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Modeling parameters (MP) of reinforced concrete columns are a critical component
of performance-based seismic assessment methodologies because in these
approaches damage is estimated based on element deformations calculated using
non-linear models. To ensure model fidelity and consistency of assessment results,
performance-based seismic assessment methods in ASCE 41, ACI 369.1, and ACI
374.3R prescribemodeling parameters calibrated using experimental data. This paper
introduces a new set of equations to calculate reinforcedconcrete columnnon-linear
modeling parameters optimized for design verification of new buildings using
response history analysis. Unlike modeling parameters provided in ACI 369.1 and
ASCE 41, intended for columns of older non-ductile buildings, the equations for
modeling parameters anl and bnl presented in this study were calibrated to simulate
the load-deformation envelope of reinforced concrete columns that meet the
detailing requirements of modern seismic design codes. Specifically, the proposed
equations are intended for usewith provisions in ACI 374.3R,Chapter 18 andAppendix
A of ACI 318-19 and Chapter 16 of ASCE/SEI 7-16. The proposed equations were
calibrated using the ACI Committee 369 column database, which includes column
configuration parameters, material properties, and deformation capacity modeling
parameters inferred from the measured response of columns under load reversals.
Dimension reduction techniques were applied to visualize different clusters of data in
2D space using the negative log-likelihood score. This technique allowed decreasing
the non-linearity of the problem by identifying a subset of columns with load-
deformation behavior representative of new construction conforming to current
codes requirements. A Neural Network model (NN) was calibrated and used to
perform parametric variations to identify the most relevant input parameters and
characterize their effect on modeling parameters, and to stablish the degree of non-
linearity between each input variable and themodel output. Developing equations for
modeling parameters applicable to a wide range of columns is challenging, so this
research considered subsets of the database representative of new construction
columns to calibrate simple practical equations. Linear regression models including
the most relevant features from the parametric study were calibrated for rectangular
and circular columns. The proposed linear regression equations were found to
provide better estimates of new construction column modeling parameters than
the available tables in ACI 374.3R and ASCE 41-13, and the equations ASCE 41-17.
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Introduction

The ASCE/SEI 7 Standard (ASCE, 2007) and the ACI 318 (318-
19, 2019) Building Code recently introduced provisions for design
and verification of new building structures using response history
analysis. The goal of these provisions is to provide guidance to
engineers seeking to go beyond the prescriptive design approach in
the main body of the 318 Building Code by implementing
performance-based design. The provisions for response history
analysis in Appendix A of 318-19 (318-19, 2019) give engineers
significant latitude in choosing modeling parameters and acceptance
criteria. Section A.6.2 of ACI 318-19 (318-19, 2019) stipulates that
“modeling of member non-linear behavior, including effective
stiffness, expected strength, expected deformation capacity, and
hysteresis under force or deformation reversals, shall be
substantiated by applicable physical test data and shall not be
extrapolated beyond the limits of testing.” The commentary of
Section RA.6.2 of ACI 318-19 (318-19, 2019) states that
“multiple element formulations and material models are
appropriate for use in inelastic dynamic analysis of concrete
structures. ASCE/SEI 41 (Elwood et al., 2007), ACI 374.3R (374,
2016), ACI 369.1 (ACI-369.1-17, 2017), and NIST GCR 17-917-46
(NIST) provide guidance on modeling and defining model
parameters.”

Among the references cited in Section RA.6.2 of ACI 318-19
(318-19, 2019), ACI 374.3R-16 (374, 2016) provides two sets of
modeling parameters for columns. Table 4 of ACI 374.3R-16 (374,
2016) provides modeling parameters for flexure-shear and flexure
critical rectangular columns adopted from Tables 8–10 of ASCE 41-
13 (41–13, 2013), which only provided modeling parameters for
rectangular columns. Furthermore, values for MPs a and b in Tables
8–10 of ASCE 41-13 (41–13, 2013) were chosen to be conservative.
The probability of MP a being lower than the value in Tables 8–10
was set to 15% for columns expected to fail in shear and 35% for
columns expected to fail in flexure. The probability of MP b being
lower than the value in Tables 8–10 was set to 15%. Target limits for
probabilities of exceedance were selected based on the judgment of
the ASCE/SEI 41 (Elwood et al., 2007) Supplement 1 Ad Hoc
Committee responsible for the development of Tables 8–10.

Alternatively, Table 4 of ACI 374.3R-16 (374, 2016) provide
column MP values derived using linear regression analysis of a
subset of the ACI 369 column database (Ghannoum et al., 2012) that
met detailing requirements in Chapter 18 of the 318 Building Code
(318-19, 2019). The column subset used in the calibration consisted
of 38 rectangular columns and 25 circular columns, and the linear
regression analysis was used the same input variables used by
Ghannoum and Matamoros (2014).

Modeling parameters in the ASCE 41-17 (Engineers, 2017)
Standard, adopted from Chapter 10 of ACI 369.1-17 (ACI-369.1-
17, 2017) and developed through a more complex analysis of the
ACI 369 column database by Ghannoum and Matamoros (2014),
are intended to be representative of a wide range of columns,
including non-ductile columns with detailing deficiencies.

MPs provided in the standards and documents referenced in
Section RA.6.2 of the ACI 318 (318-19, 2019) Building Code are
based on outdated information or were developed based on a data
set that included non-ductile columns. The main objective of this
paper is to address this gap by developing MP equations for new

building columns based on a more in-depth analysis of well-detailed
column data than performed for Table 4 in ACI 374.3R, and
optimized for a narrower subset of column data than the
equations developed by Ghannoum and Matamoros for ACI
369.1-17 (ACI-369.1-17, 2017).

Developing equations for MPs applicable to a wide range of
columns is challenging because parameters that affect component
behavior change depending on their configuration and the
magnitude of the actions that components are subjected to. For
example, columns subjected to high axial load are susceptible to
compression failure, so axial load and compressive strength are
important parameters. At low axial loads, the behavior is governed
by transverse reinforcement and diagonal tension properties of the
concrete instead. Reinforced concrete column MP equations in the
ACI 369.1/ASCE 41 (ACI-369.1-17, 2017; Engineers, 2017)
standards were calibrated through linear regression of an
experimental data set that lumped all component configurations
and actions, with the objective of minimizing the coefficient of
variation for the totality of the experimental data set. As a result of
this calibration approach, ACI 369.1/ASCE 41 (ACI-369.1-17, 2017;
Engineers, 2017) equations are inherently underfitted (they have a
high training and testing error), smoothing out behaviors specific to
element subsets by eliminating complex non-linear relationships
between input variables and MPs (Lynn, 2001; Elwood and Moehle,
2005b; a; Sezen and Moehle, 2006; Elwood et al., 2007; Matamoros
et al., 2008; Woods and Matamoros, 2010; Ghannoum and
Matamoros, 2014). Equations for modeling parameters in ACI
374.3R (374, 2016) are less susceptible to underfitting because
they were calibrated with and intended to be used on a smaller
data set of columns with similar mode of failure, where the
relationship between input variables and column MPs is
significantly less non-linear. The main limitation of the
provisions of ACI 374.3R (374, 2016) is that they are based on
simple regression of a limited data set, which adopted the same input
parameters used in ACI 369.1 for non-ductile columns even though
the mode of failure is different, and where non-linear interactions
between input and output parameters were not considered.

In recent years, there has been extensive research on the use of
Machine Learning (ML) tools in the field of structural engineering.
These tools have found diverse applications in various aspects of
structural engineering such as structural analysis, design, health
monitoring, mechanical behavior and capacity of structural
elements, and optimization. A comprehensive overview of the
broad spectrum of ML applications in structural engineering was
presented by Thai (2022) in their review. By employing computer-
based vision and object detection algorithms, Shahin et al. (2023)
monitored and detected instances of workers failing to comply with
standard safety practices, such as not wearing personal protective
equipment (PPE). In 2022 Dabiri et al. (2022) used NN, Random
Forest and regression-based models to predict the displacement
ductilitu ration of RC joints. This paper seeks to address a research
gap in the literature, namely, the lack of references that explore the
usage of machine learning tools for studying non-linear modeling
parameters of reinforced concrete columns.

In this paper, reinforced concrete column MP equations were
developed for use in non-linear dynamic analyses using a
methodology that addresses the limitations of provisions in ACI
374.3R. Unlike MPs provided in ACI 369.1 and ASCE 41, intended
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for columns of older non-ductile buildings, the equations for MPs
anl and bnl presented in this study were calibrated to simulate the
load-deformation envelope of reinforced concrete columns that
meet the detailing requirements of modern seismic design codes.
Specifically, the proposed equations are intended for use with
provisions in ACI 374.3R, Chapter 18 and Appendix A of ACI
318-19 and Chapter 16 of ASCE/SEI 7-16.

In performance-based seismic assessment methodologies, non-
linear numerical models are used to simulate component behavior
using lateral force versus lateral deformation envelopes (Figure 1)
and hysteresis rules. The shape of the envelopes is defined using
element MPs provided in ACI 369.1/ASCE 41 (ACI-369.1-17, 2017;
Engineers, 2017) standards and the ACI 374.3R guide (374, 2016).

Two critical parameters that define the shape of load-deformation
envelopes are non-linear modeling parameters a and b, defined as
the plastic deformation at incipient lateral-strength degradation
(loss of lateral load capacity) and at incipient axial degradation
(loss of the ability to carry axial load in columns), respectively
(Figure 1). These two parameters are used to characterize the force-
deformation relationship beyond the proportional limit (point B in
Figure 1). The study proved that the implemented algorithm had
higher accuracy than the equations and tables provided in previous
design standards and guides.

Data analytics

The database included 319 rectangular column tests and
171 circular column tests for a total of 490 tests (Ghannoum
and Matamoros, 2014). The data set included only quasi-static
tests of experimental models. Of all the columns in the database,
37 rectangular columns and 24 circular columns satisfied ACI
318-11 Building Code criteria for columns of Special Moment
Resisting Frames (SMRF). A limited number of rectangular
columns (25 out of 171) were reported to have ties with 90o

hooks, not allowed for SMRF systems according to the provisions
of the 318 Building Code. The tie hook-angle was unknown for
26 rectangular columns, while 269 rectangular columns had ties
with 135o hooks or welded ends. A limited number of circular
columns had ties with lapped ends (13 out of 171), and except
from one case, all circular columns had spirals, ties with welded
ends, or hooks anchored into the core. Columns in the data
subsets used to calibrate the equations were chosen based on their
behavior and mode of failure instead of strict adherence to the

FIGURE 1
ASCE 41 (41–13, 2013) force-displacement envelope for non-
linear modeling of deformation-controlled RC components.

FIGURE 2
Histogram of input variables in column database for (A) rectangular and (B) circular columns.
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provisions in Chapter 18 of the ACI 318 Building Code for SMRF.
Code provisions are very complex and change with every code
cycle, so it was deemed more important to capture behavior and
mode of failure patterns in the data to gain statistical significance.
Filtering based on strict compliance with the 318 Building Code
would have resulted in a very small data set to calibrate the
equations. This approach to filtering the data provided a data set
sufficiently large to allow the use of machine learning techniques,
although a larger set would untroubledly be preferrable.

The experimental data set used in this study included six non-
dimensional input variables and two output MPs, a and b, for each
column test. The input variables are column span-to-depth ratio (ad),
axial load ratio ( P

Agf
′
c

), longitudinal reinforcement ratio (ρl),
transverse reinforcement ratio (ρt = Av

bw s), transverse
reinforcement spacing-to-effective depth ratio (Sd), and the ratio
of shear demand at yielding of the longitudinal reinforcement-to-
shear capacity or shear capacity ratio (Vy

V0
). Histograms of input

variables used in this study are shown in Figures 2A, B for
rectangular and circular columns, respectively.

The correlation matrix for input and output parameter a of
rectangular columns is shown in Figure 3. Values of
1 and −1 indicate the highest correlation and inverse correlation
between two variables. The first and second highest correlation
between input variables was found between s

d and
Vy

V0
(R = 0.54), and

between ρt and
P

Agf
′
c

(R = 0.35), respectively. The strong correlation
between s

d and
Vy

V0
was expected because both variables are inversely

proportional to shear capacity, and shows that to some extent the
two are redundant. The strong correlation between ρt and P

Agf
′
c

reflects a feature of the data set, where researchers chose to use
larger amounts of transverse reinforcement in columns with high
axial load ratios likely because they perceived that they required
more confinement and because they were expected to produce
higher shear demands. The first and second highest inverse
correlation between input variables was found between ρt and

Vy

V0

(R = −0.61), and between a
d and

Vy

V0
(R = −0.51), respectively. The first

was expected because shear strength V0 increases with ρt. The
second reflects that shear demand at yield Vy decreases with a

d ratio.
The input variables with the first and second highest correlation

withMP awere ρt (R = 0.32) and a
d (R = 0.23), respectively. The input

variables with the first and second highest inverse correlation with
MP a were Vy

V0
(R = −0.45) and s

d (R = −0.38), respectively.

Data visualization and different
machine learning algorithms

The TSNE algorithm (Van der Maaten and Hinton, 2008) was
used as a dimension reduction method to reduce the six features in
the dataset to two features and facilitate visualization in 2D space.
The Gaussian Mixture Model (GMM) (Duda and Hart, 1973) was
then used to visualize the non-linear separability of clusters of data.
Four different clusters of data were identified using these techniques,
shown in Figure 4A, where the center of each cluster is identified
with a red dot. The black dots in Figure 4A correspond to individual

FIGURE 3
Correlationmatrix of the input and output (Mp a) variables used in
this study.

FIGURE 4
The Negative log-likelihood predicted by GMM for (A) the whole dataset and (B) flexure-critical empirical subset for rectangular columns.
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data points, and the clouds around each cluster center show the
distribution of the data. Areas of Figure 4A with similar background
color indicate that relationships among the data are linear, and
changes in the background color are indicative of non-linear
behavior. Figure 4A shows that there is a high degree of non-
linearity in the column dataset which necessitates the use of non-
linear models to accurately capture the relationships between inputs
and outputs if a single equation is used to estimate MPs of columns
in all four clusters.

Four different clusters were identified for the complete dataset in
Figure 4A. The data was tracked back to identify the salient
characteristics of each cluster, including the number of specimens
and the mode of failure. These and minimum, maximum and mean
of each input variable are reported in Table 1, where mean values are
shown in parenthesis. The last two rows in Table 1 show statistically
significant input variables for parameters a and b based on a p-value
analysis. Among the clusters, the (ad) ratio decreased from cluster 1 to
cluster 4, while the shear load ratio increased. Clusters 1 and
4 represent slender and short columns respectively. Cluster 2 and
3, with average (ad) ratios of 5.5 and 3.7 and shear load ratios of

0.39 and 0.62, respectively, represent ductile columns where
longitudinal reinforcement yields prior to shear failure and
columns that fail in flexure. Column mode of failure is taken
from the ACI 369 column database.

Of the four data clusters in Figure 4A and Table 1, clusters 2 and
3 are of most interest for this study. These clusters correspond to
intermediate columns with shear span-to-depth ratios between
3 and 6, and with a large percentage of columns failing in flexure
(Table 1). Among clusters 2 and 3, cluster 2 had the largest
percentage of columns identified as failing in flexure while cluster
3 columns had smaller shear span-to-depth ratios.

Figure 4B shows the same analysis for another subset of data
including flexure critical columns with span-to-depth ratio between
3–7 and axial load ratio less than 0.5. This subset was created
through trial and error to be representative of new construction
building columns considering commonly used column dimensions,
axial load limits in the 318 Building Code, amount of transverse
reinforcement, and mode of failure, and is designated throughout
this study as the flexure-critical empirical subset. Figure 4B shows
that the background color was similar for all columns in the flexure-

TABLE 1 Data analytics of rectangular column clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

No. of specimens 33 37 138 106

No. of Flexure-critical specimens 31 34 83 49

No. of Flexure-Shear critical specimens 2 3 49 23

No. of Shear critical specimens 0 0 6 34

(ad) interval 6.6–8.9 (7.1) 5.3–5.6 (5.5) 2.9–4.7 (3.7) 1.1–2.8 (2.1)

( P
Agf

′
c

) interval 0–0.53 (0.3) 0–0.46 (0.27) 0–0.7 (0.17) 0–0.9 (0.29)

(ρl) interval 0.010–0.025 (0.021) 0.015–0.060 (0.033) 0.012–0.038 (0.021) 0.006–0.069 (0.024)

(ρt) interval 0.0009–0.032 (0.012) 0.002–0.016 (0.008) 0.0006–0.022 (0.005) 0.0007–0.016 (0.007)

(Sd) interval 0.20–0.95 (0.37) 0.24–0.74 (0.44) 0.14–1.16 (0.39) 0.11–1.27 (0.31)

(Vy

V0
) interval 0.09–0.99 (0.25) 0.19–0.68 (0.39) 0.12–1.94 (0.62) 0.13–1.94 (0.75)

Significant inputs for MP a (ad), (
P

Agf
′
c

), (Sd) (ρl), (ρt), (ad) ( P
Agf

′
c

), (Vy

V0
), (Sd) (ρt), (ad), ( P

Agf
′
c

), (Sd)

Significant inputs for MP b (ad), (
P

Agf
′
c

), (Sd) (ρl), (Vy

V0
), (Sd) ( P

Agf
′
c

), (Vy

V0
), (ρl) (ρt), (ad), ( P

Agf
′
c

)

TABLE 2 Accuracy metrics R2 and MSE for MP a of rectangular columns calculated with different machine learning algorithms.

Complete dataset Flexure-critical empirical subset

Training subset Test subset Training subset Test subset

R2 MSE (×103) R2 MSE (×103) R2 MSE (×103) R2 MSE (×103)

Linear Regression 41.0 0.215 35.6 0.219 41.6 0.185 53.7 0.069

Ridge Regression 37.0 0.230 33.2 0.227 37.0 0.198 33.8 0.131

Polynomial Regression 55.7 0.162 43.9 0.176 65.2 0.108 31.9 0.143

Decision Tree 99.5 0.002 33.3 0.209 98.0 0.005 15.6 0.268

Neural Network 93.0 0.025 61.3 0.045 81.3 0.055 52.3 0.136
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critical empirical subset, which is indicative of linear relationships
between inputs and outputs.

The goal of the cluster analysis and the creation of the flexure-
critical empirical subset was to identify larger sets of data to develop
MP equations than subsets including columns that strictly complied
with the provisions in Chapter 18 of the 318 Building Code. Larger
sets improve statistical significance and improve the opportunity to
capture the effects of input variables on MPs, while constraining the
analysis to columns with large deformation capacities.

The next step in the process was to choose and calibrate a
machine learning model that captured the effect of input variables
on MPs. We also evaluated the accuracy of different machine
learning algorithms to estimate column non-linear modeling
parameters a and b. We found that deep Neural Networks (NNs)
were the most accurate machine learning models to match

experimentally measured values in a database of 490 pseudo-
static column tests. The analysis showed that NN models
provided the most accurate estimates and that NN accuracy did
not diminish at the periphery of the experimental data set. The NN
models are available to users through a GUI script in GitHub1 and
also through a web service2.

Different linear regression and non-linear models like Decision
Tree (DT), Polynomial Regression Model (PRM) and Neural
Network (NN) were used to identify the machine learning
algorithm that provided the most accurate estimates of MPs a
and b. All models were trained using 85% of the data selected at
random and evaluated using the remaining 15%. Accuracy metrics
R2 and MSE for MP a of rectangular columns are presented in
Table 2 for both the complete column set, including all clusters, and
the subset including only columns identified as having failed in
flexure. A combination of high accuracy for the training subset and
low accuracy for the evaluation subset is indicative of a tendency to
overfit the data. Low accuracy for both the training and evaluation
subsets are indicative of a tendency to underfit the data.

Accuracy metrics in Table 2 indicate that for the complete
dataset the DT model had a tendency to overfit that data while
the linear regression models had a tendency to underfit the data. The
NN and PRM performed the best capturing the non-linearity of the
complete dataset. The most accurate estimates of MP a for

FIGURE 5
PDPs for MP a of rectangular columns for (A) the whole data set and (B) flexure-critical empirical subset.

TABLE 3 p-value analysis for the flexure-critical empirical column subset.

aR bR

Variable p-value Variable p-value

(ad) 0.0000 (ad) 0.0000

( P
Agf′

c
) 0.6472 ( P

Agf′
c
) 0.2103

ρl 0.0002 ρl 0.0000

ρt 0.0629 ρt 0.6891

(sd) 0.0010 (sd) 0.0042

(Vy

Vo
) 0.1028 (Vy

Vo
) 0.0546

1 H, K. K. GitHub repository address. Available at; https://github.com/
hamidkhodadadi/NN-models_MPs.

2 H, K. K. The NN and classification model web service at. Available at;
https://cloudcomputing-web-331222.uc.r.appspot.com.
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rectangular columns were provided by the NNmodel, which did not
exhibit tendencies to overfit or underfit the data.

For the flexure-critical empirical subset the analysis illustrated in
Figure 4 indicates that non-linearity of the data set decreased by choosing
columns with similar behavior, which reduced the tendency of linear
regression models to underfit the data and improved their accuracy as
indicated by the metrics in Table 2. For this subset, the accuracy of the
linear regression models for the evaluation set improved so much that it
was comparable or better to that of the NNmodel for MP a. These linear
regression models were used to create the equations to calculate new
construction column MPs proposed in this study.

Partial dependence plots (PDP)

Partial Dependence Plots (PDPs) (Friedman, 2001) are
presented to illustrate the marginal effect that each feature had
on the predicted outcome of the NN model, and to identify
mathematical expressions that adequately represent their effect
on MPs. These plots show the relationship between the NN
model output and each input variable for different sets of data in
the database. The optimal statistical distribution of each input was
determined using the Kolmogorov-Smirnov test in Scipy (Virtanen

et al., 2020). After that, 100,000 samples were generated for each
point of the PDP (Friedman, 2001) using the optimal statistical
distribution. For each point, the input variable under study was kept
constant and combined with variations of the remaining input
variables to generate an input set, which was fed to the NN
model. The average of the outputs of all input sets along with the
average plus and minus two times the standard deviation are plotted
in Figure 5 for MP a of rectangular columns for the complete dataset
(Figure 5A) and the flexure-critical empirical subset (Figure 5B).

Figure 5A shows that for the complete dataset, the relationships
between input variables and NN model output are non-linear,
except for ρl and ρt. Among all variables, the (ad) ratio introduced
themost non-linearity into themodel. Figure 5B shows that the non-
linearity of the problem is significantly reduced by segregating and
limiting the analysis to a subset of flexure-critical columns. The
relationships between model inputs and output shown in Figure 5B
are mostly linear.

A p-value analysis was performed to control the degree of
importance of each input variable. In this type of analysis lower
p-values are indicative of higher statistical significance. Calculated
p-values for each variable presented in Table 3 indicate that the (ad)
ratio, ρl, (s

d) ratio and ρt were the most influential parameters
affecting MP a of rectangular columns. The (ad) ratio, ρl, (sd) ratio
and (Vy

Vo
) were found to be the most important parameters for MP b

of rectangular columns.
Using the most influential parameters, linear regression models

were fitted to offer a simple set of formulas (Eqs 1, 2) to estimate
non-linear MPs of flexure-critical rectangular columns.

aR � 0.075 − 0.007
a

d
( ) + 0.33 ρl( ) − 0.37 ρt( ) − 0.037

s

d
( ) (1)

bR � 0.106 − 0.011
a

d
( ) + 0.55 ρl( ) − 0.03

s

d
( ) − 0.02

Vy

Vo
( ) (2)

Accuracy metrics R2, Mean Squared Error (MSE), and standard
deviation, mean and coefficient of variation of the measured to
calculated ratio for Eqs 1, 2 were compared with metrics for Table 4
in ACI 374.3R (374, 2016) and the column MP equations in ASCE
41-17 (Engineers, 2017) in Table 4. As it shown in Table 4, for all the
metrics, the proposed formula provided much more accurate
estimates of MPs a and b than ACI 374.3R and ASCE 41-17
(374, 2016; Engineers, 2017).

A similar analysis was performed for columns in clusters 2 and
3 to provide a measure of how the different procedures perform for a
broader set consisting of columns with flexure-shear and flexure-
critical columns that with a significant number of specimens that

TABLE 4 Accuracy metrics for proposed equations, ACI 374.3R and ASCE 41-17 for rectangular columns in the flexure-critical empirical subset.

Rectangular columns flexure-critical
empirical subset

a Measured to
calculated a

b Measured to
calculated b

R2

(%)
MSE ×103 Std Mean C.O.V. R2

(%)
MSE ×103 Std Mean C.O.V.

Eqs 1, 2 43 0.17 0.37 0.99 0.37 45 0.20 0.28 0.99 0.28

ACI 374 Table 4.1.2a −5 0.31 0.55 0.97 0.56 −62 0.61 0.57 1.08 0.53

ASCE 41-17 −15 0.34 0.65 1.22 0.53 3 0.36 0.37 0.96 0.38

FIGURE 6
The Negative log-likelihood predicted by GMM for clusters
2 and 3.
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although had ductile behavior did not meet the detailing
requirements in Chapter 18 of the ACI 318 Building Code. For
example, Table 1 shows that clusters 2 and 3 included some columns
with hoop spacing exceeding d/2. The 2D visualization of the cluster
2 + cluster 3 dataset and the negative log-likelihood is presented in
Figure 6. Although all the specimens (black dots) appear in a fringe
with similar background color, they are clearly grouped in two
different clusters.

The PDPs for MP a of columns in clusters 2 and 3 are presented
in Figure 7. As it shown in the figure, all input variables with the
exception of ρl and ρt exhibited non-linear relationships with the
NN model output MP a. A comparison between Figure 7 and
Figure 5B shows that the cluster 2 + cluster 3 subset exhibits a
higher degree of non-linearity than the flexure-critical empirical
subset, so it is expected that linear regression models will be less
accurate due to their lack of flexibility.

A p-value analysis was performed (Table 5) to determine the
statistical significance of input variables in the presence of the new

features introduced to capture non-linearity (the second order of all
input variables except ρl and ρt). The p-value analysis indicates that
ρl, (s

d)2, (s
d) and (Vy

Vo
)2 are the most influential parameters affecting

MP a of rectangular columns. For MP b of rectangular columns the
most influential parameters were ( P

Agf′
c
)2, ρl, (s

d)2, (s
d) and (Vy

Vo
).

Using the most influential parameters, Polynomial Regression
Models (PRM) were fitted to develop a set of formulas (Eqs 3, 4) to
estimate non-linear MPs of new construction rectangular columns.

aR � 0.054 + 0.22 ρl( ) + 0.05
s

d
( )2

− 0.09
s

d
( ) − 0.006

Vy

Vo
( )

2

(3)

bR � 0.078−0.09 P

Agf′
c

( )
2

+ 0.40 ρl( ) + 0.06
s

d
( )2

− 0.09
s

d
( )

− 0.02
Vy

Vo
( ) (4)

Accuracy metrics R2, Mean Squared Error (MSE) and standard
deviation, mean and coefficient of variation of the measured to

FIGURE 7
PDPs for MP a of rectangular columns for clusters 2 and 3.
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calculated ratio for Eqs 3, 4 are compared with those from Eqs 1, 2,
calibrated based on the flexure-critical empirical data set, and ASCE
41-17 (Engineers, 2017) in Table 6.

The PRM models performed better at capturing the non-
linearity of the broader dataset and provided the most accurate
estimates of MPs a and b for data in clusters 2 and 3. Also, the linear
regression models calibrated using the flexure-critical empirical
subset (Eqs 1, 2) provided more accurate estimates of MPs a and
b than ASCE 41-17 in terms of standard deviation, mean and
coefficient of variation of measured to calculated target outputs,
as well as a lower MSE for MP b. The lower flexibility of Eqs 1, 2 and
the ASCE 41-17 equations with respect to Eqs 3, 4 is also reflected in
the mean measured-to-calculated ratios for MPs a and b. Equations
1, 2, calibrated on the basis of the most ductile data set, had the
lowest mean values (0.83 and 0.87 for MPs a and b). Equations 2, 3,
calibrated on the basis of less ductile columns than Eqs 1, 2, had
mean values of approximately 1.0. The equations in the ASCE 41-
17 provisions (Engineers, 2017), calibrated using the largest number
of non-ductile columns, had the highest mean values (1.39 and
1.32 for MPs a and b).

The cumulative distribution of column total rotation for the
three data sets (the complete database, clusters 2 and 3, and the
flexure-critical empirical subset) are shown in Figure 8. Section
16.4 of ASCE 7 (ASCE, 2007) states that mean drift ratio must not

exceed two times the limits in Table 12.12-1, which for most
structures in Risk categories I or II is 2%. The vertical line in
Figure 8, designated minimum allowable drift capacity,
corresponds to a total rotation of 4% (2 times 2%) and all
columns to the right of the vertical line exceed this limit.
Figure 8 shows that the flexure-critical empirical subset had
the lowest percentage of columns not meeting this limit
(approximately 25%), followed by the cluster 2 + cluster
3 subset (approximately 32%) and the complete dataset
(approximately 50%).

A simplification was performed by eliminating input variable a/
d from Eqs 1, 2 taking advantage of the fact that the effect of this
parameter is relatively small for columns with a/d ratios between
3 and 5 of typical building columns (Figures 5A, B). The simplified
Eqs 5, 6 for MPs or rectangular columns include only 3 input
variables.

aR � 0.05 − 0.05
P

Agf′
c

( ) + 0.60 ρt( ) − 0.03
s

d
( ) (5)

bR � 0.05 − 0.05
P

Agf′
c

( ) + 0.55 ρl( ) + 0.40 ρt( ) (6)

Accuracy and precision metrics for Eqs 1–6, ACI 374R3 Table 4
and ASCE 41-17 equations for the subset of specimens showing total
rotation capacity exceeding 4% are presented in Table 7. Simplified
Eqs 5, 6 had similar MSEs to Eqs 1–4, and much lower MSEs than
existing provisions. Similarly, Eqs 5, 6 had significantly lower COVs
than existing provisions.

Circular column analysis

Log-likelihood scores of circular column data is presented in
Figure 9. The procedure to create Figure 9 is the same used for
rectangular columns. Figure 9A shows that there were two distinct
clusters for circular columns, with the center of each shown with a
red dot. Salient features of the two clusters are presented in Table 8.
The mean (ad) ratio was higher for cluster 2 than cluster 1, which
included short and some intermediate columns. Cluster 2 had a
lower mean shear load ratio, which is consistent with higher a/d
ratios. Cluster 2, which had a mean (ad) ratio of 6.6 and shear load
ratio of 0.34, was the most representative of new construction
columns with flexure-critical behavior.

Figure 9B shows the log-likelihood score of circular columns
labelled as flexure critical in the database, without any constraint on
the span-to-depth and axial load ratios. Figure 9B shows that all

TABLE 5 p-value analysis for cluster 2 and 3 subset.

aR bR

Variable p-value Variable p-value

(ad)2 0.9583 (ad)2 0.1166

(ad) 0.7416 (ad) 0.1638

( P
Agf′

c
)2 0.4974 ( P

Agf′
c
)2 0.0096

( P
Agf′

c
) 0.2859 ( P

Agf′
c
) 0.9592

ρl 0.0017 ρl 0.0001

ρt 0.9401 ρt 0.6562

(sd)2 0.0001 (sd)2 0.0028

(sd) 0.0000 (sd) 0.0001

(Vy

Vo
)2 0.2112 (Vy

Vo
)2 0.9072

(Vy

Vo
) 0.6262 (Vy

Vo
) 0.1152

TABLE 6 Accuracy metrics for Eq. 1 through Eq. 4 and ASCE 41-17 (Engineers, 2017) for cluster 2 + cluster 3 subset.

Rectangular column cluster 2 and 3 subset a Measured to
calculated a

b Measured to
calculated b

R2 (%) MSE ×103 Std Mean C.O.V. R2 (%) MSE ×103 Std Mean C.O.V.

Eqs 1, 2 18 0.27 0.42 0.83 0.50 16 0.37 0.38 0.87 0.44

Eqs 3, 4 39 0.20 0.48 0.98 0.49 53 0.20 0.81 1.0 0.81

ASCE 41-17 17 0.27 1.15 1.39 0.83 −16 0.51 2.37 1.32 1.8
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black dots had similar scores, indicative of linear behavior of all the
data in the flexure-critical subset, which was taken as representative
of new construction columns.

Following the same procedure used for rectangular columns a
p-value analysis was conducted to the significance of each input
variable. The results of the p-value analysis are presented in
Table 9. These values indicate that (ad) ratio, axial load ratio ( P

Agf′
c
)

, ρl and (s
d) ratio were the most influential parameters affecting

MP a of circular columns. For MP b of circular columns the axial
load ratio ( P

Agf′
c
), (s

d) ratio and (Vy

Vo
) were the most influential

parameters.
Linear regression models including the most influential

parameters were fitted to the test data, resulting in Eqs 7, 8
to estimate non-linear MPs of new construction circular
columns.

aR � 0.037 + 0.004
a

d
( ) − 0.05

P

Agf′
c

( ) + 0.37 ρl( ) − 0.05
s

d
( ) (7)

bR � 0.094 − 0.07
P

Agf′
c

( ) − 0.02
s

d
( ) − 0.05

Vy

Vo
( ) (8)

Accuracy metrics R2, Mean Squared Error (MSE) and standard
deviation, mean and coefficient of variation of the measured to
calculated ratio for Eqs 7, 8 are compared with performance metrics
for Table 4 of ACI 374.3R and ASCE 41-17 (374, 2016; Engineers,
2017) equations in Table 10.

As it shown in Table 9, for all the metrics, the proposed
equations provided better estimates than ASCE 41-17 (Engineers,
2017) estimates, especially for the MP b. The proposed equations
had similar performance metrics as Table 4 for MP a, but
significantly better performance for MP b.

FIGURE 8
Cumulative distribution of the total rotation of rectangular columns.

TABLE 7 Performance metrics for Eqs 1–6, ACI 374.3R Table 4 and ASCE41-17 equations for rectangular columns with rotation capacity greater than 4%.

Rectangular columns (total rotation capacity
greater than 4%)

a Measured to
calculated a

b Measured to
calculated b

R2

(%)
MSE ×103 Std Mean C.O.V. R2

(%)
MSE ×
103

Std Mean C.O.V.

Eqs 1, 2 −52 0.25 0.72 1.27 0.56 −54 0.40 0.58 1.14 0.50

Eqs 3, 4 −48 0.25 0.37 1.26 0.29 −40 0.37 0.38 1.15 0.33

Eqs 5, 6 −57 0.26 0.39 1.29 0.30 −11 0.29 0.29 1.03 0.28

ACI 374 Table 4.1.2a −66 0.28 0.46 1.27 0.36 −124 0.59 0.57 1.28 0.44

ASCE 41-17 −206 0.51 2.82 1.97 1.43 −96 0.52 3.51 1.48 2.37
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Following the same procedure adopted for rectangular columns
a simpler set of equations was created for columns with span-to-
depth ratios between 3–5, typical of building structures. The
regression model was recalibrated based on the new empirical
subset. Simplified Eqs 9, 10 for MPs of circular columns include
only the three most significant parameters.

aR � 0.07 − 0.09
P

Agf′
c

( ) + 0.5 ρl( ) − 0.05
Vy

Vo
( ) (9)

bR � 0.09 − 0.09
P

Agf′
c

( ) + 0.4 ρl( ) − 0.05
Vy

Vo
( ) (10)

The cumulative distribution of column total rotation for the
three data sets (the complete database, clusters 2, and the flexure-

FIGURE 9
The Negative log-likelihood predicted by GMM for (A) the whole dataset and (B) flexure-critical subset for circular columns.

TABLE 8 Data analytics for circular column clusters.

Cluster 1 Cluster 2

No. of specimens 102 69

No. of Flexure -critical specimens 30 69

No. of Flexure-Shear critical specimens 38 0

No. of Shear critical specimens 34 0

(ad) interval 1.2–3.7 (2.5) 4.6–12.5 (6.6)

( P
Agf

′
c

) interval 0–0.74 (0.13) 0–0.74 (0.16)

(ρl) interval 0.0046–0.052 (0.026) 0.012–0.056 (0.024)

(ρt) interval 0.0003–0.015 (0.0036) 0.0008–0.016 (0.004)

(Sd) interval 0.04–0.68 (0.24) 0.05–0.83 (0.16)

(Vy

V0
) interval 0.29–2.55 (1.1) 0.13–0.83 (0.34)

Significant inputs for MP a (ad), (
P

Agf
′
c

), (Vy

V0
) ( P

Agf
′
c

), (ad), (
Vy

V0
)

Significant inputs for MP b (ρt), (ad), ( P
Agf

′
c

) ( P
Agf

′
c

), (ad), (
Vy

V0
)

TABLE 9 p-value analysis for the flexure-critical circular column subset.

aR bR

Variable p-value Variable p-value

(ad) 0.1047 (ad) 0.1964

( P
Agf′

c
) 0.0001 ( P

Agf′
c
) 0.0000

ρl 0.1366 ρl 0.2784

ρt 0.6128 ρt 0.1691

(sd) 0.1471 (sd) 0.1450

(Vy

Vo
) 0.2288 (Vy

Vo
) 0.0408
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critical subset) are shown in Figure 10. The vertical line in
Figure 10 corresponds to a total rotation of 4%, or 2 times
2%, and all columns to the right of the vertical line exceed
this limit. Figure 10 shows that the cluster 2 subset had the
lowest percentage of columns not meeting this limit

(approximately 11%), followed by the flexure-critical subset
(approximately 32%) and the complete dataset (approximately
41%). Figure 10 shows that in general columns in the circular
column set have higher deformation capacities than columns in
the rectangular column set.

TABLE 10 Performance metrics for Eqs 7, 8; Table 4 of ACI 374.3R and ASCE 41-17 equations for new construction circular columns.

Circular columns (flexure-critical) a For measured to
calculated a

b For measured to
calculated b

R2 (%) MSE ×103 Std Mean C.O.V. R2 (%) MSE × 103 Std Mean C.O.V.

Eqs 7, 8 33 0.45 0.40 1.0 0.40 44 0.35 0.28 0.99 0.28

ACI 374 (Table 4.1.2a) 33 0.25 0.38 1.01 0.37 −13 0.48 0.42 0.98 0.43

ASCE 41-17 14 0.58 0.56 1.28 0.44 −21 0.77 1.96 1.16 1.68

FIGURE 10
Cumulative distribution of the total rotation for circular column set and subsets.

TABLE 11 Performance metrics for Eqs 7–10 and ASCE 41-17 equations for MPs of circular columns with rotation capacity exceeding than 4%.

Circular columns (total rotation capacity
greater than 4%)

a For measured to
calculated a

b For measured to
calculated b

R2

(%)
MSE ×103 Std Mean C.O.V. R2

(%)
MSE ×
103

Std Mean C.O.V.

Eqs 7, 8 18 0.46 0.38 1.08 0.35 31 0.36 0.33 1.06 0.31

Eqs 9, 10 13 0.48 0.46 1.26 0.36 34 0.34 0.27 0.94 0.29

ACI 374 (Table 4.1.2a) −1 0.56 0.45 1.14 0.39 −15 0.60 0.39 1.0 0.39

ASCE 41-17 −15 0.64 0.65 1.46 0.44 −165 1.39 0.35 0.79 0.44
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Performance metrics for Eqs 7–10 and the equations for circular
columns in ASCE 41-17 (Engineers, 2017) for the subset of
specimens showing total rotation capacity more than 4% in the
database is presented in Table 11. On the basis of this column subset,
the performance of Eqs 7–10 is better than existing code provisions.

Conclusion

The main hypothesis of the study was that the machine learning
methodology adopted could produce more accurate equations for
new-construction column MPs and increase their statistical
significance by identifying a larger training subset with a lower
degree of non-linearity between input parameters andmodel output.
It was found that the accuracy of modeling parameters calculated
with the simplified proposed Eqs 5, 6, 9, 10, for rectangular and
circular columns respectively, was better than existing provisions in
ACI 374.3R and ASCE 41-17. It was also found that equations
calibrated using data from older and new construction columns,
such as the provisions in ASCE 41-17, produce significantly more
conservative estimates of new construction column modeling
parameters than equations calibrated solely with experimental
data from new construction columns. This observation is
important because ACI 374.3R, Appendix A of the 318-
19 Building Code and ASCE-7 allow the use of column modeling
parameters in ASCE 41-17 to create non-linear models, and their
conservatism may lead to bias in calculated element deformations
and estimates of damage. For this reason it is recommended that the
proposed equations be used to create non-linear models for new
construction instead of the provisions in ASCE 41-17.

In regards to the machine learning methodology used in the
study, it was found that visualizing data in the 2D space and
clustering the specimens in bins was a successful approach to
reduce the non-linearity of relationships between input
variables and MPs for new construction columns. It was also
found that reducing the degree of non-linearity by taking
advantage of machine learning to choose better calibration
sets for linear regression improved the accuracy and
precision of MP estimates within the range of interest. Using
this approach, the study produced simple and accurate
formulas to estimate non-linear MPs of new construction
columns (Eqs 5, 6, 9, 10) with better performance than ACI
374.3R and ASCE 41-17. The study showed that both trial and
error and the combined use of the TSNE algorithm (Van der
Maaten and Hinton, 2008) the Gaussian Mixture Model
(GMM) can be successfully used as a means to calculate log-
likelihood scores and visualize the non-linearity of the data in
2D space for the purpose of identifying subsets with similar
characteristics. PDPs generated with machine learning models
were used to confirm that subsets identified in this manner had
linear relationships between model inputs and outputs.

An evaluation of different machine learning algorithms showed
that NN models provided the best estimates of MPs for the

complete column dataset, which encompassed columns with
different modes of failure and had highly non-linear
relationships between input parameters and model output. It
was found that the clustering approach adopted in this study
was successful in reducing the degree of non-linearity in the
relationships between input parameters and model output. To
that effect, it was found that simple linear regression models were
as effective as NN models for estimating MPs of the flexure-critical
empirical column subset, where non-linearity between input
parameters and model output is not significant, and did not
exhibit tendencies to overfit or underfit the data. The effect of
column set non-linearity on the accuracy of linear regression
models was confirmed through the calibration of linear and
polynomial regression models. It was shown that linear models
lost precision as the non-linearity of the data set increased, and that
polynomial regression models including higher order features of
input variables became more effective than simple regression
models as the non-linearity of the problem increased. It was
also shown that NN models were the most effective in adapting
to the non-linearity of the column data set and provided the best
estimates of column modeling parameters.
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