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Lei Fan3 and Kun Feng1,2*

1Department of Endocrinology, Pingshan District People’s Hospital of Shenzhen, Shenzhen, China,
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Background: The Metabolic score of insulin resistance (METS-IR) has recently

been accepted as a reliable alternative to insulin resistance (IR), which was

demonstrated to be consistent with the hyperinsulinemic-euglycemic clamp.

Few pieces of research have focused on the relationship between METS-IR and

diabetes in Chinese. The purpose of this research was to explore the effect of

METS-IR on new-onset diabetes in a large multicenter Chinese study.

Methods: At the baseline of this retrospective longitudinal research, 116855

participators were included in the Chinese cohort study administered from

2010 to 2016. The subjects were stratified by quartiles of METS-IR. To assess

the effect of METS-IR on incident diabetes, the Cox regression model was

constructed in this study. Stratification analysis and interaction tests were

applied to detect the potential effect of METS-IR and incident diabetes

among multiple subgroups. To verify whether there was a dose-response

relationship between METS-IR and diabetes, a smooth curve fitting was

performed. In addition, to further determine the performance of METS -IR in

predicting incident diabetes, the receiver operating characteristic curve (ROC)

was conducted.

Results: The average age of the research participators was 44.08 ± 12.93 years,

and 62868 (53.8%) were men. METS-IR were significant relationship with new-

onset diabetes after adjusting for possible variables (Hazard ratio [HR]: 1.077;

95% confidence interval [CI]: 1.073-1.082, P < 0.0001), the onset risk for

diabetes in Quartile 4 group was 6.261-fold higher than those in Quartile 1

group. Moreover, stratified analyses and interaction tests showed that

interaction was detected in the subgroup of age, body mass index, systolic

blood pressure, diastolic blood pressure, and fasting plasma glucose, there was

no significant interaction between males and females. Furthermore, a dose-

response correlation was detected between METS-IR and incident diabetes,
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the nonlinear relationship was revealed and the inflection point of METS-IR was

calculated to be 44.43. When METS-IR≥44.43, compared with METS-IR <

44.43, the trend was gradually saturated, with log-likelihood ratio test P <

0.001. Additionally, the area under receiver operating characteristic of the

METS-IR in predicting incident diabetes was 0.729, 0.718, and 0.720 at 3, 4, and

5 years, respectively.

Conclusions: METS-IR was correlated with incident diabetes significantly, and

showed a nonlinear relationship. This study also found that METS-IR had good

discrimination of diabetes.
KEYWORDS

metabolic score for insulin resistance, insulin resistance, incident diabetes,
relationship, nonlinear
Background

Diabetes mellitus (DM) is a chronic epidemic on an

unprecedented scale, which is spiraling out of control (1). The

International Diabetes Federation (IDF) reported that more than

one in 10 adults now have diabetes all over the world. It is

forecasted that 537 million people were suffered from DM in

2021. The Western Pacific region accounts for more than a third

(38%) of the total number of diabetes, with China accounting for

a quarter of the total (2, 3). In recent years, the Chinese Diabetes

Society (CDS) has been paying attention to the progression of

diabetes in China. The prevalence of diabetes in China is still on

the rise, reaching 11.2% in 2017 (4, 5). It is well known that if

diabetes is not well managed and treated, this disease will cause

damage to multiple organs of the body and leads to

complications, such as cardiovascular disease, kidney damage,

eye disease, and so on. The direct and indirect costs of diabetes to

health services increase continuedly (3, 6). It is a huge challenge

to predict future diabetes incidence.
sulin resistance; DM,

ederation; CDS, The

EHC, Euglycaemic-

tic model assessment

/HDL-C, Triglyceride

x, Triglyceride glucose

tein cholesterol; BMI,

astolic blood pressure;

tein cholesterol; VIF,

fidence interval; SCR,

odel; ROC, Receiver

curve; ROS, Reactive

lucose tolerance test;

02
Insulin resistance (IR) is connected with the development

and progression of diabetes significantly (7–9). It reduces insulin

efficiency in insulin-responsive tissues (muscle, fat, and liver),

which conversely causes a decompensated increase in insulin

and hyperinsulinemia, and then leads to chronic metabolic

disorders (hyperglycemia, hypertension, hyperlipidemia, etc.)

and inflammation (10–14). Therefore, it is requisite to detect

IR in the early stages of diabetes, and early prevention in non-

diabetes patients with metabolic risk is beneficial to reduce the

socioeconomic burden of diabetes and other metabolic diseases

(15–18).

Accurate assessment of insulin resistance is usually

performed with the Euglycaemic-hyperinsulinaemic clamp

(EHC) and Homeostatic model assessment for insulin

resistance (HOMA-IR). EHC is still the gold standard method

of assessing IR. However, it is mostly utilized in research due to

the characteristics of being time-consuming, invasive, and high

cost, which inhibit its promotion (19–21). Meanwhile, the

practical applicability of HOMA-IR is also limited by

invasiveness, complexity, and impracticality, especially in

resource-poor areas (21, 22). To evaluate IR in large

epidemiological studies, several simple formulas have been

developed based on readily available and inexpensive

biochemical indicators. For example, triglyceride to high-

density lipoprotein cholesterol ratio (TG/HDL-C), triglyceride

glucose index (TgG index), and triglyceride glucose-body mass

index(TgG-BMI) were widely employed as a reliable surrogate

marker to estimate IR in clinical practice (23–28). These non-

insulin-based indexes offer a simpler and cost-effective option

for the identification of IR.

Recently, the Metabolic score for insulin resistance (METS-

IR), a newly-developed non-insulin-based metabolic score,

consists of fasting plasma glucose (FPG), triglycerides (TG),

high-density lipoprotein cholesterol (HDL-C), and body mass
frontiersin.org
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index (BMI). It has been demonstrated to be highly consistent

with EHC in assessing IR (29).

The relationship between METS-IR and the prevalence of

diabetes, however, has received very little investigation, which

needs to be further investigated, especially in large

epidemiological studies. This research was designed to explore

the effect of METS-IR on the incidence of diabetes among a

large-scale of Chinese adults.
Methods

Cohort population and study design

Data for this research were collected from a multicenter

health check-up program, the Rich Healthcare Group, which

was published by Chen et al. at www.Datadryad.org (30). Data

on this website is free and public, the providers give all copyright

and ownership rights, and there is no interest involved. The

detailed research design has been described in previous studies

(30). Participants in this cohort underwent two or more follow-

up visits between 2010 and 2016 in 11 major Chinese cities, and

they were at least 20 years old. At each follow-up visit to the

health check center, participants completed a detailed

questionnaire and had blood samples collected. According to

the report of Chen et al., 211,833 subjects (54.8% males and

45.2% females) were involved in this study (30). Data with

missing values (such as weight, height, gender, and FPG) and

with an extreme value of BMI (<15 kg/m2 or >55 kg/m2) were

excluded at baseline. In addition, participants with a follow-up

interval of fewer than 2 years, those who had been diagnosed

with diabetes at baseline, and those who could not determine

their diabetes status during follow-up were excluded. There was

no need to apply for ethical approval due to the secondary data

analysis nature of this study. Previous research received approval

from the Rich Healthcare Group review board, and this

retrospective study conformed with the Helsinki Declaration.

The dataset contains participants’ medical records, which

includes demographic and blood biochemical variables: age,

gender, height, weight, systolic and diastolic blood pressure

(SBP and DBP), history of smoking, history of drinking,

family history of the disease, FPG, TG, total cholesterol (TC),

low-density lipoprotein cholesterol (LDL-C), HDL-C. BMI (kg/

m2) is expressed as a weight (kg) divided by height squared (m2).

Fasting venous blood samples were measured on an

autoanalyzer, and participants need to be fasting for at least 10

hours. The dependent variable of the research was new-onset

diabetes, defined as FPG≥7.00 mmol/L and/or self-reported

diabetes during follow-up.

To further research, missing values and outliers of TG and

HDL-C were excluded(n=94,978), and the total number of

participants was 116,855 participants (62,868 males and 53,987
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females) in the end. The arithmetic Formula of METS-IR was Ln

[(2*FPG) + TG]*BMI)/(Ln[HDL-C])(1mmol/L=18mg/dl) (29).
Statistical analysis

Statistical analyses were completed by Empower (R) (www.

empowerstats.com) and R-project (version 3.4.3). A two-tailed P

value<0.05 indicates statistical significance.

First, all participators were assigned the quartiles of METS-

IR. The continuous data under normal distribution were

presented in the form of average ± standard deviation, while

the skewed distribution was represented by the median (quartile

range). One-way analysis and Kruskal-Wallis were utilized for

comparing the distribution of normal distribution and skewed

distribution between groups. The classified variables were

described as numbers (proportions), and comparisons between

groups were assessed using the chi-square test.

Subsequently, linear regression analysis was conducted to

verify and check the collinearity of variables and report the

variance inflation factor (VIF) (31). Variables with VIF larger

than 5 were multicollinearity and could not be included in the

Cox regression model. Cox proportional hazards model was

carried out to analyze the hazard ratio (HR) and 95% confidence

interval (CI) for evaluating METS-IR and the risk of new-onset

diabetes. The results of three covariate models were

demonstrated on the grounds of the recommendations of the

STROBE statement to manipulate for possible confounding bias.

Covariates with matched hazard ratio change>10% can be added

as confounders into the model (32). Crude model: unadjusted,

Model I: adjusted for age, gender, smoking status, drinking

status, and family history of diabetes, Model II: based on

Model I, SBP, DBP, TC, LDL-C, and serum creatinine (SCR)

were further adjusted. Further, METS -IR was transformed into

a classified variable and trend analysis was calculated for

quantifying the stability of the results of regression analysis

and observing the nonlinear probability. Moreover, the

covariables were converted into the ‘GAM Model’ by the

weighted generalized additive model (GAM) to cover the

shortage of general linear analysis in the analysis of

nonlinearity (33).

Moreover, stratified analysis and interaction testing were

applied to analyze the potential effects of METS-IR on incident

diabetes in subgroups using mult ivariable logist ic

regression models.

The dose-response relationship between METS-IR and

incident diabetes was conducted by using a smooth curve

fitting and GAM. In the presence of nonlinear correlation, the

threshold effect was carried out using a two-piecewise linear

regression mode. When the rate between incident diabetes and

METS-IR appeared apparent, the inflection point will be

calculated automatically by the recursive method.
frontiersin.org
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Furthermore, survival estimates and cumulative diabetes

incidence were constructed by the Kaplan-Meier survival

analyses, and the log-rank test was used to compute the

survival curve functions between METS-IR quartiles.

Additionally, a receiver operating characteristic (ROC) curve

was performed to evaluate the performance of METS-IR to

predict incident diabetes. Further, ROC was plotted to

compare the predictive ability of TG/HDL-C (triglycerides/

HDL-c), TgG (Ln[(Glucose*Triglycerides)/2]), TgG-BMI

(TyG*BMI) and METS-IR for incident diabetes.
Frontiers in Clinical Diabetes and Healthcare 04
Result

Baseline characteristics and univariate
analysis of study participants

As shown in Table 1, the characteristics of the 116,855 research

participators at baseline were described. The total study populations

were 62,868 men (53.8%) and 53,987 women (46.2%), and the

average age of the research participators was 44.08 ± 12.93 years. At

a median follow-up of 3.1± 0.94 years, 2,685 participators (2.3%)
TABLE 1 The Baseline Characteristics of participants.

MEST-IR Q1 (≤33.6) Q2 (33.6 to ≤38.4) Q3 (38.4 to ≤43.7 Q4 (43.7to ≤96.7) P-value

Participants 29160 29214 29233 29248

AGE (years) 39.653 ± 11.750 43.547 ± 12.623 46.055 ± 13.001 47.047 ± 13.026 <0.001

GENDER <0.001

Male 7633 (26.18%) 13580 (46.49%) 18871 (64.55%) 22784 (77.90%)

Female 21527 (73.82%) 15634 (53.51%) 10362 (35.45%) 6464 (22.10%)

BMI(kg/m2) 19.642 ± 1.427 22.163 ± 1.291 24.274 ± 1.445 27.298 ± 2.473 <0.001

SBP(mmHg) 111.711 ± 14.359 117.090 ± 15.689 121.992 ± 16.117 126.879 ± 16.529 <0.001

DBP(mmHg) 69.811 ± 9.451 72.570 ± 10.184 75.924 ± 10.606 79.430 ± 11.146 <0.001

FPG(mg/dL) 86.999 ± 9.936 90.318 ± 10.157 92.744 ± 10.824 95.982 ± 11.837 <0.001

TC(mg/dL) 86.513 ± 15.782 87.474 ± 16.460 89.558 ± 16.811 90.891 ± 16.942 <0.001

TG(mg/dL) 15.528 ± 7.155 20.373 ± 11.038 27.187 ± 16.660 38.885 ± 26.875 <0.001

HDL-C(mg/dL) 29.935 ± 5.501 26.371 ± 4.434 24.258 ± 4.196 21.138 ± 4.309 <0.001

LDL-C(mg/dL) 48.671 ± 11.930 50.592 ± 12.504 52.416 ± 12.798 52.938 ± 13.239 <0.001

SCR(mmol/L) 63.381 ± 13.793 68.624 ± 15.245 73.345 ± 16.106 75.963 ± 15.070 <0.001

Smoking status <0.001

Never smoker 747 (2.562%) 1216 (4.162%) 1875 (6.414%) 2834 (9.690%)

Ever smoker 116 (0.398%) 283 (0.969%) 403 (1.379%) 526 (1.798%)

Current smoker 6280 (21.536%) 6213 (21.267%) 6133 (20.980%) 6060 (20.719%)

Not recorded 22017 (75.504%) 21502 (73.602%) 20822 (71.228%) 19828 (67.793%)

Drinking status <0.001

Never drinker 82 (0.281%) 160 (0.548%) 261 (0.893%) 375 (1.282%)

Ever drinker 628 (2.154%) 1176 (4.025%) 1700 (5.815%) 2031 (6.944%)

Current drinker 6433 (22.061%) 6376 (21.825%) 6450 (22.064%) 7014 (23.981%)

Not recorded 22017 (75.504%) 21502 (73.602%) 20822 (71.228%) 19828 (67.793%)

Family history of diabetes 0.743

NO 28525 (97.822%) 28551 (97.731%) 28560 (97.698%) 28579 (97.713%)

YES 635 (2.178%) 663 (2.269%) 673 (2.302%) 669 (2.287%)

Values are n(%) or mean ± SD.
BMI, body mass index; SBP, Systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipid cholesterol; SCR, serum creatinine.
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had new-onset diabetes. Participants in the higher METS-IR

quartile group were older than those in the lower quartile groups

(Q1-3). BMI, SBP, DBP, FPG, TC, TG, LDL-C, and SCR increased

with the increase of the METS-IR quartile, while HDL-C level

decreased (all P values < 0.001). By contrast with participators in

quartile 1, subjects in the higher quartiles were more current

drinkers and fewer current smokers. No significant differences

were found in the Family history of diabetes between the METS-

IR quartile group. Univariate linear regression analyses were

constructed to examine all significant variables in Table 2. And it

showed that age, BMI, SBP, DBP, FPG, TC, TG, LDL-C, METS-IR,
Frontiers in Clinical Diabetes and Healthcare 05
and family history of diabetes were positively correlated with new-

onset diabetes.
The multivariate analysis between METS-
IR and the risk of new-onset diabetes

Firstly, variable collinearity diagnostics were conducted to

calculate the VIF for each covariate. Covariates were deemed to

exhibit substantial multicollinearity and were ineligible for inclusion

in the multivariate Cox regressionmodel if their VIF was more than
TABLE 2 The results of univariate analysis.

Statistics HR(95%CI) P value

AGE (years) 44.079 ± 12.930 1.064 (1.062, 1.067) <0.0001

GENDER

Male 62868 (53.800%) Ref <0.0001

Female 53987 (46.200%) 0.496 (0.456, 0.539)

BMI(kg/m2) 23.347 ± 3.298 1.222 (1.212, 1.233) <0.0001

SBP(mmHg) 119.424 ± 16.677 1.037 (1.035, 1.039) <0.0001

DBP(mmHg) 74.437 ± 10.975 1.042 (1.039, 1.045) <0.0001

FPG(mg/dL) 91.514 ± 11.208 1.132 (1.129, 1.136) <0.0001

TC(mg/dL) 88.611 ± 16.594 1.016 (1.014, 1.018) <0.0001

TG(mg/dL) 25.502 ± 19.245 1.013 (1.012, 1.013) <0.0001

HDL(mg/dL) 25.422 ± 5.636 0.971 (0.964, 0.977) <0.0001

LDL(mg/dL) 51.156 ± 12.738 1.016 (1.013, 1.019) <0.0001

SCR(mmol/L) 70.339 ± 15.821 1.007 (1.006, 1.008) <0.0001

MEST-IR 39.123 ± 7.393 1.093 (1.089, 1.097) <0.0001

Smoking status

Never smoker 6672 (5.710%) Ref

Ever smoker 1328 (1.136%) 0.863 (0.630, 1.181) 0.3620

Current smoker 24686 (21.125%) 0.422 (0.361, 0.495) <0.0001

Not recorded 84169 (72.029%) 0.650 (0.570, 0.740) <0.0001

Drinking status

Never drinker 878 (0.751%) Ref

Ever drinker 5535 (4.737%) 0.481 (0.324, 0.715) 0.0003

Current drinker 26273 (22.483%) 0.515 (0.359, 0.740) 0.0003

Not recorded 84169 (72.029%) 0.602 (0.422, 0.858) 0.0050

Family history of diabetes

NO 114215 (97.741%) Ref

YES 2640 (2.259%) 1.403 (1.148, 1.715) 0.0009

BMI, body mass index; SBP, Systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipid cholesterol; SCR, serum creatinine; METS-IR: the metabolic score for insulin resistance.CI: confidence, Ref: reference.
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5. The results and details were listed in Table S1. After that, the

outcome of the Cox proportional hazards regression analysis was

summarized in Table 3. In the Crude model, METS-IR was a

positive correlation with incident diabetes (HR= 1.093, 95%CI:1.089

to 1.097, P < 0.0001). Compared with the crude mode, HR(95%

CIs) for diabetes incidence was 1.083 (1.078 to 1.087) in Model I.

Furthermore, the HR for the incident diabetes was 1.077 (95% CI:

1.073, 1.082, P<0.0001) inModel II. Remained significant even after

the continuous covariates were adopted into the GAM model as

curves, and the hazard ratio was 1.085 (95% CI: 1.075 to 1.096,

<0.0001), indicating the robustness of the main results. Moreover,

when METS-IR was handled as a classified variable into quartiles

and using the first quartile as a reference, the trend of incident

diabetes increased withMETS-IR quartile (P for trend<0.001) in the

Crude model. In addition, the risk of incident diabetes was

increased with Q4 versus Q1 of METS -IR in Model II (HR 6.261

[5.189,7.554], P for trend<0.001). Consistently, there were

significantly stronger associations of the METS-IR with

incident diabetes.
Kaplan-Meier analysis of diabetes

The comparison of cumulative diabetes incidence between the

quartiles of baselineMETS-IR in the Kaplan-Meier curve was shown

in Figure 1. Cumulative incidence was the highest in quartile 4 and

lowest in quartile1 (log-rank test P values < 0.001). It showed that

METS-IR Q4 participants had a greater chance of developing

incident diabetes than other groups during the follow-up.
The analyses of the dose-response and
threshold effect

A dose-response study using GAM indicated a non-linear

connection between METS-IR and incident diabetes (adjusting
Frontiers in Clinical Diabetes and Healthcare 06
age, sex, SBP, DBP, TC, LDL-C, SCR, smoking status, drinking

status, and family history of diabetes) in Figure 2. We further

explored the inflection point of METS-IR was 44.43 (log-

likelihood ratio test P < 0.001, Table 4). When METS-IR <

44.43, the HR was 1.140 (95% CI: 1.126 to 1.154), however, cubic

spline smoothing gradually became saturated (HR: 1.051; 95%

CI: 1.043 to 1.058) on the right side.
The results of stratified analyses

In addition, this study conducted a stratified analysis to

investigate the effects of potential modifications between METS-

IR and incident diabetes, including age, gender, sex, age, BMI,

SBP, DBP, FPG, and family history of diabetes. (Table 5). Age,

BMI, SBP, DBP, and FPG interacted with METS-IR and incident

diabetes by interaction tests (all P interaction < 0.05). Nevertheless,

there was no significant interaction among different

stratifications in gender and family history of diabetes. This

suggested that the relationship between METS-IR and diabetes

mellitus was not affected by gender and family history, and the

combination of certain risk factors with METS-IR may enhance

its sensitivity.
The discernibility of METS-IR for diabetes

A time-dependent ROC analysis was performed to assess the

predictive efficacy of METS-IR for incident diabetes at various

time nodes (Figures 3A–C). The area under the curve (AUC)

was 0.729, 0.718, 0.720 at 3, 4, and 5 years, respectively, which

revealed a good discriminatory capacity for incident diabetes. In

addition, ROC revealed that TG/HDL-C, TgG, TgG-BMI, and

METS-IR had AUCs of 0.699, 0.765,0.778, and 0.759,

respectively. It seemed that the predictive ability of METS -IR
TABLE 3 Relationship between METS-IR and the incidence of diabetes in different models.

Variable Crude model (HR,95%CI,P) Model I (HR,95%CI,P) Model II (HR,95%CI,P) GAM (HR,95%CI,P)

METS-IR 1.093 (1.089, 1.097) <0.0001 1.083 (1.078, 1.087) <0.0001 1.077 (1.073, 1.082) <0.0001 1.085 (1.075, 1.096) <0.0001

METS-IR (quartile)

Q1 Ref. Ref. Ref. Ref.

Q2 2.011 (1.624, 2.490) <0.0001 1.543 (1.245, 1.913) 0.0001 1.470 (1.185, 1.823) 0.0005 1.255 (0.796, 1.720) 0.3286

Q3 5.428 (4.491, 6.561) <0.0001 3.542 (2.922, 4.293) <0.0001 3.237 (2.667, 3.927) <0.0001 2.913 (1.954, 4.341) <0.0001

Q4 12.158 (10.150, 14.564) <0.0001 7.274 (6.040, 8.760) <0.0001 6.261 (5.189, 7.554) <0.0001 5.713 (3.884, 8.404) <0.0001

P for trend 2.351 (2.248, 2.458) <0.0001 2.046 (1.951, 2.145) <0.0001 1.942 (1.851, 2.038) <0.0001 1.942 (1.757, 2.146) <0.0001

Crude model: we did not adjust other covariants.
Model I: we adjust age, gender, smoking status, drinking status, and family history of diabetes.
Model II: we adjust age, gender, SBP, DBP, TC, LDL-C, SCR, smoking and drinking status, family history of diabetes.
GAM: All covariates listed in model II were adjusted. However, continuous covariates were adjusted as nonlinearity.
Abbreviations: SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TC, total cholesterol; LDL-C, Low-density lipid cholesterol; SCR, serum creatinine; METS-IR: the metabolic
score for insulin resistance;GAM, generalized additive model; CI, confidence interval; Ref: reference.
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followed by TgG-BMI and was not inferior to TG/HDL-C and

TgG (Figure 4). And the cut-off points for the prediction of

diabetes with them were shown in Table S2. Therefore, METS-IR

can be used to predict incident diabetes during follow-up

in Chinese.
Discussion

The present large cohort Chinese study demonstrated that

there was a positive correlation between METS-IR and the onset

of diabetes in Chinese. When adjustments were made for

covariates, individuals in the top quartile of METS-IR had a

6.261-fold higher risk of developing diabetes than those in the

bottom METS-IR quartile. Meanwhile, the association between

METS-IR and incidence diabetes was demonstrated to be

nonlinear. Furthermore, the result revealed that the cumulative

risk of incident diabetes in Chinese adults increased gradually

with the increase of METS-IR. Moreover, ROC analyses

suggested the METS-IR had significant discriminatory power

for new-onset diabetes at 3 years,4 years, and 5 years. These

results indicated that METS-IR can be used to predict the onset

of diabetes in healthy individuals during follow-up.
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Non-insulin-based metabolic indicators used to evaluate IR

have developed into an easier and cost-effective alternative

method, which is more suitable for epidemiological studies.

The previously widely accepted non-insulin-based IR

indicators commonly included FPG, parameters of lipids, and

indices of obesity, such as TyG, TyG-BMI, and TG/HDL-C (34–

36). Likewise, the METS-IR is a simple and economical indicator

that combines FPG, lipid profile, and obesity index. It is reported

that TyG (23, 24, 37, 38), TyG-BMI (27, 28), and TG/HDL-C

(25) were correlated with the risk of diabetes positively.

Consistent with present study, previous studies (29, 39, 40)

also identified that there was a positive correlation between

METS-IR and incident diabetes. Additionally, a prospective

cohort study by Chavolla et al. also proved that METS-IR was

superior to the TgG index and TG/HDL ratio in diagnostic

performance, but there was no significant difference between

METS-IR and TgG-BMI index (29). However, ROC analysis in

this research was observed that TG/HDL-C, TgG, TgG-BMI and

METS-IR had AUCs of 0.699, 0.765,0.778, and 0.759,

respectively, it revealed that the discriminatory power of

METS-IR was still superior to TG/HDL ratio, but not TgG.
Moreover, Chavolla et al. proved that the effect between METS-

IR and diabetes was modulated by age (29). An epidemiological
FIGURE 1

Kaplan–Meier event-free survival curve. Kaplan–Meier analysis of incident of diabetes based on METS-IR quartiles (Log-rank, P < 0.0001).
Abbreviation: METS-IR: the metabolic score for insulin resistance.
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study conducted by 12,107 Chinese participants and subgroup

analyses also consistently confirmed that significant associations

remained between gender, age, and FPG level in subgroup

analyses (39). Interestingly, stratified interaction analysis in

this study also found differences in the influence of METS-IR

and diabetes among age and baseline FPG subgroups, but there

was no interaction observed in the subgroup of gender,
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suggesting that the correlation between METS-IR and diabetes

was robust among men and women. Notably, this study also

conducted the dose-response analysis between METS-IR and

diabetes and showed that the probability of diabetes gradually

increased with the increase of METS-IR, which is consistent with

results from a cohort of 12,107 rural Chinese participants (39)

and a cohort study of 12,290 non-obese Japanese adults (40).
FIGURE 2

The non-linear relationship between METS-IR and incident of diabetes. Abbreviation: METS-IR: the metabolic score for insulin resistance.
TABLE 4 The result of two-piecewise linear regression model.

incident of diabetes (HR,95%CI, P)

Fitting model by standard linear regression 1.077 (1.073, 1.082) <0.0001

Fitting model by two-piecewise linear regression

Inflection point of METS-IR 44.43

≤44.43 1.140 (1.126, 1.154) <0.0001

> 44.43 1.051 (1.043, 1.058) <0.0001

P for log likelihood ratio test <0.001

We adjusted age, gender, SBP, DBP, TC, LDL-C, SCR, family history of diabetes, smoking and drinking statuses.
Abbreviations: SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TC, total cholesterol; LDL-C, Low-density lipid cholesterol; SCR, serum creatinine; METS-IR: the metabolic
score for insulin resistance. CI, confidence interval.
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Nonetheless, this study provided additional information that

there was a positive correlation between METS-IR and the

incidence of DM with a saturation effect, and the inflection

point of METS-IR was calculated to be 44.43. When METS-IR

≤44.43, the risk of diabetes increased rapidly with METS-IR, the

effect size was 1.140 (95% CI: 1.126-1.154, P < 0.0001); while

METS-IR>44.43, the tendency gradually saturated compared

with the left side of the inflection point (HR=1.051,95%CI:

1.043,1.058 P<0.0001). A possible explanation for the

conflicting results may be the differences in participant
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selection and covariables, and further studies are needed to

check on the result.

The underlying mechanism of METS-IR associated with

diabetes has yet to be elucidated. IR has played its pathological

mechanism before the onset of diabetes (41). The content of

reactive oxygen species (ROS) increases with the increase of

blood glucose, which may have a toxic reaction on b-cells,
leading to pancreatic b-cell dysfunction, and then causing

diabetes (42, 43). During hyperinsulinemia, the efficiency of

insulin signaling is inhibited, resulting in reduced glucose uptake
TABLE 5 Effect size of METS-IR on diabetes in prespecified and exploratory subgroups.

Characteristic No of participants HR (95%CI) P value P for interaction

Age(years) 0.0106

20 to < 30 11204 1.091 (1.055, 1.128) <0.0001

30 to < 40 41985 1.078 (1.064, 1.092) <0.0001

40 to < 50 27171 1.056 (1.044, 1.067) <0.0001

50 to < 60 19569 1.025 (1.015, 1.035) <0.0001

≥60 16926 1.017 (1.005, 1.030) 0.0051

Gender 0.4759

Male 62868 1.030 (1.022, 1.039) <0.0001

Female 53987 1.034 (1.024, 1.044) <0.0001

BMI 0.0027

< 18.5 5991 1.009 (0.878, 1.160) 0.8976

≥ 18.5, < 24 63581 1.052 (1.039, 1.064) <0.0001

≥ 24, < 28 37151 1.030 (1.018, 1.042) <0.0001

≥ 28 10132 1.019 (1.007, 1.031) 0.0021

SBP <0.0001

<140 103990 1.039 (1.031, 1.046) <0.0001

≥ 140 12847 1.011 (1.001, 1.022) <0.0001

DBP 0.0139

<90 106653 1.035 (1.027, 1.042) <0.0001

≥ 90 10184 1.019 (1.007, 1.032) <0.0001

FPG <0.0001

<100 93628 1.069 (1.057, 1.081) <0.0001

≥100 23227 1.023 (1.015, 1.031) <0.0001

Family history of diabetes 0.2764

No 114215 1.032 (1.025, 1.040) <0.0001

Yes 2640 1.018 (0.993, 1.044) 0.1646

1:Above model adjusted for age, gender, BMI, SBP, DBP, FPG,and family history of diabetes.
2:In each case, the model is not adjusted for the stratification variable
Abbreviations: BMI, body mass index; SBP, Systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; CI: confidence.
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from the blood, which increases the risk of diabetes (44).

Consecutively, hyperglycemia can induce excessive peroxide

production, which eventually leads to impaired insulin

secretion and insulin resistance by promoting multiple

oxidative stress pathways (45).There is growing evidence about

dyslipidemia is a cause of IR (46, 47). Diabetes is a progressive
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disease, and a study on animal models of diabetes showed b-cell
apoptosis accompanied by long-term hyperglycemia/

hyperlipemia (glucolipotoxicity) (48). Previous literature

indicated that fat accumulation is related to IR, which may

provoke metabolic disturbances in the liver, and further affect

the homeostasis of blood glucose and lipid (49–51). Adipose
A B C

FIGURE 3

Time-dependent receiver operating characteristic (ROC) curves of METE-IR for diabetes at 3 (A), 4 (B) and 5 years (C). METS-IR, the metabolic
score for insulin resistance.
FIGURE 4

The results of receiver operating characteristics curves. Abbreviations: TG/HDL-C, Triglyceride to high-density lipoprotein cholesterol ratio; TgG
index, Triglyceride glucose index; TgG-BMI, TyG*BMI; METS-IR, The Metabolic score of insulin resistance.
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tissue contributes to metabolic risk and, in addition to the effects

of body mass index, is associated with elevated blood glucose and

lower HDL-C (52, 53). Hypertriglyceridemia contributes to a

corresponding increase in free fatty acid (FFA) levels, which may

impair insulin signaling and induce tissue oxidative stress, giving

rise to IR in bone and liver (53, 54). Simultaneously, lower HDL-

C reduces its anti-inflammatory effects and its inhibitory effect

on LDL-C oxidation (55). Besides, IR is affected by many factors,

obesity index is also an important factor in IR (56), which can

occur even in people with a normal BMI (57). And BMI has been

shown to have a strong association with prediabetes and diabetes

in many studies (58–61). Therefore, as one of the important

components of the METS-IR model, the obesity index may have

a significant impact on the prediction of diabetes by METS-IR.

Chavolla and his colleagues found that subjects with high

METS-IR index showed increased visceral fat and fasting

insulin levels (29). At the same time, in our prospective study,

higher levels of BMI, FPG, TC, TG, and LDL-C were observed at

higher baseline METS-IR levels, and persons in higher baseline

METS-IR levels had higher cumulative incidence of diabetes,

which supported METS-IR can be applied to forecast the

prevalence of diabetes.

There were still potential limitations that should be

considered in this study. First, the occurrence of diabetes was

diagnosed only by FPG and self-report in this study, without the

use of the 2-hour oral glucose tolerance test (OGTT) and

glycated hemoglobin (HbA1c), which may underestimate the

incidence of diabetes in the study. However, due to the operation

complexity of OGTT, it is not feasible for large cohorts and

similar limitations have been observed in previous large

population studies (40). Second, due to the limitations of the

original cohort data, we could not include several potential

confounders and biochemical indicators such as diet, exercise,

and plasma insulin. In particular, the lack of plasma insulin

limited the ability to explore the concordance between METS-IR

and HOMA-IR, and patients with diabetes could not be

classified in the study because insulin testing is not a routine

physical examination, especially in large epidemiological studies.

Additionally, there was a lack of data on the dynamic changes of

METS-IR during the follow-up survey, so its correlation with

diabetes could not be evaluated in this study. Third, the study

population was all Chinese, which may limit the extrapolation of

such results to other ethnic groups. Despite these limitations,

China has a large population of diabetics (3, 4), and the results of

this study are still representative.

Although our study had limitations, there were still several

advantages. Compared with previous similar studies (29, 39, 40),

this study was a large sample size and a multicenter study.

Furthermore, the study also conducted a sensitivity analysis by

handling METS -IR as a categorical variable and continuous

variable to assess the stability of the result.
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Conclusion

This study provides additional evidence supporting that

METS-IR was connected with incident diabetes in the cohort

of Chinese, and there is a non-linear relationship between

METS-IR and diabetes. Meanwhile, METS-IR had a good

discriminative ability for incident diabetes. METS-IR may be a

reliable alternative method for predicting the risk of diabetes in

epidemiological investigations.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials. Further

inquiries can be directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by Rich Healthcare Group. The patients/participants

provided their written informed consent to participate in

this study.
Author contributions

KF and ZC contributed to the study concept and design,

researched and interpreted the data and drafted the manuscript.

CH, ZZ and YZ performed the statistical analysis. MX, YT and

LF contributed to the discussion. ZC drafted the Manuscript and

KF edited the manuscript. All authors read and approved the

final the manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This study was funded by Heilongjiang Natural Science

Foundation Project (LH2019H084), Shenzhen Pingshan

District Health System research project (202135), and

President’s Fund Project of Shenzhen Pingshan Medical

Health Group (Pingshan General Hospital of Southern

Medical University).
Acknowledgments

The authors are grateful to all of the doctors and participants

who were involved in the Rich Healthcare Group study in China.
frontiersin.org

https://doi.org/10.3389/fcdhc.2022.1101276
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
https://www.frontiersin.org


Chen et al. 10.3389/fcdhc.2022.1101276
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Clinical Diabetes and Healthcare 12
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fcdhc.2022.1101276/full#supplementary-material
References
1. GBD 2017 Risk Factor Collaborators. Global, regional, and national
comparative risk assessment of 84 behavioural, environmental and occupational,
and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017:
a systematic analysis for the global burden of disease study 2017. Lancet (London
England). (2018) 392:1923–94. doi: 10.1016/S0140-6736(18)32225-6

2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al.
IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates
for 2021 and projections for 2045. Diabetes Res. Clin. practice. (2022) 183:109119.
doi: 10.1016/j.diabres.2021.109119

3. Magliano DJ, Boyko EJ. IDF diabetes atlas 10th edition scientific committee .
IDF DIABETES ATLAS. 10th ed. Brussels: International Diabetes Federation
(2021).

4. Jia W, Weng J, Zhu D, Ji L, Lu J, Zhou Z, et al. Standards of medical care for
type 2 diabetes in China 2019. Diabetes/metabolism Res. Rev. (2019) 35:e3158.
doi: 10.1002/dmrr.3158

5. Prevention D. Clinical guidelines for prevention and treatment of type 2
diabetes mellitus in the elderly in China (2022 edition). Zhonghua nei ke za zhi.
(2022) 61:12–50. doi: 10.3760/cma.j.cn112138-20211027-00751

6. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national
burden and trend of diabetes in 195 countries and territories: an analysis from 1990
to 2025. Sci. Rep. (2020) 10:1–1. an analysis from 1990 to 2025. doi: 10.1038/
s41598-020-71908-9

7. James DE, Stöckli J, Birnbaum MJ. The aetiology and molecular landscape of
insulin resistance. Nat. Rev. Mol. Cell Biol. (2021) 22:751–71. doi: 10.1038/s41580-
021-00390-6

8. Gastaldelli A, Gaggini M, DeFronzo RA. Role of adipose tissue insulin
resistance in the natural history of type 2 diabetes: results from the San Antonio
metabolism study. Diabetes (2017) 66:815–22. doi: 10.2337/db16-1167

9. Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-
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