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Introduction: In recent years, the growing interest in building energy
consumption and estimation has led to a wealth of energy data and Building
Information Modelling (BIM), providing ample opportunities for data-driven
algorithms to be widely applied in the building industry. However, despite
promising accuracy in data-driven models for building energy estimation, they
only consider building elements and their attributes independently and neglect
the interconnected relationship of building elements. Also, Current data-driven
models lack interpretability and are often treated as black boxes. As a result, the
models cannot be fully trusted for engineering without reasoning the underlying
mechanisms behind the estimation.

Method: This paper emphasizes the potential of graph-based learning algorithms,
specifically GraphSAGE, in utilizing the enriched semantic, geometry, and room
topology information derived from BIM data. The aim is to identify critical zones
within the building based on their energy consumption characteristics. Besides
that, the paper proposed a GraphSAGE explainable model by adopting the SHAP
with the proposed NE-GraphSAGE prediction model to make more transparency
behind the data-driven models.

Results and Discussion: Preliminary results demonstrate the potential to improve
pre-construction and post-construction steps by identifying critical zones in
buildings and identifying the parameters which affected the efficiency of the
zones with low energy consumption.

KEYWORDS

BIM, graph machine learning, energy efficiency consumption, interpretable model BIM,
interpretable model

1 Introduction

The global energy consumption rate has experienced a significant increase over the past
decade, reflecting the growing demand for energy resources. This is not good news leading to
sustainability and fighting climate change. The building sector accounts for over 40% of
global energy consumption, as reported in 2022 (Saini et al., 2022). Energy consumption in
buildings is projected to increase by an average of 1.3% per year from 2018 to 2050 in OECD
countries, including the United States, Canada, Europe, and Australia. Non-OECD
countries, such as the Middle East, China, and Russia, are expected to experience a
higher annual increase of over 2% in energy consumption. On the other hand, climate
change is an emerging issue that needs to be considered and makes our buildings more
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resilient and sustainable to heat loss and ener15.6 GB waste (Teske
et al., 2018; Ahmad and Zhang, 2020).

To deal with these concerns, recent research on new building
development projects focused on seeking novel ways to design and
retrofit the buildings more energy-efficiently. To do so, the interest
in using newly available datasets such as Building Information
Modelling (BIM) and applying data-driven solutions emerge as
the efficient and suitable option for the Building Energy
Consumption Estimation (BECE) analysis rather than employing
classical physics-based models (Li et al., 2010) to improve the
estimation and prediction of building energy consumption in
different stages of design, development, and retrofitting.

Data-driven-based BECE requires detailed static and dynamic
data to simulate building energy consumption, eventually leading to
prediction learning from historical/available data. Data-driven
energy consumption prediction has been a prominent area of
research in recent years. Numerous review studies have been
conducted to analyze and evaluate existing data-driven
approaches. These studies contribute to advancing knowledge
and informing the building industry, for example, categorizing
building energy consumption prediction methods into several
categories, including elaborate engineering methods, simplified
engineering methods, statistical methods, Artificial Neural
Network (ANN)-based methods, Support Vector Machine
(SVM)-based methods, and grey models. They conducted a
comparative analysis considering various factors such as model
complexity, ease of use, running speed, required inputs, and
accuracy of the methods. Their analysis provided insights into
the strengths and weaknesses of different approaches for energy
consumption prediction in buildings. Ahmad et al. (Ahmad et al.,
2014) specifically examined Artificial Neural Network (ANN)-
based, Support Vector Machine (SVM)-based, and hybrid
methods for building energy consumption prediction. They
discussed these methods’ principles, advantages, and
disadvantages, providing valuable insights for researchers and
practitioners. Fumo (Fumo, 2014) focused on summarizing the
classification of building energy consumption prediction methods
proposed in various studies. They emphasized the importance of
model calibration and verification, essential steps in the modeling
process. Their review highlighted the significance of accurate and
reliable predictions in the field and conducted a comprehensive
review encompassing various aspects of building energy modeling
and prediction. They examined state-of-the-art studies on indoor
building space energy modeling and prediction and critical
component modeling such as photovoltaic power generation.

Additionally, they covered topics such as building energy
modeling for demand response, agent-based building energy
modeling, and system identification for building energy
modeling. This inclusive review provided a broad perspective on
building energy modeling and prediction facets, contributing to a
comprehensive understanding of the field. Li et al. (Atila, Karas, and
Rahman, 2013) reviewed building energy benchmarking methods
and presented a flowchart to guide users in selecting the appropriate
prediction method. Their work aimed to assist users in making
informed decisions based on their specific needs. Chalal et al. (Chalal
et al., 2016) focused on energy consumption prediction at building
and urban scales. They classified and discussed the available
methods within each scale, providing insights into the different

approaches and their applicability in different contexts. Their study
contributed to understanding energy consumption prediction in the
broader context of buildings and urban environments. Wang and
Srinivasan (Wang and Srinivasan, 2017) comprehensively compared
single AI-based and ensemble methods (e.g., ANN and SVM)
methods. They examined these approaches’ principles,
applications, advantages, and disadvantages. The analysis of past
research revealed that 34% of the studies utilized ANN, 24% utilized
SVM, and 8% utilized Deep Neural Networks (DNN) for training
their models. Only 14% of the studies applied decision trees, while
20% utilized other statistical algorithms. The study highlighted that
ANN showed better accuracy than other models, and although DNN
performed well, it required actual training data (Li et al., 2009; Li
et al., 2010; Nouvel et al., 2014).

Despite the promising accuracy of data-driven models, they often
overlook the interconnected relationships between building elements,
such as the topology of the spaces inside the building. This limitation
leads to inaccuracies in building energy consumption estimation (BECE)
models. In reality, energy transfer occurs between adjacent rooms that
sharewalls, windows, roofs, or floors. For instance, if a room shares a wall
with a poorly insulated, cold room, the heating loss rate increases
significantly from the warm room to the cold room. Therefore, it is
crucial to consider these interconnected relationships in order to achieve
more accurate BECE predictions (Wang et al., 2021). Therefore, the
spatial relationship between the spaces is vital in BECE-based analysis,
which recent studies ignore consider them. Hence, due to the complexity
of topological information in the BIM data (e.g., IFC format). A room-
based graph is developed to capture the spatial relationships and energy
transfers between rooms. This graph represents the building’s spaces,
with each space (node) having semantic information assigned to it in the
form of vector data. The edges in the graph connect pairs of rooms and
capture the spatial relationships where energy transfer occurs. By
modeling the building as a graph, we can analyze the energy flow
and identify critical zones more effectively. Graphs have emerged as a
powerful tool in machine learning, allowing for incorporating real-world
objects and their relationships. Graph-based models facilitate knowledge
extraction and prediction of various phenomena. In the context of
building energy consumption analysis, leveraging graph-based
approaches enables a more comprehensive understanding of the
interconnectedness and energy dynamics within a building (Kiavarz
et al., 2023). This paper proposes a graph-based classification algorithm
called Node-Edge GraphSAGE (NE-GraphSAGE) to consider room
information and its adjacency in learning. A GNN-based approach is
proposed, incorporating a new aggregator function to utilize both node
(room) and edge (topology) features instead of relying solely on node
features as in traditional BECE data-driven models. This approach aims
to overcome the mentioned limitation. NE-GraphSAGE is a machine
learning model for room-based BECE classification to apply room
properties and topology information in the learning process. To our
knowledge, our approach represents the first successful and extensively
evaluated implementation of GraphSAGE for BECE room-based
classification, providing a practical solution in this domain. Also,
accurate models such as ANN and GNN lack transparency for BECE
analysis. Due to their lack of interpretability, data-drivenmodels are often
considered black boxes, limiting their trustworthiness and applicability in
critical applications that require a clear understanding of the underlying
mechanisms behind predictions. In order to trustfully deploy GNN
models, it is necessary to provide both accurate predictions and human-
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intelligible explanations, especially for the architecture, engineering, and
construction (AEC) industry. These facts raise the need to develop an
explanatory model for BECE analysis to explain why energy
consumption prediction results. Recent researchers have often faced
a trade-off between accuracy and interpretability when selecting a
model. Some advanced models, while accurate, can be challenging to
interpret, while simpler models like logistic regression or decision trees
provide more uncomplicated explanations but may sacrifice some
accuracy. However, basic models like logistic regression or decision
trees have limitations in terms of their predictive power. To improve
accuracy, more complex models may utilize a large number of decision
trees, often in the form of ensemble methods, and combine their results
with other models. On the other end of the complexity spectrum, deep
learning models, including graph neural networks (GNNs), consist of
multiple interconnected layers that capture higher data abstraction
levels. These complex models offer greater flexibility and can achieve
high levels of accuracy that simple models cannot match. However, the
trade-off is that the inner workings of these models may become less
interpretable. Understanding the reasoning behind the prediction
models can be challenging despite their effectiveness. Even the data
scientists who designed and trained the complex model can no longer
explain the result, such as a room classification problem in a building
assigned to an energy-efficient or inefficient class. Understanding GNN
predictions is important and valuable formultiple reasons: i) it enhances
trust in the model, ii) it provides transparency for building designers
and decision-makers, and iii) it enables the identification and correction
of model errors and patterns before real-world deployment.
Additionally, understanding the network characteristics, including
topology information, empowers designers to gain insights and
make informed decisions. While few models explain graph-based
neural networks, GNNExplainer is a recent interpretable method
designed for GNNs. It learns a mask on edges and features to create
a subgraph summarizing the connections and features influencing a
node’s prediction. However, GNNExplainer only interprets node
features, not edge topology, which is crucial for our research. This
paper proposes a GraphSAGE explainable model by integrating the
SHAP method (Duval and Malliaros, 2021) with the NE-GraphSAGE
prediction model to address the issue of interpretability. The SHAP
method interprets the results by assigning contribution values to node
and edge features in the room classification task. SHAP values are a
computational approximation of Shapley values, known for their
properties of additivity and consistency (Wang, Wiens, and
Lundberg, 2020; Duval and Malliaros, 2021). By leveraging the
descriptive nature of SHAP, the proposed method offers a
promising approach that combines model complexity and accuracy
with intuitive explanations for each predicted room efficiency class. This
allows for a more comprehensive understanding of the model’s
behavior and predictions.

2 Background and related work

2.1 Graph representation of BIM

Graph representation of BIM is an emerging research area in the
construction industry (Jin et al., 2018; Saad et al., 2023). It improves
interoperability between different disciplines and facilitates
accessing architectural, structural, and mechanical design

knowledge from the BIM data. Despite extensive studies for
extracting semantic, geometry, and topology information from
BIM digital data models such as IFC, creating a data model
which preserves all three types of information remains poor due
to their complexity and incompatibility with other data models in
the architecture, Engineering, and Construction (AEC) industry.
The semantic, geometry, and topology information are preserved by
mapping the IFC data model to the graph domain. In the context of
the IFC standard model, the concept of indoor spaces and their
spatial relationships has been described, enabling the creation of a
graph directly from BIM for various indoor applications (Saad et al.,
2023). Researchers have proposed different approaches to represent
BIM models as graphs. Combining shared geometry areas and
energy resistance values in one approach introduced a new
topological relationship between spaces in different stories
(Kiavarz et al., 2023). This resulted in generating a weighted
adjacency matrix for rooms, which captures the relationship
between rooms and their corresponding weighted values. The
proposed weighted space-based graph effectively reduces the
complexity of the original IFC model. It is compatible with
graph-based machine learning algorithms for analyzing Building
Energy Consumption Estimation (BECE). Khalili & Chua (Khalili
and H Chua, 2015) proposed a graph data model derived from BIM,
where nodes and edges were created based on objects and their
topological relationships. The model included attributes such as
material type, geometry, functionality, and more associated with the
nodes and edges through a semantic data table. This approach
provided a flexible mapping of Industry Foundation Classes (IFC)
data to the graph domain, enabling effective representation and
analysis of BIM information within a graph structure. Pauwels &
Terkaj (Pauwels and Terkaj, 2016) developed a tool called ifcOWL,
which is an EXPRESS-to-OWL conversion tool. This tool
transforms models based on IFC standards into a widely used
Web Ontology Language (OWL) ontology format. By utilizing
ifcOWL, models can be represented and processed using OWL-
based tools and frameworks, enabling interoperability and semantic
reasoning capabilities for IFC-based data. Similarly, Simeone &
Cursi (Simeone and Cursi, 2017) employed semantic web
technology to facilitate the mapping, comparison, and transfer of
data within the BIM environment. They developed an ontology
called the BIM Semantic Bridge, a knowledge base for organizing
and integrating BIM data. By utilizing semantic web technologies,
the BIM Semantic Bridge enables enhanced data interoperability,
semantic reasoning, and knowledge sharing among stakeholders
involved in the BIM process. In contrast, Ismail et al. (Ismail, Strug,
and Ślusarczyk, 2018) developed a methodology to convert the
Industry Foundation Classes (IFC) schema and individual
building models into meta and object instance graphs,
respectively. However, the object instance graphs did not include
part information such as geometry. The conversion process involved
transforming IFC files into a CSV format and importing them into
Neo4j, a graph database management system. Neo4j provides a
transactional application backend and complies with ACID
(Atomicity, Consistency, Isolation, Durability) principles (Saad
et al., 2023). Finally, the set of tools was integrated and placed
on loud, called IfcWebServer (Ismail, Strug, and Ślusarczyk, 2018).
Therefore, mapping the BIM model as object-oriented data,
including 3D geometry, semantic, and 3D spatial relationships
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(topology) to the graph data model, is complex. Previous research
studies show the necessity of an intermediate object-oriented data
model for this conversion.

2.2 Building energy consumption calculation
models

There are two types of calculating the energy consumption of
buildings which are called physical and data-driven models (Pérez-
Lombard, Ortiz, and Pout, 2008). The physical models, also known
as engineering methods or white-box models, rely on
thermodynamic rules for detailed energy modeling and analysis.
These models calculate building energy consumption based on
various parameters, including construction details, operation
schedules, and HVAC design. The physical model faces two
shortcomings: they require a high number of input physical
parameters measured and do not utilize geometry information,
which is an influential factor in estimating energy consumption.
However, data-driven methods, which estimate building energy
consumption from historical data and building properties, have
more flexibility with including hyperparameters in building energy
consumption which is considered in this paper (Nouvel et al., 2014).

2.3 Graph neural network (GNN)

In recent years with the developments in the AEC industry, a large
amount of data has become available. Compared to traditional data
exchanging, transferring, and storing techniques, modern digital data
types such as BIM can be more reliable and suitable for further design,
development, maintenance, and retrofitting. Therefore, after the proper
data collection and engineering processes, the data are hugely beneficial
and considerably impact reliable design and development. Therefore,
the ability to leverage statistical models and machine learning
algorithms for data-driven solutions is one of the essential
mechanisms in this industry. Furthermore, rather than traditional
data storage, which stores just the geometry and attributes of
building entities, BIM includes topology (relationship) information,
especially for indoor space-based analysis. Therefore, this opens the
potential for including topology information in learning algorithms.
Instead of directly processing BIM models, mapping the BIM to graph
data models leads to feasible solutions for applying graph-based
learning algorithms such as GNN in AEC applications. GNN, a type
of Neural Network, is designed to process graph structures directly. One
common application of GNN is node classification, where each node in
the graph is assigned a label, and the goal is to predict the labels of
unlabelled nodes without having access to ground truth information
(Shi and Rajkumar 2020). The other applications of GNN are edge
prediction for graph classification. GNN is an efficient method for
applications in which the neighborhoods have an essential effect on
each other, such as optimizing indoor navigation and predicting space-
based (room-based) energy consumption. The reason is that Graph
Neural Networks (GNNs), such as Graph Attention Networks (GAT)
(Veličković et al., 2017) and GraphSAGE (Hamilton, Ying, and
Leskovec, 2017), generate new embeddings by considering both the
node itself and its neighbors. These GNNs utilize the concept of
embedding, a technique for transforming properties into low-

dimensional, dense, and continuous vectors (Xu, 2021). In other
words, embedding involves generating a vector representation based
on the features and attributes of a graph while attempting to preserve as
much graph information as possible. Jin et al. (Jin et al., 2018) present a
graph-based unsupervised method to obtain functional knowledge
from building space structures. They used the space properties and
their boundary relationships for space clustering. Wang et al. In (Wang
et al., 2021), novel GNN algorithms were designed for the semantic
enrichment of the BIM model. They improve the GNNs method for
both node and edge features. The research shows a promising avenue
for typical room classification tasks by adopting graphs and the GNNs
algorithm. Collins et al. in (Collins et al., 2021) developed a novel GNN
in the AEC industry. They apply the Graph Convolutional Network
(GCM) algorithm to classify the point cloud objects and enrich IFC
models by semantic segmentation. Although there have been research
efforts to utilize graph-based learning algorithms in the Architecture,
Engineering, and Construction (AEC) industry, the application of
Graph Neural Networks (GNNs) still needs to be improved. The
potential of GNNs in the AEC domain has yet to be extensively
explored and studied in detail. While there are a few existing studies
on the use of GNNs in the AEC industry, more comprehensive research
is needed to fully understand and harness the capabilities of GNNs for
various applications in this field.

2.4 Explainable data-driven models in the
AEC industry

Data-driven models created by machine learning have gained
significant attention in the AEC (Architecture, Engineering, and
Construction) engineering fields, offering potential assistance in
design, development, retrofitting, and maintenance. These models
promise to improve building performance and sustainability (Naser,
2021). However, their limited generalization and black-box nature
hinder their exploitability and reusability, limiting their practical
application and understanding. Therefore, transparency is essential
given the current design concerns surrounding data-driven models.
Data-driven solutions are becoming more prevalent in the AEC
industry, and their decisions can bear significant consequences.
Explainable data-driven methods could help eliminate the ambiguity
of the results and engineering bias in decision-making processes.
Furthermore, this enables engineers to understand the models to
manage the benefits effectively of data-driven methods while
maintaining a high level of prediction accuracy. By decomposition
of machine learning algorithms, the contribution of each building’s
elements can be considered in explainable models. It also can be used as
an innovative tool for engineers to improve the design before applying
the model, reducing the cost of the building development process.

3 Methodology

This section introduces the process of the BECE room-based
graph construction, followed by a description of the proposed GNN
method. Subsequently, the experimental results and comparative
analysis with the other classification methods in greater detail are
discussed. Finally, an explainer method using SHAP values adapted
from Wang et al. in (Wang, Wiens, and Lundberg, 2020) is
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introduced to interpret the results of the proposed GNN
classification method.

3.1 Room-based graph representation

This research employs IFC as a well-known representation of
BIM data format to generate a new space-based 3D graph to store
the room geometry, semantic, and topology information in a
graph data model. In this graph, the node represents room
(spaces). The geometry and properties of each room (node)
are defined as vector information assigned to each node, such
as Window-Wall area Ratio (WWR), Exterior-Wall to total wall
area Ratio (EWR), Interior-Wall total wall area Ratio (IWR),
Floor to total Room area Ratio (FRR), Roof to total Room area
Ratio (RRR), Exterior Wall R-Value, Exterior Window R-Value
(Resistance Value), Roof R-Value, and Floor R-Value. The edges
in the graph connect a pair of rooms and capture the spatial
relationship if there is any energy transfer. Energy transfer
between adjacent rooms impacts the energy demand of each
room by influencing heat exchange and overall thermal
dynamics. For example, if a room has a shared wall, floor, or
roof with a cold room (with a low energy efficiency room), the
heating loss rate increases significantly from the warm area to the
cold area. Therefore, the edges in this graph represent the energy
transfer relationship between rooms. Furthermore, the rate of
energy transfer between two rooms is related to some parameters,
such as the common area and the material Resistance Value
(R-Value - Resistance to heat flow through a given thickness of
material (Celik, Family, and Menguc, 2016)) of the shared entities
between the rooms. Accordingly, a vector with the dimension of
1 × 2 is assigned to each vector, which comprises the entity’s
common area and resistance value between two rooms. The
room-based graph is a 3D graph representing the relationship
between the rooms in the same story and the other stories.

Figure 1 represents a sample of rooms, the room-based graph,
and the feature vectors assigned to nodes and edges.

3.2 Energy Use Intensity (EUI) calculation

This research uses the ground-truth value as the reference value
for training the proposed classification model and evaluating its
accuracy. To simulate the energy in the case study BIM data, we used
RETScreen software, an energy modeling package developed by the
Government of Canada. Energy modeling, or energy system
modeling, involves the creation of computer models to analyze
energy systems and their components. It enables the evaluation
and simulation of energy-related scenarios and the assessment of
system performance and efficiency. This research uses energy
modeling inputs such as building thermal envelope
characteristics, ventilation loads, equipment efficiencies, lighting
power densities, and plug loads from ASHRAE 62.1 and
ASHRAE 90.1 standards ((Goel et al., 2014) for the same climate
zone). The Energy Use Intensity (EUI) was determined and
calculated for each zone to evaluate more critical and energy-
intense zones. Energy Use Intensity (EUI) has been defined as
the measurement of a zone’s annual energy consumption relative
to the area (kWh/m2). If the EUI for zone A is higher than zone B, it
indicates that zone A consumes more energy per square meter
annually. This difference in EUI suggests that various parameters
contribute to the higher energy consumption in zone A. The main
effective parameters which are considered in our research are
summarized below:

3.2.1 Exterior wall thermal resistance
Thermal resistance across the wall is the sum of the resistances of

the individual layers. Also known as R-Value, the higher the
R-Value, the more resistance the energy transfer. Windows
Thermal Conductivity. The overall coefficient of heat transfer

FIGURE 1
Sample building layout and corresponding graph representation.
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quantifies the thermal conductivity of a window, representing the
amount of heat gained or lost between the indoor and outdoor
environments based on the temperature difference. Also known as
the U-Factor, the lower value of the U-factor represents the better
the window’s thermal performance.

3.2.2 Zone’s location (room location)
Zones with exterior walls and windows or adjacent to an interior

zone with different temperature requirements have higher energy
consumption due to heat transfer than internal zones with isometric
walls. Window-to-Wall Ratio. Zones with more windows in their
exterior walls require more heat in winter and cooling in summer to
offset the heat transfer. Zones with different space types might have
different lighting requirements. For instance, offices require more
lighting than storage or restroom space type. Space type or zone
functionality is essential in energy consumption for each zone. For
example, ASHRAE 62.1 mandates mechanical designers to provide
fresh air to different zones based on the occupancy density presented
in the standard. For intense, meeting rooms have an occupancy
intensity of 50 people/100 m2 compared to 5 people/100 m2 for
offices. This means that meeting rooms require more energy than
offices to provide fresh air. Also, designers need to provide more
cooling in more occupied spaces because of the internal heat gain of
130 W/person. Total energy consumption is calculated based on
mentioned parameters, and the EUI value is calculated by dividing
the total energy consumption of a building by its corresponding
floor area. This ratio provides a standardized energy efficiency
measure and allows for comparison between different buildings
or spaces.

3.3 NE-GraphSAGE algorithm for room
classification

This research aims to address the room classification task related to
energy consumption by employing a graph-based learning algorithm
that incorporates the spatial relationships (topology) between rooms.
The aim is to identify and classify critical zones within the building
based on their energy consumption patterns. The room classification
task is the type of GNNnode classification in BECE analysis. For BECE-
based classification, we applied an inductive GNN method based on
GraphSAGE. In this research, the choice of an inductive method over a
transductive method is motivated by the need to build a generic model
capable of predicting new nodes (rooms) based on observed training
data. Transductive learning, likeGCN, constructs amodel specific to the
training and testing data it has already encountered, which is unsuitable
for our research application. In retrofitting processes, where buildings
undergo structural changes and new spaces are added or demolished, it
is crucial to have a model that can accommodate new data and spaces.
Thus, an inductive approach allows us to design and train a model for
such scenarios. GraphSAGE is an inductive learning algorithm
leveraging node features (e.g., node profile information, node
degrees) to generate node embeddings (Hamilton, Ying, and
Leskovec, 2017). The main idea of GraphSAGE is to consider
features from the local neighbors of a node. Specifically, the
GraphSAGE forward propagation algorithm feeds the neighbor
features into an aggregator function (e.g., mean, pooling). Then its
output updates the node in the next layer (or depth). Therefore, it

considers node features in the process of embedding and training. In
BECE-based classification, node features (attributes of rooms) and edge
features (relations between rooms) play an essential role in identifying
critical spaces with inefficiency areas; thus, designing a GNN algorithm
that can process both nodes and edge features is desired. However, the
GraphSAGE algorithm is limited to node-level features, which is
insufficient for this task. Therefore, this research improves the
GraphSAGE algorithm by introducing the Node-Edge GraphSAGE
(NE-GraphSAGE) method, which involves node and edge features in
the training and classification process.

NE-GraphSAGE aims to learn a representation for every node
and corresponding edge based on some combination of its
neighboring nodes, parametrized by h for the node and e for the
edge. Recall that every node can have its feature vector
parameterized by X. Each edge has its feature vector
parameterized by Y. Let us assume that all the feature vectors for
every node and edge are the same size. One layer of NE-GraphSAGE
can be run for k iterations. Parameter k controls the neighborhood
depth. If k is 1, only the adjacent nodes are involved in the learning
process. If k is 2, the nodes at walk depth two are considered.

hk−1v � h0v � Xv (1)
The following statements represent the definitions of the

notations:

Xv � Nodefeatures for a node v
Yuv � edge features for node u and v
hkv � embeddingfeatures node v in neighbour depth k
ekuv � embeddingfeatures edge uv in neighbour depth k
Nv � neighbour set ofNode v
Zv � target node embedding represenation

(2)

Remark that having k = 2 means nodes at neighborhood depth
two can affect each other through the node in the middle; therefore,
there is a node (space) representation h for every node at every k
iteration. The value of k is determined experimentally using multiple
neighborhoods. We can construct a computation graph for each
node that represents the k-hope neighborhood graph of a target
node. The computation graph represents the neighbor nodes of each
space and the topology information between them.

Figure 1 illustrates an example of a computation graph of target
node 3 with a neighborhood depth of two. The NE-GraphSAGE
algorithm follows a three-step process, starting with an initialization
step. This step sets all the initial node embedding vectors to their
respective feature vectors. The algorithm then iterates over the steps,
with k representing the iteration number.

3.3.1 Information aggregation
Once the neighborhood has been defined, the next step is

establishing an information-sharing procedure among
neighboring nodes. To achieve this, a computational graph is
created for each node, which enables the calculation of new
embedding (feature) values for the target node. In this process,
the computational graph considers the features of the target
node as well as the features of its neighboring nodes. By
incorporating information from the neighboring nodes, the
graph can update and refine the embedding of the target
node, capturing its surrounding context’s collective
knowledge and characteristics.
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This information-sharing procedure plays a crucial role in graph-
based learning algorithms, such as GraphSAGE or Graph Attention
Networks (GAT), as it allows for the propagation of information across
the graph and facilitates the generation of more accurate and
meaningful embeddings for each node. In this research, we design
Aggregation functions or Aggregators that accept the features from
neighborhood nodes and edges as input and aggregate the neighbor’s
attributes (features) to create a neighborhood embedding for the target
node. We first initialize all node and edge embeddings to node features
as the node and edge attributes to learn embeddings with aggregators.
Then, for each neighborhood depth until K, we create a node and edge
embedding with the aggregator function. This aggregation method
helps us use the effect of the neighbor spaces on energy consumption in
the learning algorithm process (NE-GraphSAGE). Also, employing the
edge’s feature in the learning process, the topology information is
applied based on the common area and R-Value between two neighbor
and target spaces. Different aggregation functions are LSTM (Long
Short-Term Memory) aggregator, Pooling aggregator, and Mean
aggregator (Kiavarz et al., 2021). We have chosen the Mean
aggregator for this research because of its simplicity in
implementation. Eq. 3 demonstrates the proposed aggregation
function in which ℎk−1 shows the feature values of the neighbor
nodes, ek−1 demonstrates the feature values of edges between
neighbor nodes and the target node. In the aggregation process, the
mean of neighbor nodes and edges features are calculated, then two
result vectors are concatenated in-depth k-1. hkN(v) is the aggregated
node and edge representation of node v, considering its neighboring
nodes and edges in depth k.

hkN v( ) ← Concat MeanN v( ) hk−1u( )( ,MeanN v( ) ek−1uv( ) (3)

3.3.2 Feature updating
After obtaining an aggregated representation for node v based

on its neighbors, update the features of node v using a combination

of its previous representation (h(v)k−1), the aggregated
representation (hN(v)k−1) includes the edge representation (ek−1uv ).
This research proposed a new updating and aggregation function to
consider both node and edge features during learning. Eq. 4
demonstrates the updating function by concatenating the
aggregated representation in depth k-1 and target. Node 3 is an
example (Figure 2) representing the proposed algorithms with
neighbor nodes of h16, h

1
4, h

1
2, h

1
1 and the feature between the

target node and neighbors (e63, e43; e23, e13). By aggregating
neighbor nodes and edge features, the vector feature of h13 is
feeding into the update function in layer 2 (k = 2). In the next
step, the vector feature of Node 3 in Layer 2 (h23) and aggregated
vector feature of node 3 from layer 1 (h13) are concatenated. The non-
linearity (σ) is applied to the result as an activation function. This
research applies the Sigmoid activation function (Shrikumar,
Greenside, and Kundaje, 2017) because its output is between
0 and 1, suitable for our space binary classification output. The
algorithm is implemented in Python script with PyTorch, NumPy,
DGL, Panda, and sklearn libraries in the Google colab environment.
Then, the concatenated vector is passed to the neural network layer
as the last step. Figure 3 the pseudocode of the embedding
generation of each node in the depth walk k.

3.3.3 NE-GraphSAGE training
In this step, a multi-layer perceptron neural network (MLP) is

designed as a learnable updating process (Figure 4) to update the
target node embedding to determine the probability of a critical zone
of spaces discussed in the next section. In order to train the neural
network and optimize its weights, a differentiable loss function is
required. In this study, the Squared Error Loss (SE) function [33] is
chosen to calculate the distance between the actual value of the node
class (0 or 1) and the predicted values. The Squared Error Loss
function measures the square of the difference between the predicted
and actual values, penalizing more significant errors more
significantly. The neural network aims to minimize the

FIGURE 2
Computational Graph of Space 3 with the neighbor depth of 2.
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discrepancy between its predictions and the ground truth labels by
minimizing this loss function during training. By utilizing the
Squared Error Loss function, the neural network can effectively
quantify the error in its predictions and adjust its weights to
minimize it, leading to improved accuracy and convergence
during training. Indeed, compared to other node classification
benchmark datasets, the space-based graph in commercial
buildings typically does not have many nodes or node features.
Commercial building graphs are often smaller in scale and may have
fewer nodes and edges than datasets used in other domains. While
this may limit the direct applicability of specific graph-based
learning algorithms designed for larger graphs, it also presents an

opportunity to explore tailored approaches and optimizations
specifically suited for the characteristics of space-based graphs in
commercial buildings.

Unlike other approaches, the room-based graph in this research
represents the entire building as a single 3D graph, with each room
being represented as a small node and the spatial relationships
between rooms as edges. This compact graph representation allows
for a holistic analysis of energy consumption patterns within the
building, considering the interconnectivity of rooms
comprehensively. Therefore, we considered all nodes (spaces) in
one patch for the learning process. Instead of involving each node’s
feature in the learning step, the embedded vector of the updated

FIGURE 3
The pseudocode of the embedding generation of each node in the depth walk k.

FIGURE 4
MLP neural network design for space classification.
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feature vector (section 3.2.2) is considered input of the neural
network to use the advantage of neighborhood and topology
information in the learning process. A two-layer MLP neural
network method is designed in which the weighted matric is
shared between all computation graphs in the last depth (k).
Figure 5 represents a sample computation graph for Node 4 and
5 in which the neural network parameters are shared.

Therefore, the generated computation graph of each building’s
space is applied in a batch learning process. Indeed, we employed
Batch Gradient Descent (BGD) method for the learning process to
update the shared weighted matric (Qi, Wang, andWang, 2023).We
calculate the average gradient across all training examples to update
the parameters and use that mean gradient for parameter updates.
Therefore, there is just one gradient descent step in one epoch
(Figure 6). The distance between the ground truth and the predicted
output value is measured by Mean Squared Error (MSE), the

function. MSE Eq. 4 is calculated for each iteration (epoch) for
all nodes.

At the end of each epoch, the neural network’s weighed matrices
are adjusted by the backpropagation process (Linyuan and Zhou,
2011). Then, the learning process is continued iteratively to catch the
minimum MSE value.

MSE � 1
n
∑
n

i�1
Yi − Ŷ i( )

2
(4)

3.3.4 Model interpretation
In addition to accurately applying EN-GraphSAGE for the space

classification model in two critical and non-critical zones, we must
understand and interpret how and why our models make their
predictions. The knowledge gained from the prediction and
interpretation models can help planners and engineers to develop

FIGURE 5
Sample computation graphs and shared weighted matrices.

FIGURE 6
Batch gradient descent of the learning process.
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more effective strategies and help them manage the demand for
energy in different spaces in the buildings. To better understand the
classification result, we use a method to investigate the role of each
input parameter.

To recognize which parameter(s) has more impact on the result
of the space classification as a critical zone or non-critical zone, we
need a method to measure and score the contribution of each feature
(room properties or neighbor’s relationship) for each node (space).
For this purpose, we combined the accurate NE-GraphSAGE
method and the explainable ML method SHAP (Shapley Additive
exPlanations) to study the critical zones of buildings. In a predictive
model, Shapley values Eq. 5 represent the contribution of each input
feature to the prediction of each room. Shapley’s values consider the
outcomes of all possible combinations of features in a space or edge
to determine the importance of each feature. It considers each
feature’s contributions in different feature combinations and
evaluates their overall impact on the prediction. The set
corresponds to each possible combination of space’s features, the
neighbor embedder’s features, and the edge’s features contribute to
calculating the Sharpley value. In this way, each feature with a higher
Sharpley value contributes more to the final result. We interpret the
features of all spaces marked as critical Spaces in the classification
model to demonstrate more insight into architecture and
engineering for accurate decision-making.

Øi p( ) � ∑
S⊂N/i)

S| |! n − S| | − 1( )!
N!

p S ∪ i( ) − p S( )( ) (5)

The Sharpley values are calculated for features belonging to the
spacesmarked as critical to explaining the role of each feature in the final
output. NE-GraphSAGE can explain the model’s output by calculating
the probability of each space (room). If the probability is closed 1, it can
be considered a critical space. If it is close to 0, it will be marked as non-
critical space. This is called global interpretability. Next, we explain why
each space receives the prediction according to its specific predictor
(features) values called local interpretability. The Sharply values can
show both. For example, Figure 7 represents the force plot of a test node
(Room 154) in the first story marked as a critical space.

The Sharpley value for Room 154 is calculated for all features.
The Features with high Shapley values have a more significant
impact on model output (0.83 in Figure 6), and features with low
Shapley values have less impact on the prediction. This is because the
features with the positive Shapley value force the prediction to the
output class, and the features with a negative Sharpley value push the
output to the other class. In this example, the External Wall Area

(EWA) and External Wall R-Value (EWR) have the most positive
Sharpley value of 0.428 and 0.092, which impacts the energy
consumption of Room 154 and push it into the critical space
class. The emergence of this insight provides valuable
information for architects and engineers, enabling them to focus
on optimizing the wall geometry design and enhancing the
insulation materials used in Room 154 to reduce its energy
intensity. Additionally, the negative Shapley value associated with
the External Window R-Value (EWINR) suggests that the window
material insulation is already in good condition and does not
contribute significantly to the room’s energy consumption.

4 Experimental results and discussion

We apply the proposed methodology to a three-story IFC model
collected from open IFC model datasets. The proposed classification
model’s results and the interpretation models to explain the
classification results are presented in the following sections.

4.1 NE-GrahSAGE classification model

The BIM data as the case study is downloaded from the Open
IFC Model Repository in IFC format. It includes 130 spaces with
different activities, including an office room, conference room,
lounge, kitchen lobby, and washroom. The Energy Use Intensity
(EUI) (Ma and Cheng 2016) is considered an energy consumption
index in this research. First, a ground-truth value is calculated for all
spaces for three stories using RETScreen software to perform energy
modeling for multiple zones in this paper. The Energy Use Intensity
(EUI) measures annual energy consumption per square foot. It is
obtained by dividing the total energy consumed by the building in a
year by its total floor area. Next, the total energy is estimated for each
space using RETScreen software by considering space geometry
information, material information, heating and cooling energy to
keep the comfortable temperature, thermal envelope characteristics,
ventilation loads, equipment efficiencies, lighting power densities,
and plug loads were taken from ASHRAE 62.1 and ASHRAE 90.1
40. Standards for building climate zone. Then, Z-score 41. Is
calculated for EUI values to find an outlier. The spaces with
outliers EUI values are considered critical spaces. In the last step,
EN-GraphSAGE is employed to classify the nodes on the space-
based graph to classify the spaces in critical and non-critical spaces.

FIGURE 7
SHAP force plot.
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The best accuracy achieved during the range of epochs from 1000 to
5000 was 91.26%, occurring at epoch 3500. Therefore, we pick up the
weight matrices in epoch 3500. To assess the accuracy and
correctness of each classifier, we utilized two commonly used
metrics: accuracy and F1 score. These metrics provide a
quantitative measure of the classification performance. We
evaluated the performance of four well-known classification
methods: NE-GraphSAGE, GraphSAGE, ANN, and SVM.
Accuracy is a reliable criterion for assessing overall correctness,
as it represents the fraction of correct predictions over the total
number of samples, regardless of their respective classes. It is
calculated using Eq. 6, where the numerator represents the
number of correct predictions and the denominator represents
the total number of samples. The F1 score is another important
metric that considers both precision and recall. It provides a
balanced measure of the classifier’s performance by considering
positive and negative class predictions. However, the specific
calculation for the F1 score is not mentioned in the given
context. By evaluating the accuracy and F1 score of the four
classification methods, we can gain insights into their
performance and determine their effectiveness in the context of
the problem being addressed. Accuracy may be biased towards
predominant classes, so we used the F1 score as an evaluation
metric to assess balanced predictions. The F1 score calculates each
class’s harmonic mean of precision and recall and then takes the
arithmetic mean across all classes Eq. 7.

Accuracy � ∑iTPi

Nn

TP � true positive,

Nn � number of nodes

(6)

The accuracy and F1 are calculated for four graph-based (NE-
GraphSAGE, GraphSAGE) and none graph-based (ANN and SVM)
methods to compare the result of the proposed method with other
classification methods (Table 1).

F1 � ∑n
i�1

2 × TPi
2 × TPi+FPi+FNi

n
(7)

TP = true positive, FP = false positive, FN = false negative, n =
number of classes.

We prove that the proposed classification method (NE-
GRAPHSAGE (3 layers) provides significant gains (12% on
average) compared to other classification methods, especially
non-graph-based methods, which have the highest accuracy and
F1 from the experiment results, arriving at 91.2% and 0.88,
respectively. On the other hand, NE-GraphSAGE (2 layers) and
NE-GraphSAGE (4 layers) have slightly lower accuracy, and F1 with
less balanced prediction compared to NE-GraphSAGE (layers3). We
also trained GraphSAGE with three layers for a comprehensive
comparison. We used the same dataset and fine-tuned GraphSAGE
to obtain its best results. The difference between the two algorithms
is that NE-GraphSAGE can consider both node and edge features
during updating embedding, while GraphSAGE only learns from
node features. As a result, NE-GraphSAGE (3 layers) improved the
accuracy by 12% and the F1 score by 0.15 compared with
GraphSAGE. Also, the result recognized the effect of edge
features (topology features) in finding the critical zones. For

example, six interior rooms are wrongly marked as non-critical
zones by non-graph-based methods, but two graph-based methods
classified these rooms correctly as critical spaces. This is because
these rooms are in the neighborhood of critical spaces with a low
R-value of shared walls on the first and third floors. However, they
are classified as non-critical spaces for those models where the
topology information is ignored in the learning process.

Consequently, NEGraphSAGE (3 layers) generally has the
highest accuracy and most balanced prediction performance.
Therefore, NE-GraphSAGE (3 layers) is chosen as the room
classification algorithm in this research compared to other
algorithms. Hence, in the remainder of the paper, the term NE-
GraphSAGE refers to the 3-layer variant of NE-GraphSAGE.

4.2 Interpreting EN-GraphSAGE
classification using SHAP values

The SHAPmethod is employed on the result of test data to assign a
Sharpley value for features in each space considered a critical zone. The
impact of features on the prediction of critical zone probability for each
space is measured by evaluating the deviation from the mean predicted
value when different combinations of features are utilized. In addition,
this paper uses a forced plot to find feature importance, interpretation,
and parameter(s) that cause high energy consumption in these zones.
We calculated the Sharply value of features for those spaces classified as
critical zones. As the proposed classification model considered the
space’s properties and adjacency information, the Sharpley values can
be calculated for both feature sets. Therefore, the SHAPmethod in this
research can pinpoint which parameters of the room of its adjacent
rooms are most impactful for high energy consumption. For every
space, the features are ordered by their Sharpley value. Some of those
features negatively affect energy consumption, and these form the basis
for the expert recommendation in process design or retrofitting to
increase energy efficiency. Figure 8 represents the force plot for Space-
153, which shows the Sharpley value normalized between 0 and 1.

Considering all features, the Sharpley value for Room 153 is
estimated at 0.71. The neighbor common R-value is the primary
parameter pushing this room as a critical class. Although the
boarding room has no external wall or window, it has pinned as
the critical zone. It is in the neighborhood of critical space-154, and a
high energy rate is transferred between these two rooms. Therefore,
this room recommends using different window materials (with
higher R-value) between them.

TABLE 1 Classification models accuracy and F1 score.

Model Accuracy F1

GraphSAGE 79.5 0.73

NE-GraphSAGE (2 layers) 86.6 0.82

NE-GraphSAGE (3 layers) 91.2 0.88

NE-GraphSAGE (4 layers) 86.9 0.83

ANN 72.6 0.67

SVM 71.8 0.66
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5 Conclusion

This paper introduced a new GNN-based classification
model (NE-GraphSAGE) to find the critical zone using a 3D
building model. This model considers the space’s properties and
the adjacent information in training the classification model.
The promising result demonstrates a better model accuracy than
the non-graph base and regular GraphSAGE models. In order to
address the trade-off between model accuracy and
interpretability, the NE-GraphSAGE model is combined with
the SHAP (SHapley Additive exPlanations) model. SHAP is a
method used for model interpretation that provides
explanations for individual predictions. By incorporating
SHAP with the NE-GraphSAGE model, the researchers aim to
achieve high accuracy and interpretability. This allows for a
better understanding of the factors influencing the model’s
predictions, enhancing the transparency and trustworthiness
of the model’s results. Instead of choosing between accuracy
and interpretability, the proposed methodology finally proposed
a solution that lets us push the envelope regarding model
complexity and accuracy while still allowing us to derive
intuitive explanations for each space. Also, the proposed
interpretation model can explain the impact of individual
features in a room and aggregated features in 3D adjacent
rooms. The result shows that combining the high-accuracy
classification model (NE-GraphSAGE) and the SHAP model
can help designers and engineers have accurate insight into
their design and decision-making process. However, this
methodology has two main limitations that need future work.

The first limitation addresses the adjacent interception.
Although we can find the Sharpley value for adjacent features,
we cannot find which exactly adjacent room(s) has more impact
on the target room because the adjacent feature values result from
the aggregation function. The second limitation is that the
knowledge expert should explain the recommendation. The
proposed methodology can find and explain the reason for

classification results but is limited to using the result for the
recommendation and prescription. The latter ones are ongoing
research, and the outcome of the research will be presented in
the near future.
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FIGURE 8
SHAP force-plot for Room 153.
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