et al., 2017). A dashboard designed for building

managers enables them to effectively detect malfunction and save

energy, but the same dashboard (Timm and Deal, 2016) had an

insignificant impact on occupants’ energy-related behavior (Timm

andDeal,2016).Aproperlydesigneddashboardcanbeacritical tool

in exposure reduction, but there is a lack of research that connect

dashboard design and targeted group behavior modification. With

the increased data volume, effective communication with the

stakeholders is an essential question that requires further research.

6 Opportunities of multi-scale and
interdisciplinary IoT

6.1 Data convergence technologies

To address the data silo issue, there are several key

technological research directions that can work towards

breaking down these silos. The integration of these data

streams from each scale and domain is often first approached

through segmentation and clustering techniques that seek to

group similar behavior based on the values of the sensor readings

(temporal) and the location in which the reading was taken

(spatial). This type of effort is exemplified in a previously

discussed Singaporean study of 50,000 students carrying IoT

environmental and personal fitness devices meant to segment

behavior related to activity, transport and environmental

exposure patterns (Wilhelm et al., 2016). These segmented

data insights were applied to other studies focused on air-

conditioning (human-building data convergence) (Happle

et al., 2017), routing (human-urban) (Monnot et al., 2017),

and emotional well-being (Monnot et al., 2017; Benita et al.,

2019). Another key study focused on the collection of various

types of wearable sensors to study the influence of the urban

setting on a physiological response (Blanco-Novoa et al., 2018).

Both studies included a series of unsupervised machine learning

steps that focused on dividing the data into spatio-temporal

regions for the purpose of human understanding and

interpretation. The methods created in these studies essentially

seek to find the overlap between the human-building-urban

scales.

Theoretically, individualized wearable data (human), the

BMS (building) and city-scale environmental air quality

(urban) sensors could be connected through a process of

tagging convergence using these techniques as well. Metadata

tagging could also start fixing information related to the spatial

aspects of the IoT sensors. These systems would automatically

identify data schema/model and metadata to provide context to

data collection (physical installation information, orientation,

nearest relevant building features like windows, ventilation

diffusers, occupant(s). From this effort, projects such as the

BRICK schema have emerged (Balaji et al., 2018). BRICK allows

for a consistent framework for IoT metadata tagging that

enables the preservation of point hierarchies and

relationships between points. The aptly named Mortar

platform integrates with BRICK to test various types of

analytics approaches such as automated fault detection and

diagnostics (Fierro et al., 2018). The Plaster platform rounds

out the stack is an open-source platform for testing various IoT

metadata classification strategies (Koh et al., 2018). The BRICK

schema continues to be developed to incorporate new types of

data including occupants (Chamari et al., 2022; Luo et al., 2022)

and building information models (BIM). There are also crucial

discussion forming around the convergence of BIM and

geographic information systems (GIS) (Zhu and Wu, 2022).

The air quality field has also attempted to standardize the

terminology of levels of data processing for various scales of

implementation (Schneider et al., 2019). Portability,

reproducibility, and generalizability can all be used to

describe efforts in this direction. These descriptors will only

be possible once the IoT networks from the various sources
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outlined here are well-organized, consolidated and scalable.

The development of these type of data standards are promoting

the scalability and usability of the data from the larger building

stock.

An example of converged use of multiscale data was

demonstrated in Pantelic et al. (2019) during the episodes

of wildfire air pollution where IoT environmental sensing had

a crucial role in characterizing building resilience or

determining natural ventilation potential and utilization

(Luo et al., 2021). With the increase in global air pollution

and associated negative impacts on health (Silva et al., 2017)

ubiquitous sensing offers a unique opportunity to better

design and operate building enclosures, especially in

naturally ventilated or mix-mode buildings—a topic largely

unexplored to date.

6.2 Catalysts for market change

Disruptive and transformational technology like IoT

environmental sensing requires catalysts to propel market

transformation. Policies can serve as necessary catalysts.

For example, the State of California has legislated Wildfire

Smoke Clean Air Centers for Vulnerable Populations

(Legislature, 2020), and Seattle, Washington instituted

clean air shelters. Quantification that buildings actually

operate as clean air shelters is necessary, where continuous

monitoring enabled with IoT sensing offers a transition from

qualitative to quantitative. Certification schemes summarized

in Table 1 award points for implementation of IoT-based

continuous monitoring to characterize building operation.

Alongside additional points, IoT-based continuous

monitoring could become a cost-effective performance

evaluation solution that can replace the current sporadic,

complex and expensive evaluations by a certified assessor.

These two benefits acting in synergy represent another market

catalyst.

6.3 Interdisciplinary scientific research
opportunities

Research domains can improve their analysis of different

scales through interdisciplinary research in terms of laboratories,

departments, conferences, and other key dissemination venues.

From the technical perspective, one of the key immediate

research opportunities across all scales includes

standardization of sensor accuracy, interoperability, testing

protocols, and data quality. This innovation is especially

necessary for TVOC sensors where both accuracy and

calibration require standardization and particulate matter

sensors where differences between laboratory and field

calibration need to be addressed. Another important

multidisciplinary research opportunity includes the validation

of guidelines for sampling and analytics of human-related

metrics across the three scales. The current absence of

evidence-based guidelines for sampling and analytics of

human-related metrics (e.g., thermal comfort, exposure,

health, and productivity) across the three scales impedes the

successful adoption of IoT technologies. The emerging guidelines

for building IoT sensing (e.g., RESET, WELL v2) would benefit

from the establishment of the performance metrics and from the

ability to convert data into simple indicators that can be

optimized for human exposures and experiences. A significant

challenge to bringing these opportunities to realization is the lack

of research grants opportunities that will focus on the value of

interdisciplinary problems and the incentive structure of

academic careers. With the industry moving at a faster pace

than scientific evidence, these domains are risking creating a

situation where the implementation of this technology will not

realize its full potential.

6.4 Seeking consent from individuals and
privacy technologies

One of the key questions is how data created by these

different scales is going to interface with the humans that

create them. There is much risk abatement and security that

can be gained from large-scale urban sensing, but the opposite

can also be true when unintended applications are derivations

that create risks from the data sources. Just as no one envisions

the apps that exist on smartphones today, no one realized the

risks of surveillance from ubiquitous smartphone cameras. But

just as with smartphones, IoT and being able to distribute it to

continuous sensing will have benefits that far outweigh the risks

that address health, energy security, social well-being and

happiness. A solution for the integration of various scales of

data includes the development of technologies and privacy

standards that give users the choice as to what part of their

data can be used for which purposes. The COVID-19 crisis is a

great example of a situation in which the convergence of various

data sources from IoT could assist in the ability to mitigate the

spread of the disease and the privacy tolerances of people who

provide those data are changed due to the potential impact those

data convergences could have.

6.5 Data visualization and human-in-the-
loop interactive technologies

In order for cities, buildings, and humans to make informed

decisions based on shared information–they need to achieve

more advanced means of communication with each other. Air

quality information is challenging to interpret (Kovalerchuk

et al.) considering that it consist of real time multidimensional
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matrix (e.g., CO, NOx, SOx, PMx). Besides multidimensional

matrix of pollutants, citizens cannot rely on thier experience

because unhealthy tresholds defined by air quality standards

might not be detected by olfactory systems (Wolkoff 1998;

Wolkoff and Nielsen 2001). To make this complx decisin

making problem easier for citizens to understand and

ultimately adjust their bahavior to reduce exposure, traditional

way to inform the public about the ambient or urban scale air

pollution is through using air pollution indexes like the Pollution

Standard Index (PSI), Air Quality Indexes (AQI) by EPA or

revised AQI (RAQI) (Plaia and Ruggieri 2011). AQI, for example,

converts the measured level of a single air pollutant (e.g. PM2.5)

into an index from 0 to 500, and based on the value of the index

air quality is assigned to one of six categories that range from

“Good” to “Harmful.” For different levels of citizen’s sensitivity

to air pollution and for each categorey AQI would recomend

certain behavior (e.g., people with lung problems should stay at

home and close to windows). Due to the limited number of

measurement stations, large areas on the urban scale would be

described with the single number.

Visual analytics is an important component for humans to

make decisions based on the data generated. Several visual

analytics paradigms are available with the most popular giving

guidance on how the data are presented (Schneider et al., 2019).

Air quality informtion presented on a map is effective way to

communicate air pollution information (Zhou et al., 2016)

especially comparing to the tables with numbers (Chen 2019).

An interactive web-based geo-visual analytics platform with

Coordinated Multiple Views were expored for air quality

visualization using geographical map, a linear timeline, a

heatmap, and adjacent small multiples maps representing

changes associated with timestamps (Wu et al., 2020). Several

geo-visual analytics based city dashboards were compared in Jing

et al. (2019) with a focus on users observation of spatio and

temporal changes, but not if presented information lead to

bahavioral changes that caused reduction of exposure.

Bachechi et al. (Kovalerchuk et al.) reviewd 6 air quality

platforms across eight features and showed that only two fo

those platforms actually suggest actionable items general public

can perform to reduce exposure. Effective communication of data

collected through environmental sensing is especially important

for air quality, as our olfactory systems cannot detect all air

pollutants. A number of dashboards were studies in Jing et al.

(2019) classified into operational, analytical and strategical

dashboards from the perspective of air quality information

presentation and forecasting. Althoug displac of the air quality

information can be public, intended stakeholders can be city

planners, regulatory bodies, or citizens. It is very important to

understand who will be the users and what is the intended

outcome of tthe use. If general public needs to consume

information presented on the dashboard it is important to

present that information in a way useful for citizens. A recent

study analyzed whether people noticed or used dashboards in the

first place and what attributes contribute to a higher probability

of human interaction (Granderson et al., 2011).

Several methodologies have surfaced in recent years from the

visual analytics community focused on the user testing of

building performance dashboards. Benchmarking against the

thresholds, visualizing quantities as contour (heat) maps and

dashboards.

IAQ visualization with occupants text message notification

resulted in improved understanding of occpants understanding

of IAQ in their homes (Moore et al., 2018). Kim and Li (2020)

proposed a new conceptual framework to increase IAQ awarness,

and understanding of the received information that can

potentially result in meaningful actions. Kim et al. (2020)

designed a child-friendly interface prototypes for IAQ

visualization. In the follow-up study Kim et al. (2019)

reported that children assess IAQ through a sense of smell,

visual cleanliness, and thermal comfort and that these aspects

need to be incorporated in the visualization tool to be effective,

that were incorporated in AirBuddy, app for indoor and outdoor

air quality visualization (Kim et al., 2022). Kim and Paulos (2010)

and Kim et al. (2013) developed IAQ visualization tool that

enabled IAQ awareness increase and promoted changes in

occupant behaviour that resulted in reduction of their

exposure. This work showed potential that beyond increasing

awareness and understanding IAQ visualization can lead to

people’s behavioural changes and reduction of exposure. Some

recent advancments utilized Virtual Reality to visualize IAQ

(Natephra et al., 2019). Literature review of IAQ visualization

proposed a framework that allows the definition of needs, assets,

and appropriate tools for visualization for virus risk monitoring

(Niedrite et al., 2022).

The last component of this human-system interaction is the

ability of humans to give their subjective feedback information

for various purposes. In the thermal comfort studies, in

particular, it is well-understood that purely environmental or

physiological approaches are not fully equipped for

characterizing comfort conditions in urban spaces and an

understanding of the dynamic “human parameter” (including

the psychological adaptation, cultural and climatic history,

environmental stimulation and expectations) is necessary for

determining the comfort implications for the people

(Nikolopoulou et al., 2001; Porter et al., 2004). However, the

collection and analysis of subjective feedback is typically a tedious

or expensive task. Accordingly, the integration of the momentary

assessment with IoT techniques could revolutionize how the data

in the built environment is tagged with information generated by

occupants. Smartphone and smartwatch apps can be leveraged to

create ecological momentary assessments that prompt a user to

provide instantaneous feedback in an elegant and least-intrusive

way (Moskowitz and Young, 2006; Jayathissa et al., 2020; Sae-

Zhang et al., 2020; Quintana et al., 2021; Abdelrahman et al.,

2022). An example of wearable devices that can be leveraged to

create ecological momentary assessments that prompt a user to
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TABLE 2 Summary of the key review findings.

Urban scale Building scale Personal scale

Measured quantities C Tair, RH, MRT, Vair, CO, NO2, SO2,
PM2.5, PM10, O3, except Pb all aspects
required by NAAQS

C Tair, RH, CO, CO2, NO2, SO2, PM2.5,
PM10, O3, TVOC overall as a mixture of all
constituent gases

C Environmental: T, RH, CO2, PM,
TVOC. NO2, O3 biometrix, location

The key objectives C Mapping of air quality and thermal
environment (general public, urban
planners, policy makers)

C Characterize building performance C Measure personal thermal/air pollution
exposures

C Identification of air pollution hotspots C Validate compliance with thermal
environmental requirements (e.g.,
ASHRAE Standard 55)

C Momentary perception assessment
thermal/air quality

C Validate compliance with indoor air quality
requirements (e.g ASHRAE Standard
62.1 and 62.2)

C Crowsourcing for pollution hotspot
identification

C Crowsourcing for thermal environment
identification

Novelty and improvements
compared to established
methods

C Significantly reduced size of stationary
sensing

C Non intrusive measurement method C Adequate personal thermal exposure
representation

C Mobile sensing mounted on the vehincles C Continous characterization of thermal
environment and indoor air quality

C Adequate personal air pollution
exposure representation

C Crowdsourcing of information from
different sources

C Increased measurement granularity C Momentarily assessment of thermal
comfort

C Increased measurement granularity C Reduced cost of indoor environment
characterization

C Momentarily assessment of perceived
ambient and indoor air quality

C Low cost and accessible

C Information used by general public

C Improve 2D and 3D air quality mapping

Technical and scientific
challenges to be adressed

C Optimal spatial sensor granularity and
placement across different urban
typologies

C Validation of existing sensor placement
strategies

C Development and validation of sensor
placement methods

C Field calibration of low-cost sensors C Standards for sensor accuracy, repetability
and reliability

C Standards for sensor measurement
accuracy, sensitivity, selectivity and drift

C Quality control of converging
crowdsourcing data with stationary
measurement stations

C Development of calibration and drift
correction methods

C Calibration methods

C Development of low-cost Pb sensor to
fully represent air pollution martix
proposed by NAAQS

C Development of velocity sensors C Converging multiple data streams to
understand relationhip between
exposure and behaviour

C Calibration of low-cost measurement in
the field

C Development of sensors for
characterication of radiant heat exchange

C Scailability of momentary feedback

C Inclusion as standard measurement
technique

C Frequency of data collection

C Methods for environment description CDevelop sensor naming schema to automate
data analysis

C Low-cost wind speed data accuracy
improvement

C Accuracy of sensing network vs. accuracy of
a single sensor

C Development of capability to measure
individual VOC

C Understand if proxy sensing can be
upscaled and undeer which conditions

C Combining data from scales to better design and operate buildings

C Understanding environmental exposures and it’s relationship to human health including full set of environemntal factors that influence it

C Development of personalized thermal comfort model

C Development of personalized exposure model

Obsticle for multiscale
convergence

C Traditional lack of data integration and interoperability in the building industry

C Differentiation between standards and guidelines used in design and operation that provide market forces for integration

C Lack of standardized naming and unifie meta-modeling schemas

C Strong separation of research fields driven by funding sources and publishing communities
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provide instantaneous feedback in an elegant way (Moskowitz

and Young, 2006; Sae-Zhang et al., 2020; Quintana et al., 2021;

Abdelrahman et al., 2022). An example of using smartphone apps

is discussed by Liu et al. (2018) where subjects are prompted by

their cell phone (through a text reminder) to take an online

survey and report their “right now” thermal comfort as often as

possible.

7 Discussion

The current review covers the implementation of IoT

environmental sensing on urban, building, and personal scales

from the data convergence point. We have identified scientific

and engineering advancements and challenges on each scale and

between the scales. The state-of-the-art knowledge, current gaps,

and necessary research directions are below. The results are

summarizes in Table 2.

There are several commonplace issues for each scale. On all

three scales, there is a need to develop guidelines on what to

measure, where and with what density to place sensors, how

frequently we need to collect data, what is required accuracy, and

how to utilize the collected dataset to consider data convergence. On

urban and building scales, several air pollution and themral

enviroment sensors have reached acceptable performance, sensors

for some of the sensors needs to be develop to capture a sufficient

number of air pollution indicators and some air pollution sensir

require accuracy and reliability improvements. IoT sensors for

thermal environment characterization need the development of

capabilities to measure air velocity and radiant aspects of heat

exchange at a large scale and at a low cost. All the listed

developments are necessary to advance and upscale adoptation of

this new technology.

Urban scale air quality and thermal environment management

through IoT sensing is a promising line of research and innovation.

Recent advances in IoT sensing and information technologies offer

an opportunity to create insights from many urban environmental

measurements at reduced cost and effort. On an urban scale,

stationary and mobile sensors (vehicles, smartphones, portable,

wearable) are used to characterize the environment. Presently,

worldwide legislation linking urban air pollution and heat levels,

population exposures, and health outcomes do not sufficiently

consider data collected by low-cost IoT sensors. To be

incorporated into existing guidelines for urban climate

characterization and ultimately legislation, it is necessary to set

the right set of indicators which is supported by optimal

monitoring guidelines that contain information about what/how

to measure, how often, and where, and minimal data quality

standards as well as how to utilize the acquired dataset.

Building scale IoT sensing is gaining traction through

requirements of building certification schemes. The low-cost

IAQ sensors need development to capture air pollutants of

concern (e.g., individual VOCs, formaldehyde, ultrafine

particles, various inorganic gases, etc.). The development of

indexes for building benchmarking considering continuous

monitoring capabilities represents areas with the highest

research priorities. Proxy sensing is a promising emerging

field that maps environmental signatures to different activities,

with insufficiently understood scalability at this point.

Contrary to the conventional sensing units, which were often

initiated from the research domain and later entered the

commercial market, the wearable IoT movement is primarily

led by the commercial sector with research trying to catch

up. Personal scale sensing enables refined assessment of

environmental exposures and development of relevant models,

but a number of questions regarding the hardware, accuracy,

measurement location considering personal air pollution cloud

or thermal boundary layer and data convergence need to be

resolved first.

Converging data of different types and from different sources

represent a challenge that a few studies attempted to address.

Developing practical frameworks to enable data integration is a

research and engineering priority centered around the practical

application of scaling data convergence. The development of

standardized naming schemas is necessary. The current

literature review identified a significant disconnect between

each scale and significant inter-scale data underutilization.

Traditional inter-scale differentiation is strongly supported by

academic research with only a few studies that show how data

from one scale can promote a more efficient operation related to

another scale. Privacy, security, and liability are issues of concern,

although more detail analysis was outside the scope of the current

review. Some recent studies and sensing guidelines suggest that

IAQ data should be communicated to people, but it is still not

known what the most efficient ways are to present data and what

behavioral outcomes they might produce. While there are

immediate opportunities to enhance the uptake of IoT sensing

technologies across cities, buildings, and humans by overcoming

data, technological, and research silos, fundamental scientific and

engineering developments are still necessary.

On the scientific forefront, the most important path

forward is development of personal thermal comfort and air

pollution exposure models that will provide deeper

understanding of how environment impacts health,

productivity and comfort. One of the major issue is basic

understanding of what quantities we need to include into

personalized thermal comfort model that will enable proper

mapping of comfort as a state of mind and measuremable

thermal parameters both environmental and bimetrix.

Another extremly important scientific issue is understanding

relationship between air pollution exposure and human health

and productivity. This area has received significant attention

over the years, linking large scale population health survey to

remote air quality stations. Personal samling and manual

association of other types of data to the measured exposure

dataset is a tedious process are resulted in limited data sets. We
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are still missing full understanding of the set of air pollutants

and their respective concentrations that have acute and chronic

health effects and how to link personalized exposure to health

impacts. These are the two most significant advancement that

will require technology enabled advancements in science

because we need ability to generate large data sets. Personal

exposure and thermal comfort models represent a paradigm

shift and their development should be one of the scientific

priorities. A wide range of data analytics, machine learning, and

statistical methods are being developed to support the use of

generated data sets.

At the engineering forefront, converging occupant feedback

and environment characterization on urban, building, and

personal scales will help us to tune building operation

setpoints to maximize the thermal comfort of a particular

occupant cohort and reduce their exposures.
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