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Street classification is fundamental to transportation planning and design. Urban
transportation planning is mostly based on function-based classification schemes
(FCS), which classifies streets according to their respective requirements in the
pre-defined hierarchy of the urban street network (USN). This study proposes a
computational approach for a network-based categorization of street segments
(NSC). The main objectives are, first, to identify and describe NSC categories,
second, to examine the spatial distribution of street segments from FCS and NSC
within a city, and third, to compare FCS and NSC to identify similarities and
differences between the two. Centrality measures derived from network science
are computed for each street segment and then clustered based on their
topological importance. The adaption of clustering, which is a numerical
categorization technique, potentially facilitates the integration with other
analytical processes in planning and design. The quantitative description of
street characteristics obtained by this method is suitable for development of
new knowledge-based planning approaches. When extensive data or
knowledge of the real performance of streets are not available or costly, this
method provides an objective categorization from those data sets that are
readily available. The method can also assign the segments that are
categorized as “unclassified” in FCS to the categories in the NSC scheme.
Since centrality metrics are associated with the functioning of USNs, the
comparison between FCS and NSC not only contributes to the understanding
and description of the fine variations in topological properties of the segments
within each FCS class but also supports the identification of the mismatched
segments, where reassessment and adjustment is required, for example, in terms
of planning and design.
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1 Introduction

For cities, well-functioning urban street networks (USN) are essential in connecting places
and people (Noori et al., 2020). In transport planning, the categorization of streets provides a
sound basis for guidelines for managing and maintaining the street system (Dong et al., 2013).
A widely used approach to classify streets is the functional-based classification scheme (FCS),
mainly focusing on the mobility and accessibility of streets (FHWA, 2013). FCS characterizes
the role of each street in the overall urban transportation network (FHWA, 2013). Since the
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flows of motorized traffic that the network elements (i.e., street
segments) carry have an impact on the quality and liveliness of the
street system (Yerra and Levinson, 2005), a critical criterion for
classifying streets is the planned and expected annual average daily
traffic volume (FHWA, 2013). Accordingly, arterial roads are typically
roadways with high motorized traffic volumes, which by definition
“serve a large percentage of travel between cities and other activity
centres” (FHWA, 2013). By contrast, local roads typically have
relatively low traffic volumes (FHWA, 2013).

However, the common classifications based on functional
attributes, as in FCS, largely neglect street segments’ topological
properties within a network. Without considering topological
attributes, the capacity of FCS to model movement patterns
or traffic flows may be undermined (Paul, 2015). For example,
a local road, which is expected to have low levels of traffic
volumes according to the definition of FHWA, may actually
play an important role in the network if we examine its
topological characteristics from the perspective of configuration
analysis.

This study introduces a computational approach for network-
based categorization of street segments (NSC) that provides the
quantitative description of the topological characteristics of
streets segments. Centrality measures derived from network
science are computed for each street segment, which are then
clustered based on their topological importance. The adaptation
of clustering, which is a numerical categorization technique,
supports the creation of an objective categorization scheme of
street segments. In a concluding step this study compares the
centrality measures based NSC with the FCS description of the
USN of the study area (i) to identify the deviation between the two
schemes and (ii) to more accurately distinguish different
characteristic clusters within each FCS class. This allows a
pertinent evaluation with regard to questions of planning and
design, to further distinguish the heterogeneity within each FCS
class and increase the information, such as accessibility and
connectivity, in each classification.

Graph theory has been commonly applied to understand USN.
The centrality measures derived from network analysis have been
applied to extract spatial-structural properties and the topological
importance of nodes and edges in the network (Hillier, 1996; Porta
et al., 2006; Zhong, Arisona, Huang, Batty and Schmitt, 2014; Berli,
Ducruet, Martin and Seten, 2020).

Previous studies, from both the fields of space syntax and network
analysis show that investigating the structure of USNs by “collective
network properties”, which simultaneously take the relations between
all spaces in the network into consideration (Hillier, 1996; Hillier,
2012) rather than one or few (Serra et al., 2016), utimately
contributes to gaining an understanding of urban function, such
as a) traffic flows (Jiang, 2009; Kazerani and Winter 2009) and the
movement rates in different thoroughfares (Penn et al., 1998; Hillier
and Iida, 2005; Serra et al., 2015), b) movement patterns (Jiang and Liu,
2009), c) the spatial distributions of residential or retail areas
(Schwander et al., 2013; Ravulaparthy and Goulias, 2014) and d) the
human way-finding capacity (Crucitti et al., 2006; Sevtsuk et al., 2016;
Tiarasari and Kartidjo, 2021) that are network-constrained in urban
areas.

To this end, the present study builds on previous studies, but
expands upon them by adding the following crucial aspects.

Building on the methodologies from the field of space syntax
(Hillier and Iida, 2005; Turner, 2007), previous studies (Barthelemy,
2017; Berghauser-Pont et al., 2019) aim to develop a street
categorization based on only a single network centrality measure,
betweenness centrality, for the quantitative description of streets. In
the current research we emphasize, that for complex spatial
structures like urban street networks multiple centrality measures
are necessary for their analysis and description.

Works applying the Multiple Centrality Assessment (Porta et al.,
2006; Porta, et al., 2013) evaluate different features of street segments
utilizing a multi-variable approach to investigate street
characteristics separately by individual measures (Zhang and Li,
2011) (see Supplementary Figure S1 as example), instead of
applying the clustering technique to multiple centralities and
simultaneously taking the relations between all street segments
in the network into consideration. Although classification based
on separate elements allow comparison between different spatial
features, the interrelation between elements is lacking
(Berghauser-Pont et al., 2017). To fill this gap, the current
study adapts a more integrated approach: the street segments
are categorized by a cluster analysis, which combines the different
centralities simultaneously.

Other studies apply the clustering technique to integrated multi-
variables (though not multiple centrality measures) to define street
types (cf. Berghauser-Pont and Haupt, 2010; Gil et al., 2012; Serra,
2013; Barthelemy, 2017; Berghauser-Pont et al., 2017; Berghauser-
Pont et al., 2019; Boeing, 2020). This allows for a comparative analysis
of different cities to “give an objective summary of their spatial
structure, identifying common as well as unique traits”
(Berghauser-Pont et al., 2017).

Yet other studies aimed at expanding FCS for improved
Multimodal Designs (Stamatiadis et al., 2019) to identify the
location for introducing “multimodal corridors” (Tsigdinos et
al., 2020; Tsigdinos et al., 2021). However, the topological
characteristics of street segments in USN were overlooked.
Noori et al. (2020) aim to fill this gap by using deep learning
techniques to develop a classifier model and predict the functional
class of streets. The current research does not classify multiple city
networks or focus on examining the predicting ability of centrality
measures. Instead, our analysis applies centrality measures to
create a network-based categorization scheme (NSC).

The objectives of this study are: (a) to develop an automatized,
and reproducible method for applying network analysis and
machine learning for the categorisation of street segments by
computing and clustering multiple centrality dimensions, which
evaluate their accessibility, connectivity, and intermediary
capacity, as well as the importance of the neighbouring
segments; and (b) to compare and discuss the method revealing
the heterogeneous topological characteristics within each
homogeneous FCS classification. The overall objective of the
development of the method is motivated by its use in deriving
possible approaches for sustainable development of urban street
networks, e.g., by identifying possible traffic hotspots—both
conflict-prone or those with high potential for, e.g., a new bike
infrastructure.

The paper is structured as follows: The “Materials and Methods”
section provides an overview of the study area (the city of
Braunschweig) and its USN, including the spatial distribution of
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FCS. Furthermore it describes the main methodological steps and
the indicators, i.e. four centrality measures applied. The “Results”
section presents a visualization of the spatial and statistical
distribution of the four computed centrality values. Furthermore,
the outputs and findings of the clustering analysis are described,
which enables identification of different characteristic types of street
segments. The identified NSC categories are described semantically.
Lastly, the results of the comparison of NSC and FCS are explained.
In the final section, we summarize briefly and discuss the
conclusions, and give a perspective on possible future works.

2 Materials and methods

2.1 Case study: study area and data source

The NSC method was developed and tested for the city of
Braunschweig in Lower Saxony, a Federal State of Germany. The
city has a population of 0.25 million and an administrative size of
192 km2. The city of Braunschweig was selected as case study due
to the availability of relevant data and access to additional
resources such as official transport models. The spatial research
boundary is delineated by the administrative boundary of the city.
The prime data source for extraction of the USN is OpenStreetMap
(OSM) (OpenStreetMap contributors, 2021). OSM describes roads
by function and importance (key:highway) (cf. OpenStreetMap
contributors, 2023). Although it does not depict official
classifications of planning authorities due to lack of
comprehensive official data this study utilizes the definition of
the functional classification indicated by OSM. In Braunschweig,
the values of the key:highway are motorway, primary, secondary,
tertiary, residential, and unclassified roads. The total number of
segments and overall length of each classification in Braunschweig
are provided in Supplementary Table S1.

In Germany, roads are officially grouped into motorways,
country roads, main roads, collector roads, and access roads.
Furthermore, they are described by the level of their linking
function, which depends on whether the road connects big cities,
smaller towns or villages (there are 6 levels: from 0 to V). This official
classification is provided in the Guidelines for Integrated Network
Design (Richtlinien für integrierte Netzgestaltung, RIN) adopted in
2008 by the Research Society for Road and Traffic Engineering
(FGSV, 2008). Combining the level and the category of a road allows
for determining the road’s design class (Entwurfsklasse)—e.g., level
III (regional) country road. So far, Germany does not have an official
(publicly available) data set that assigns the design classes to the
existing road network (Holthaus and Thiemermann, 2022). For this
reason, the classification in OSM forms the basis for the present
study.

Figure 1 presents the USN within the administrative borders of
Braunschweig differentiated by the OSM highway keys. It shows that
the northern and southern parts of the city are mainly connected by
streets with the function of a motorway (Figure 1B), whereas its
eastern and western parts are mainly connected by primary roads
(Figure 1C). Street segments with the key:highway “residential”
facilitate smaller-scale communication between the neighbourhoods
and often form segment clusters, especially at the outer edge of the
study area (See Figure 1F).

2.2 Indicators

We define street segment categories (NSC categories) as
segments with similar topological characteristics regarding the
intermediary capacity, accessibility, connectivity, and the
importance of its neighbouring segments. USN can be
modelled with two methods. In the “primal graph” streets are
considered as edges, whereas in the “dual graph” streets are
considered as nodes. In this research, the smallest research
unit is the street segment, defined as a line segment included
in the network analysis, which is the “edge” of the “primal graph”,
with uniform characteristics located between two nodes. In the
network graph, it is represented as an edge between two nodes.
The network-based categorization of street segments proposed in
this research is based on the integrated centrality measures,
including betweenness centrality, closeness centrality, degree
centrality, and PageRank centrality.

1 Betweenness centrality (Cb)

Cb (Freeman, 1977) measures the level of intermediary capacity by
assessing the frequency of a segment that comes in between the shortest
paths among any two selected segments. The segments with higher Cb

values have a higher frequency to be passed by and aremore involved in
directing and transferring the flow in the network (Noori et al., 2020).
Cb expresses detouring or stopping-by behaviours, which is particularly
important when we regard centrality as a simplified model of human
activities (Kaoru et al., 2021). The Cb of a segment u is formally
defined as

Cb u( ) � 1
N−1( ) N−2( ) ∑

i,j∈N
u≠j,i≠j

mij u( )
mij

(1)

where Cb(u) is the Cb of a given segment u, N is the total number of
segments in the network graph, mij is the number of shortest paths
connecting i and j, while mij(u) is the number of shortest paths
connecting i and j and passing through u.

2 Closeness centrality (Cc)

Cc (Bavelas, 1950) evaluates the level of accessibility by
assessing to what extent a segment is close to all the other
segments. This makes Cc particularly suitable for measuring
accessibility (Ozuduru et al., 2021). Segments with higher Cc

have a shorter distance to other segments. In addition,
segments with the highest Cc tend to be in the centre of a
graph. Cc is the average shortest distance from a given starting
segment u to all the other segments. It is the reciprocal sum of the
shortest distance between the chosen segment u under
investigation and all the other segments. It is expressed as

Cc u( )� 1 /∑
N

n�1
S u, v( ) (2)

where Cc(u) is the Cc of a given segment u, N refers to the total
number of segments in the network graph, and S(u, v) refers to the
length of the shortest distance between the segment u and the other
segment v.
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3 Degree centrality (Cd)

Cd (Freeman, 1979) reflects connectivity by calculating the
number of neighbouring segments to which each segment is
directly connected. The more ties a segment has, the more
critical it is in the network (Crucitti et al., 2006). In a network
graph with N segments, the maximum possible degree value of a
segment isN-1, and the Cd of segment u, Cd(u), is calculated by the
following formula:

Cd u( ) � du

N−1 (3)

where Cd(u) is the Cd of a given segment u, du is the number of
segments directly connected to the segment u, N is the total number
of segments in the network graph, and N-1 is the maximum possible
degree value of a segment in the network.

4 PageRank centrality (Cp)

Cp (Page et al., 1999) ranks the segment by the importance of its
neighbouring segments. A segment is important if it links to another
important segment. Cp can be formally expressed as

Cp u( ) � 1 − d

N
∑
i∈Bv

Cp v( )
NumLinks v( ) (4)

where Cp(u) is the Cp of a given segment u, d is the probability of
randomly moving to another segment, N is the total number of
segments in the network graph, Bv is defined as the set of segments
that link to segment v, v is each possible segment that connects to
segment u, and NumLinks(v) is the number of links on segment v.

2.3 Workflow of the proposed NSC method

The proposed method of NSC compromises seven steps (see
Supplementary Figure S2):

Step 1. Define the location and boundary of the study area.

Step 2. Construct the network graph from OSM within the defined
boundaries.

The function of graph_from_place() in the OSMnx python
library is used to access the OSM repository and query the OSM
Application Programming Interface (API) Overpass to automate the

FIGURE 1
The USN in Braunschweig coloured by the FCS defined by OSM key:highway: (A) All FCS categories, (B) Motorway, (C) Primary, (D) Secondary, (E)
Tertiary, (F) Residential and (G) Unclassified.
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extraction of the primal network graph (Pezzica et al., 2019) within
the boundary of selected urban areas. The USN of Braunschweig is
visualized and represented by a connectivity graph, where the
intersections are studied as nodes and the streets as the network’s
edges. The graph representation of the street network is saved as
Shapefile (.shp).

Step 3. Convert the network graph to node and edge
geodataframes.

The network graph is converted to node and edge geodataframes
using the graph_to_gdfs() function in the OSMnx python library.

Step 4. Compute centrality measures for network segments.
To calculate the network segments’ centrality, firstly, the “line_

graph()” function in the python library of networkx is applied to
convert the graph to a line graph so edges become nodes and vice
versa; secondly, the “betweenness_centrality()”, “closeness_
centrality()”, “degree_centrality()”, “pagerank()” functions of
networkx are used to compute the centrality values for each
segment. Each segment has four values of the centrality measures,
i.e., Cb, Cc, Cd, and Cp, and z-score normalization is applied to receive
values within the range of −1 and 1. In addition, to allow
categorization of the “unclassified” segments of the FCS scheme,
the outliers are considered to investigate to which NSC category these
“unclassified” segments belong if the segments were categorized
purely by their topological characteristics. Interpreting the centrality
values these outliers may exist due to the so called “edge effect” (Crucitti
et al., 2006; Gil, 2017), also termed “boundary effect” (Park, 2009) or
“placement effect” (Chen and Dietrich, 2023). This describes the effect
of the network being cut by the defined study boundary. The segments
at the outer edges of the network have very low values and become
outliers since they are close to the defined spatial perimeter of the study,
not because of their low actual connectivity.

Characteristics of the USN in Braunschweig

The spatial and statistical distributions of the computed centrality
measures are visualized to describe the USN’s structural and
topological characteristics. The spatial distribution of these
measures presents the locations of the topologically important and,
therefore, more “central” segments in the entire network, whereas the
statistical distribution summarizes the structural and topological
characteristics of the Braunschweig USN.

1 Betweenness Centrality (Cb)

Supplementary Figure S3A presents the results of the
distribution of intermediary capacity, measured by Cb (see also
Table 1). It shows that the frequency distribution of Cb clearly
follows the power law behaviour, which means that, in the case of
Braunschweig, a large number of segments have small Cb and a small
number of segments have large Cb.

The spatial distribution of segments with Cb higher than the
75 percentile is coloured red in Supplementary Figure S1A. These
segments have higher intermediary capacity. Because the Cb is
calculated globally over the whole network, segments with higher
Cb are more critical in traveling over the entire city. They connect
different areas of the city.

2 Closeness Centrality (Cc)

Supplementary Figure S3B and Table 1 present the results of the
distribution of accessibility, which is measured by Cc. The frequency
distribution of Cc follows a normal distribution and the majority of
the segments concentrate between −0.566 and 0.584, which is also
shown by the 25 and 75 percentiles (Table 1).

The spatial distribution of the street segments with Cc higher
than 75 percentiles is coloured in dark blue in Supplementary Figure
S1B. These segments are more critical regarding their accessibility to
all other segments. Supplementary Figure S1B exhibits a clear
pattern that segments in the centre of the study area have higher
Cc while segments in the outer areas tend to have lower Cc. Apart
from the expected lower centrality of these areas, this also indicates
an overwhelming sensibility of the outer segments to the edge effects
(Gil, 2017), as explained in section 2.3.

3 Degree Centrality (Cd)

Supplementary Figure S3C present the results of the connectivity
distribution, measured by Cd. The majority of the segments have a
Cd between −0.7334 and 0.7608, which is also shown by the values of
25 and 75 percentiles in Table 1.

The spatial distribution of segments with high Cd is presented in
Supplementary Figure S1C, where segments with a Cd higher than
75 percentiles are coloured in green. It is noteworthy that, in contrast
to Cc, the segments in the neighbourhoods have higher values of Cd,
whereas the segments forming the backbone of the urban street
network, such as the motorways or primary roads, have a value of Cd

lower than 75 percentiles (segments coloured in pink). This means
that the segments in-between the neighbourhoods have lower Cd,
while segments within the neighbourhoods have higher Cd. This
indicates that one of the structural and topological characteristics of
the Braunschweig USN is that the segments used to travel between
the neighbourhoods are often not connected to many other
segments. Within the neighbourhood, the segments are well-
connected to many other segments.

4 PageRank Centrality, (Cp)

Supplementary Figure S3D shows that an exceptionally large
number of the segments concentrate in 5.3330e-17, the average Cp of
Braunschweig. Thismeans thatmost segments are linked to the segments
whose importance is at the average level. Only a small proportion of
segments are linked to important and very unimportant segments.

The Cp’s spatial distribution is presented in Supplementary Figure
S1D, where segments with aCp higher than 75 percentiles are coloured
in orange. A unique pattern in the study area is that even if a segment
is on the edge of the network, which is the peripheral area, its own
level of importance is increased as long as it is connected to an
important segment.

The computed centrality measures are the base for the following
categorization of the street segments by means of cluster analysis.

Step 5. Cluster analysis for segment categorization based on
centrality measures

The categorization of segments of similar characteristics was
performed through Hierarchical Cluster Analysis (HCA). HCA is an

Frontiers in Built Environment frontiersin.org05

Chen et al. 10.3389/fbuil.2023.1216888

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1216888


unsupervised machine learning approach for building a hierarchy of
clusters. In contrast to other clustering approaches it has the
advantage of not requiring to determine the final number of
clusters beforehand, thus providing open and unbiased results.
HCA is applied to the raw segment data to form clusters based
on common factors, i.e., the four centrality measures, among various
segment data points. In this research we utilised the
AgglomerativeClustering() function of the sci-kit-learn python
library to carry out the HCA. The parameter value of affinity,
which indicate the metric used to calculate distance between
instances, is “Euclidean”. The “Ward’s method” is chosen to be
the aggregative method. The function of “hopkins()” in the
pyclustertend python library is imported to calculate the Hopkin’s
statistic, which provides the numerical proof of the clusterability of
the data. The resulting Hopkins score of 0.026651, which is positive
and between 0 and 1, indicates that the data is not uniformly
distributed and, therefore, clustering can be useful to categorize
the observations. Also, the “silhouette_score()” function of the sci-
kit-learn python library is imported to calculate the silhouette
coefficient, which is used to evaluate the goodness of the chosen
number of clusters. The results suggest that the best number of
clusters should be two, according to silhouette score of 0.53.
However, this limits the description of a complex USN in
particular with regard to the assessment in terms of urban
planning and design. Therefore, a varying number of clusters
formed by means of HCA were examined for their feasibility
(see, e.g., Supplementary Figure S5). We randomly selected
50 street segments across the entire USN. Based on high
resolution satellite imagery (IFF, 2020), we visually assessed these
and neighbouring segments in each cluster along the specifications
of the street layout. In this contextual assessment of the clusters, six
clusters proved to be conclusive, which has the silhouette score of
0.29. In addition, the FCS also describes six categories, indicating the
need for a greater number of clusters and furthermore facilitating
comparison between the NSC and FCS. A dendrogram, in which the
euclidean distances of 0.2 was selected as the threshold value
(indicated by the horizontal line above the axis), is shown in
Supplementary Figure S4. Cutting the hierarchical tree into six
clusters returns a vector of cluster labels indicating their
memberships. This vector is then attached to the original
segment data frame for visualization and summary statistics in
the next step.

Step 6. Visualize the spatial and statistical distribution of NSCs to
describe each NSC’s characteristics.

The cluster analysis results are mapped utilizing QGIS, and
street segments are coloured by their categories to visualize the
spatial distribution of the NSC categories (see Figure 3). Descriptive
analysis of the centrality values is further facilitated by a
diagrammatic representation in order to examine the statistical
distribution of the four centrality measures within the individual
NSC categories (see Figure 2).

Step 7. Compare the NSC with FCS.
Comparison between the function- and network-based schemes

is carried out by plotting the stacked bar chart of the percentage of
NSC within each FCS (see Figure 4). The cumulative distribution
function (CDF) of the four centrality measures of each category
within FCS and NSC is presented in Figure 5. The ks_2samp()
function in the python module of scipy.stats is then performed to
carry out the 2-sample Kolmogorov–Smirnov test (KS), which
allows us to compare FCS and NSC and examine whether they
have the same distribution.

3 Results

3.1 Characteristics of the NSC categories

The segments are grouped into six clusters as a result of the HCA.
This forms the basis for the further definition of the NSC categories,
also with regard to spatial aspects such as segment length relevant
from the perspective of urban and transport planning. The
characteristics of each cluster forming the NSC categories are
described by statistical distribution presented in Table 2(a) and
Figure 2. The spatial distribution of all categories is mapped in
Figure 3. A description of the characteristics is also provided in
Table 2(b). The following steps illustrate the process of defining
and detailing the NSC from the initial clusters created.

In the course of the detailed analysis of the clusters, it became
evident that one of the distinct and recognizable factors is the average
length of the segments in each cluster. This is also plausible from the
perspective of urban (transportation) planning, e.g., with regard to
connectivity, and it can be seen spatially that the clusters with the
shorter segments describe high-density networks, for example, in the
inner-city area (see also Figure 3). Therefore theNSC groups are divided
into two groups based on their average length. NSC 1 to 4 are
characterized as long segment groups, and NSC 5 and 6 are
represented as short segment groups using the city-wide average
length (137 m) as a threshold.

TABLE 1 Descriptive statistics of the z-score of the four computed centrality measures.

Mean Standard deviation Min 25% 50% 75% Max

Betweenness Centrality
Cb

−2.7232e-17 1.0 −0.3577 −0.3451 −0.2984 −0.1064 14.9193

Closeness Centrality
Cc

3.6310e-17 1.0 −7.0932 −0.5659 −0.01195 0.5841 2.8153

Degree Centrality
Cd

2.9048e-16 1.0 −2.9747 −0.7334 0.01372 0.7608 2.2550

PageRank Centrality Cp 5.3330e-17 1.0 −3.8071 −0.1199 0.0678 0.1103 7.5850
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Next, the long- and short-segment groups are further
differentiated based on the values of their four centrality
measures. Table 2(a) and Figure 2 shows that average Cb, Cc, and
Cp values decrease from NSC 1 to NSC 6. On the other hand, the
average values of Cd increase gradually from NSC 1 to NSC 6.

Among all the categories, NSC 1 has the highest average values
in the three centrality indicesCb,Cc, andCp. Thismeans that segments in
NSC 1 have the highest level of intermediary capacity, accessibility, and
connection with very important neighbouring segments. However, it also
has the lowest averageCd (0.00030), whichmeans that they are connected
with the smallest number of other segments and, therefore, has the lowest
connectivity. As shown in Figure 3B, segments in NSC 1 play an essential
role in connecting the northern and southern areas of the city. Figure 3A
shows thatNSC1 is only connected to segments inNSC2,which explains
the low average Cd. On the whole, NSC 1 can be characterized as long
segments with the highest intermediary capacity, accessibility, connection
with very important neighbouring segments, and low connectivity.

Among the long segments, NSC 2 and 3 have medium
intermediary capacity (average Cb = 0.06343 and 0.0273) and
accessibility (average Cc = 0.03515 and 0.032688). The main
difference between NSC 2 and 3 concerns their connectivity, where
NSC 2 has a lower averageCd (0.00035) than NSC 3 (0.00043). Another
difference can be found in the connectivity distribution, Cd, as shown in
Figure 2C. Compared with NSC 3, NSC 2 has lower connectivity, which
means that segments in NSC 2 are connected to a smaller number of
segments. By contrast, the broader distribution range of Cd in
NSC 3 indicates that segments belonging to this category are
connected to a large and small number of other segments. In sum,
NSC 2 and 3 are characterized as long segments with medium
intermediary capacity and accessibility, whereas NSC 2 has lower
connectivity than NSC 3.

Among the long segment groups, NSC 4 has the lowest level of
intermediary capacity (average Cb = 0.00872) and accessibility
(average Cc = 0.03025). However, the level of connectivity,
measured by average Cd (0.00045), is the highest among the
NSCs with long segments. This means that the segments of
NSC 4 are connected to more other segments, compared to
NSC 1, NSC 2, and NSC 3 segments. As shown in Figure 3E, the
ring road along the outer edge of the historical city center and the
roads connecting central and outer areas start to appear in NSC.
Their roles in the network system can be defined as connecting the
neighbourhoods distributed across the city, and at least one of the
nodes of these segments is connected to multiple segments. This

explains why its connectivity is high. Therefore, NSC 4 is
characterized as long segments with low intermediary capacity,
low accessibility, and high connectivity.

NSC 5 and 6 share the common feature of having short segments
with the lowest level of intermediary capacity, as they both have the lowest
average Cb (0.00099 and 0.00078). Furthermore, they both connect to
segments that are not very important, which is indicated by their lowest
averageCp (both are 0.00009).On the other hand, their highest averageCd

(0.00047 and 0.00048) among all NSC categories means that the number
of segments they are connected to is the largest, which means NSC 5 and
6 have the highest connectivity. The most obvious feature that can
distinguish NSC 5 and 6 is their level of accessibility, Cc, as shown in
Figure 2B. NSC 5 has higher average Cc than NSC 6. This means that
NSC 6 ismore likely to be found in the outer peripheral areas thanNSC5,
as shown in Figures 3G, H. Therefore, NSC 5 and 6 can be described as
short segments with low intermediary capacity, connecting to neighbouring
segments with low importance and high connectivity.

3.2 Comparison between the network-
based and the function-based method

The comparison between the FCS and theNSC is divided into three
steps. First of all, the percentages of differentNSC categories within each
FCS class are presented in Figure 4 to distinguish the topological
heterogeneity within each FCS class and increase the information
such as accessibility and connectivity in each class. Secondly, the
cumulative distribution function (CDF) of the four centrality
measures within each category in FCS and NSC is visualized in
Figure 5. Finally, the KS is carried out to examine whether FCS and
NSC have the same distribution and how similar these two schemes are.

1 Comparing the results of network-based with the function-
based categories

NSC 1 and the majority of NSC 2 segments belong to motorways in
FCS (Figure 4; Supplementary Table S2), reflecting the characteristics of
NSC 1 and 2 as long segments with high intermediary capacity,
accessibility, connection to very important neighbouring segments and
low connectivity, all of which are the typical features of motorways.

Secondly, more than 36% of the motorways and primary roads
are categorized as NSC 5 and 6, characterized by short segments with
low intermediary capacity, connecting to neighbouring segments with

FIGURE 2
Box plot of the statistical distribution of (A) Cb, (B) Cc, (C) Cd, and (D) Cp by each NSC category.
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low importance and high connectivity. There is a mismatch between
some features of these segments and the typical expectations
regarding the motorways and primary roads. Such roads are
expected to carry heavy loads of traffic volume, but topologically
their centrality values are low. These segments should be the location
for collecting further data regarding the actual traffic volume.

At the same time, more than 30% of the tertiary and 3% of the
residential roads in the NSC 3 and 4 have middle levels of
importance in terms of intermediary capacity and accessibility.
Thus, an inevitable mismatch between the expected traffic
volume and the topological features is also observable with
regard to these roads.

Finally, segments belonging to the “unclassified” group in the
FCS are perhaps the most interesting for further investigation. Based
on the FCS, it is unclear how much traffic should be expected for

these segments. However, based on the NSC, more than 10% of these
segments can be clearly categorized as belonging to NSC 3 and 4.

In sum, the segments with conflicting or indecisive
categorizations between FCS and NSC require further
investigation. On-site data collection potentially allows the
discrepancy to be validated or determined.

2 Comparing cumulative frequency distribution of centrality
measures within each category

Further investigation in this section aims to explore to what
extent the FCS deviates from the NSC. The cumulative
distribution function of the four centrality measures within
each category in the FCS and the NSC is used to visualize their
distribution patterns. To quantify the differences between the FCS

TABLE 2 (a) Descriptive statistics and (b) specification of the characteristics of each NSC category.

(a)

NSC Category Cb Cc Cd Cp Length (m)

Entire study area mean −2.72E-17 3.63E-17 2.90E-16 5.33E-17 137.87

std. 1.00008 1.00008 1.00008 1.00008 188.09

NSC 1 mean 11.07996 2.004781 −1.34465 3.102888 884.18

std. 2.06078 0.55207 0.71572 2.61676 643.56

NSC 2 mean 5.11387 1.73304 −0.92313 0.33594 406.75

std. 0.95385 0.58772 0.94852 1.93397 461.61

NSC 3 mean 1.99691 1.11581 −0.30213 0.19387 271.59

std. 0.66505 0.80855 1.10508 1.38743 325.10

NSC 4 mean 0.39487 0.505561 −0.13242 0.114004 177.28

std. 0.31635 0.75614 0.96265 1.25615 269.87

NSC 5 mean −0.27248 0.564619 0.002011 −0.05537 119.04

std. 0.10503 0.48230 1.00145 0.96455 126.27

NSC 6 mean −0.29024 −0.80204 0.102035 −0.04173 116.26

std. 0.08675 0.79458 0.97546 0.76475 130.22

(b)

NSC
category

Length Betweenness centrality:
Intermediary

Closeness centrality:
Accessibility

Degree centrality:
Connectivity

PageRank centrality

NSC 1 Long High High Lowest Most connected to important
neighbouring segments

NSC 2 Medium Medium 2nd lowest connectivity among
long segments

NSC 3 2nd highest connectivity among
long segments

NSC 4 Low Low Highest connectivity among
long segments

NSC 5 Short low intermediary, high connectivity, connecting to neighbouring segments with low level of importance
and high connectivity

Least connected to important
neighbouring segments

NSC 6
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FIGURE 4
Visualization of distribution of different NSC categories within each FCS.

FIGURE 3
Map of USN colored by the identified categories through the proposed network-based method: (A) NSC 1 to 6, (B) NSC 1, (C) NSC 2, (D) NSC 3, (E)
NSC 4, (F) NSC 5 and (G) NSC 6.
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and the NSC, the KS, which is a nonparametric method in
statistics for comparing two samples, is then carried out to
measure the greatest distance and detect the difference in both
the location and the shape of the cumulative distribution
functions of the FCS and the NSC.

The null hypothesis of the KS is that the two samples were
drawn from the same distribution, and there is no difference
between the FCS and the NSC. The resulting KS value is
evaluated by the p-value (see Table 3) to decide whether this
null hypothesis is rejected. The significance level of the p-value is

FIGURE 5
Cumulative distribution function (CDF) of the four centrality measures of each category within FCS and NSC.
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set at 0.05. If p > 0.05, it is assumed that the null hypothesis cannot
be dismissed, which means that the FCS and the NSC are sampled
from the same distribution. This is the case with the Cd of category
I, the Cd of category III, and the Cp of category II (see Figure 5;
Table 3). This means that among all the categories in the FCS and
the NSC, only these three pairs can be sampled from the same
distribution for a 5% significance, and the distributions of these
three pairs are equal. In other words, the topological similarity
between the FCS and the NSC only exists in categories I and III in
terms of the Cd and in category II in terms of the Cp. For all the
other categories, there is no topological similarity between the
pairs of the FCS and the NSC because their p < 0.05, so the null
hypothesis is rejected.

4 Conclusion

The authors introduce a network-based method for
categorizing the segments of urban street networks. By
calculating the centrality measures of the segments and
applying cluster analysis, street segments with similar
topological characteristics are grouped together. These
categories are characterized and their spatial distribution
within a city is analyzed. The results show that six network-
based segment categories can be distinguished based on different
levels of intermediary capacity, accessibility, connectivity, and
levels of importance of the neighbouring segments.

The adaptation of clustering as a numerical categorization
technique, facilitates the integration with other analytical and
planning procedures in urban (transport) planning and design.
One of the advantages of the method is that when extensive
data-collection or prior local knowledge of the real performance
of streets are not available or too cost- and resource-consuming, it
provides an objective categorization from available open data or self-
generated data based on e.g., satellite imagery (Verma et al., 2021).

The results of this research can serve as the initial step for
further analyses, such as proposing appropriate types of
interventions according to street segments’ characteristics also

in terms of spatial design and evaluating the resilience and
robustness of the network against disruption or congestion.
For example, the segments with a high level of topological
importance could be analysed in detail by setting up sensor
technology to collect data to analyse the traffic flows of
various transportation modes (motorized, cycling, walking) to
explore whether the topological importance is associated with a
higher proportion of all or specific modes of transport. The
quantitative descriptions of street characteristics produced by
this method is suitable for the comparisons between different
urban areas based on which research regarding network qualities
in different urban fabrics is possible.

This study furthermore focused on the development of the
methodology to compare FCS with NCS to identify the potential
linkages and mismatches between the two schemes. The
heterogeneity within each FCS class can be identified, and street
segments of the same functional class can be further distinguished by
their topological importance. The comparison between FCS and
NSC contributes to the understanding and description of the subtle
differences in the topological properties of the segments within the
individual FCS classes. It was found that these are not congruent. For
example, in the case of Braunschweig, the segments belonging to
“motorway” have very diverse topological characteristics because all
six categories of the NSC can be found in this FCS category. Also,
among the “unclassified” category in the FCS, more than 10% of
segments have the middle level of importance regarding their
intermediary capacity and accessibility in the NSC. Finally, the
cumulative distribution function results and the KS provide
evidence that the FCS significantly deviates from the NSC in the
case of Braunschweig. Except for the top two classes (i.e., motorway
and primary in FCS and NSC 1 and 2), no topological similarity is
found between the pairs of FCS and NSC. With these results, this
study intends to initiate and stimulate further discussion on the
extent to which street segments should be categorized based on their
functionality, topological importance, or both of these attributes
combined.

This can potentially serve to describe challenges and opportunities
for transportation planning with respect to specific sections of the
network. For transport authorities dealing with transport
infrastructure investments, maintenance, design, and operation, the
quantitative assessment of street segments’ performance is essential.
However, in practice, close monitoring of the performance and
patterns of movement flows in the entire urban street network is
not always possible due the cost- or resource constraints. The
proposed approach in the current research and the comparison
between the function- and network-based schemes can help to (a)
identify mismatched segments (FCS different to NCS); and (b) the
most critical central places in the network, where real-time data could
be collected with view to monitoring the efficiency and accessibility of
the overall transportation networks, and to identify the segments that
require further planning within each FCS class.

A concrete example of application could be the examination of
residential streets, where speed limits are usually imposed, so that
noise levels are generally expected to be lower. However, if the NSC
analysis shows that a residential street has a potentially high level of
use and connectivity, installing noise sensors in the street section in
question enables to check whether the noise level is higher than
expected on residential roads.

TABLE 3 KS value and p-value (in bracket) from KS test. Between FCS and NSC,
the topological similarity only exists in categories I and III because their KS
values are not significant enough, and the null hypothesis that the two
samples are from the same distribution need to be accepted.

Cb Cc Cd Cp

I 0.9223***
(5.551e-16)

0.3996**
(1.887e-03)

0.2734 (7.688e-02) 0.6184***
(5.511e-08)

II 0.9963***
(0.000e+00)

0.6146***
(0.000e+00)

0.2094*
(1.918e-02)*

0.0890 (7.761e-01)

III 0.8914***
(4.441e-16)

0.3521***
(4.441e-16)

0.0926 (7.159e-02) 0.1333**
(2.096e-03)

IV 0.5736***
(2.998e-15)

0.2415***
(2.998e-15)

0.1979***
(1.643e-14)

0.0826**
(6.786e-03)

V 0.0945***
(8.212e-12)

0.5299***
(5.551e-16)

0.0678***
(2.717e-06)

0.1332***
(5.551e-16)

VI 0.1875**
(5.560e-03)

0.5360***
(3.331e-16)

0.1566*
(3.270e-02)*

k0.2171***
(7.517e-04)

Note: ***p < .001, **p < .01, *p < .05.
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Another potential application relates to network planning for
different modes of transport: if a segment has a high level of
topological importance but is currently without e.g., a bike lane, it
may be a potential candidate for adding the respective infrastructure to
increase the bike network’s overall connectivity and quality. From the
perspective of encouraging more sustainable and active transportation
modes, increasing the functionality of a street segment may also
contribute to higher network connectivity for pedestrians or cyclists.

Overall, the network-based categorization of street segments
(NSC-method) can be understood as a (spatially) high resolved
tool to analyse and describe urban street networks (USN). In
addition to the further investigation and validation of the method
as such—e.g. regarding the scalability, advancement of the
algorithms and criteria adopted or research on spatial
structural effects of different street networks on this
categorization method by applying this approach to more
cities—the NSC-method enables an integrated characterization
of street types by means of linking them with other data, in
particular data describing the built environment of the respective
segments. This can contribute to gain new insights into the
interdependencies of network qualities (described by NSC)
and urban spatial qualities through further research.
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