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Neurological diseases afflict a growing proportion of the human population. There are two
reasons for this: first, the average age of the population (especially in the industrialized
world) is increasing, and second, the diagnostic tools to detect these pathologies are
now more sophisticated and can be used on a higher percentage of the population. In
many cases, neurological disease has a pharmacological treatment which, as in the case
of Alzheimer’s disease, Parkinson’s disease, Epilepsy, and Multiple Sclerosis can reduce
the symptoms and slow down the course of the disease but cannot reverse its effects or
heal the patient. In the last two decades the transplantation approach, by means of stem
cells of different origin, has been suggested for the treatment of neurological diseases.
The choice of slightly different animal models and the differences in methods of stem
cell preparation make it difficult to compare the results of transplantation experiments.
Moreover, the translation of these results into clinical trials with human subjects is difficult
and has so far met with little success. This review seeks to discuss the reasons for these
difficulties by considering the differences between human and animal cells (including
isolation, handling and transplantation) and between the human disease model and the

animal disease model.
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INTRODUCTION

NEUROLOGICAL DISEASES

There are three types of neurological disorders. Firstly there are
the disorders which involve a loss of cells in defined subsets of
the brain, such as Parkinson’s disease (PD), Alzheimer’s disease
(AD), and Multiple Sclerosis (MS), and Spinal Muscular Atrophy
(SMA). Secondly there are diseases where cells are lost following
acute damage, such as Stroke, Brain Trauma or Spinal Cord Injury
(SCI). Thirdly we have the disorders which involve the impair-
ment of cell function without cell death, like Epilepsy (Leppik
etal., 2006) (Table 1).

A knowledge of the characteristics of the diseases is cru-
cial to finding the appropriate transplantation strategy. Diseases
which present, at the time of diagnosis, an extended impairment
require an intervention aimed at the replacement of the dam-
aged or dead cells; if the damage is limited, on the other hand,
a trophic or anti-inflammatory role for the transplanted cells can
be beneficial.

Parkinson’s disease

When the British doctor James Parkinson, in 1817, described
the disorder as “shaking palsy” he was almost 7000 years late.
Indeed, the first documented description of this disease is from
5000 BC: in an ancient Indian civilization it was given the
name Kampavata. The document which described it recom-
mended treatment using the seeds of a plant containing thera-
peutic levels of what is today known as levodopa (Manyam and
Sanchez-Ramos, 1999).

spinal v atrophy,

Parkinson’s disease is the second most common neurodegen-
erative disorder (AD is the most common) and the most common
movement disorder. It is characterized by progressive loss of
muscle control, which leads to trembling of the head and limbs
while at rest, impaired balance, stiffness, and slowness (Jankovic,
2008). Unfortunately, by the time the symptoms are evident, the
neurological damage is already severe, with a massive loss of
dopaminergic neurons in the substantia nigra (Double, 2012).

For over 30 years, the most widely used treatment of PD has
been levodopa (L-DOPA) which is converted into dopamine in
the dopaminergic neurons by dopa decarboxylase. Since motor
symptoms are caused by a deficiency of dopamine in the substan-
tia nigra, the administration of L-DOPA pro tempore diminishes
the motor symptoms.

Sporadic PD has unknown causes; some hypotheses about the
role of environmental toxins were widely supported during much
of the 20th century. However, views on the pathology of PD have
changed for two reasons, as follow. Firstly, there are no persua-
sive data to indicate that any specific toxin is a cause of sporadic
PD, and chronic environmental exposure to 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) or rotenone is unlikely to
cause PD for chemical reasons (Brown et al., 2006). Secondly,
recent work shows that mutation of genes is associated with
only a very small proportion of cases (Antony et al., 2013).
Only 10% of all PD cases are caused by genetic mutations, and
animal models of these mutations (a -synuclein and LRRK2,
autosomal dominant PD) and (PINK1/Parkin and DJ-1, autoso-
mal recessive PD) are important since they represent a possible
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Table 1 | Pharmacological treatments of the common neurological diseases.

Pathology

Pharmacological treatment

References

Parkinson's disease

Current Parkinson'’s disease (PD) therapy is essentially symptomatic, and l-Dopa
(LD), is the treatment of choice in more advanced stages of the disease. However,
motor complications often develop after long-term treatment, and at this point
physicians usually prescribe adjuvant therapy with other classes of antiparkinsonian
drugs, including dopamine (DA) agonists, anticholinergic, catechol-O-methyl
transferase (COMT) or monoamine oxidase (MAO)-B inhibitors

Sozio et al., 2012; Ferreira et al.,
2013

Alzheimer's disease

Anticholinergic, inhibitory of NMDA receptor drugs and neuroprotective drugs

van de Glind et al., 2013

Multiple sclerosis

Interferon(IFN)-g and disease modifying drugs

Marta and Giovannoni, 2012;
Fernandez et al., 2013

Amyotrophic lateral sclerosis

Riluzole

Morren and Galvez-Jimenez, 2012

Spinal muscular atrophy

No US Food and Drug Administration (FDA) approved treatment for SMA

Cherry and Androphy, 2012

Spinal cord injury

Despite numerous studies reporting some measures of efficacy in the animal
literature, there are currently no effective therapies for the treatment of traumatic
spinal cord injuries (SCI) in humans. Methylprednisolone (MP) for instance is not
FDA approved for this application

Rabchevsky et al., 2011; Hurlbert
etal., 2013

Epilepsy CaZ* channel blockers, GABA uptake inhibitors, Nat channel modulators, GABAx Leppik et al., 2006
receptor allosteric modulators, NMDA receptor antagonists
Stroke Mostly anticoagulant and thrombolysis agents Plosker, 2014

therapeutic target (Dauer and Przedborski, 2003). Most likely the
concomitant differences in the genome (for instance the pres-
ence of polymorphisms), the patient’s age and the presence of
environmental factors can all contribute to an increased risk
of PD from an epidemiological point of view (Gao and Hong,
2011; Antony et al,, 2013). An example of the combination
of a variation of the genome and an environmental factor is
that an Aldehyde dehydrogenase variation enhances the effect of
pesticides associated with Parkinson disease (Fitzmaurice et al.,
2014).

Alzheimer's disease

More than 35 million people worldwide are affected by AD, a
progressive neurodegenerative illness that slowly deprives indi-
viduals of their memories and other cognitive functions (Ferri
et al., 2005; Sosa-Ortiz et al., 2012). The prevalence of dementia
increases from 0.9% in 65- to 69-year-olds to over 30% in people
aged 85 years and older (Ferri et al., 2005).

There are many risk factors for dementia, three of which are
constant and unchangeable: a family history of dementia, older
age, and apolipoprotein E genotype e4 allele. Of the other risk
factors for dementia some depend on education and occupational
achievements; while others are related to cardiovascular risk fac-
tors (smoking, hypertension, diabetes, and obesity) and lifestyle
and psychosocial factors (depression, physical activity and alco-
hol consumption) (Sosa-Ortiz et al., 2012) and can be changed in
some ways by the patient.

One of the most important problem is that patients
with dementia cannot be healed: the process of cogni-
tive decline can merely be delayed. In numerous countries,

cholinesterase inhibitors and memantine are registered for the
treatment of cognitive impairment in AD (Cummings et al.,
2013).

Multiple sclerosis

Multiple Sclerosis is an autoimmune disease which targets the
myelinated central nervous system (CNS) tracts. It is the most
common chronic inflammatory demyelinating disorder of the
CNS, and the leading cause of non-traumatic neurological dis-
ability in young adults, affecting 0.1% of the general population
in Western countries (Noseworthy et al., 2000). There are many
risk factors that could be considered to be responsible for the
pathology, among which are environmental risk factors such
as infections like measles and Epstein—Barr virus, climate and
solar conditions, living conditions and trace elements in the diet
(Rosati, 2001).

The inflammation damages the blood-brain barrier and
induces the destruction of myelin and the consequent axon dam-
age, gliosis and the formation of sclerotic plaques (Nylander and
Hafler, 2012). Continuing lesion formation in MS often leads to
physical disability and to cognitive decline. The course of the dis-
ease varies between patients, for example more than 60% lose
ambulatory capability within 20 years of onset while others are
not affected.

Almost 80% of patients will initially present unpredictable
attacks (relapses), of variable duration, in which new symptoms
appear or existing symptoms become more severe. At the end of
the attack, there is a partial or complete recovery. However, symp-
toms may become more severe and the recovery of function less
complete after each attack (Luessi et al., 2012).
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No curative therapy is currently available; therapies are mainly
directed to preserving CNS cells, inducing remyelination, and
modulating T cells. Interferon (IFN)-f was the first agent to show
clinical efficacy in the most common form of MS, relapsing-
remitting MS. IFN-P treatment reduces relapse rates by about
30%, decreases the formation of inflammatory lesions in the CNS,
elongates remission periods, and possibly slows down the pro-
gression of disability (Schwid and Panitch, 2007). In determining
the risk of developing MS, environmental and hereditary factors
need to be regarded as acting in tandem; on this, the lessons
learned in connection with PD will assist our understanding of
the mechanisms of the pathology for a number of patients (Koch
et al., 2013; Munoz-Culla et al., 2013).

Amyotrophic lateral sclerosis

Charcot described ALS in 1874. It is the most common form of
the neurodegenerative disorders collectively referred to as motor
neuron disease, and has a higher incidence in women. The sixth
decade is the most common age at which the disease has its onset.
5-10% of cases are familial and the remainder are regarded as spo-
radic (Rowland and Shneider, 2001). The familial forms involve
the mutation of many genes: superoxide dismutase 1 (SOD1)
(Rosen et al., 1993), fused in sarcoma (FUS) (Kwiatkowski et al.,
2009; Vance et al., 2009), TAR DNA-binding protein 43 (TDP43)
(Kabashi et al., 2008), or chromosome 9 open reading frame
72 (C90rf72) genes (Dejesus-Hernandez et al., 2011; Renton
et al.,, 2011). However, a most important recent discovery was
that of intronic hexanucleotide repeat expansions in chromo-
some 9 open reading frame 72 (C9orf72) as a common cause
of ALS, frontotemporal lobar degeneration (FTLD) and ALS
with concomitant FTLD. The high frequency of C90rf72 muta-
tions in patients lacking a family history of ALS further blurred
the distinction between the sporadic and the familial forms of
ALS and FTLD (Dejesus-Hernandez et al., 2011; Renton et al.,
2011).

Clinical studies had already suggested that ALS and FTLD
represent two extremes of a spectrum of neurodegenerative dis-
orders, which co-occur in up to 15% of patients (Lomen-Hoerth
et al., 2003). An association between dementia and ALS was
noticed as early as the late 19th century. After this initial discovery,
many other authors reported similar data (Neary et al., 2000).

The strongest evidence for considering ALS and FTLD as
one disease, however, comes from the discovery that C9orf72
mutations are a prevalent cause of ALS, ALS-FTLD, and FTLD
(Kwiatkowski et al., 2009; Vance et al., 2009) and are most likely
responsible for approximately 40% of ALS and for approximately
25% of familial FTLD (Van Blitterswijk et al., 2012).

ALS is a heterogeneous disorder at almost all levels: clini-
cal, genetic and mechanistic. For instance the ranges of age of
onset and rate of progression of the disease are wide; even when
the same type of mutation is present, age at onset and survival
rates vary substantially (Regal et al., 2006). This heterogeneity
remains unexplored and little understood (Van Damme et al,,
2013).

Drugs have little effect on disease progression, so other, multi-
disciplinary, strategies are required. For instance artificial ventila-
tion and feeding tubes are the main care options. Furthermore,

since cognitive functions and emotional ability seem to be
affected by this disease (Abrahams et al., 1995) psychological
intervention is desirable.

The only drug approved by the U.S. Food and Drug
Administration for the treatment of ALS is riluzole, a glutamate
antagonist. In two therapeutic trials, riluzole prolonged survival
by 3-6 months (Bensimon et al., 1994; Lacomblez et al., 1996).

Stroke

Stroke is the abrupt loss of brain function due to alteration in the
blood supply to the brain. It is recognized as the second leading
cause of death worldwide; its incidence depends on age and race
(Grossman and Broderick, 2013).

Small and large artery occlusions are the main factors responsi-
ble for the pathology, with the occlusion of intra- and extracranial
large vessels seeming to involve endothelial injury and platelet
aggregation. When smaller vessels are occluded there is a sim-
ilarity with arteriosclerosis due to common vascular risk fac-
tors of diabetes, hypertension, and hypercholesterolemia. The
canonical therapeutical approach is mostly directed to the reduc-
tion of the thrombus and the prevention of clot formation
(Grossman and Broderick, 2013; Plosker, 2014). Little is known
and little action is taken of a neuroprotective or neuromodu-
latory nature on patients affected by stroke. The main target
is the recovery of language by means of dopamine precursors,
or agonists, or cholinergic neuromodulation (Breitenstein et al.,
2006).

Spinal muscular atrophy

Spinal muscular atrophy is one of the most devastating child-
hood diseases since it affects babies from birth onwards (it can
occasionally be detected during gestation), and in its more severe
form—type 1 or Werdnig-Hoffmann disease, in which patients
cannot sit and some of them cannot control the position of their
head—life expectancy does not exceed 2 years. Type 2 SMA is
an intermediate form whose onset is between 7 and 18 months
of age; patients can sit but never stand and they can survive to
adulthood. Type 3 SMA (Kugelberg and Welander) has its onset
after the 30th month of life. The severity of the disease is classi-
fied by the degree of muscle weakness (before or after 3 years); the
patient can walk but in some more severe forms they stop walking
in adulthood. Finally type 4 SMA has its onset between the 10 and
the 30th years of life; length of life is as with type 3 and patients
can stand and walk and—if well trained—continue doing so all
their life (Mercuri et al., 2012; Bottai and Adami, 2013).

SMA is a genetic disease caused by a loss of function muta-
tion of a telomeric gene called Survival Motor Neuron 1 (SMN1)
(Burglen et al., 1995, 1996). The pathology is very variable and
depends on the number of copies of another centromeric gene,
the Survival Motor Neuron 2 (SMN2), which can transcribe
for the same protein although with a lower rate of expression
(Campbell et al., 1997; Bottai and Adami, 2013). So far no phar-
macological treatment has been shown to be effective, although
the various clinical trials performed even recently need to be
revisited, as there is a great variability of response to pharma-
cological treatment between different patients (Garbes et al.,
2013).
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Spinal cord injury

Mechanical damage to the spinal cord results in dramatic change
in the capabilities of the CNS. In SCI the force applied to the
bones (due to work, or car, bike or sports accident) can deform
and break the bone itself and can damage the nervous tissue.

This is called primary damage and depends on the amount of
energy transferred to the nervous tissue. In this pathology there
is, however, secondary damage due to the response of the immune
system of the patient, which tries to repair the damage but actually
causes more impairment. Indeed, many substances produced by
leukocytes are neurotoxic and have been implicated in the onset
and progression of CNS autoimmune and neurodegenerative dis-
eases (Feuerstein et al., 1998). The secondary damage in many
cases is even more severe than the primary damage, and is often
responsible for the chronic effects that the patient will face in
later life.

Due to the wide range of degree and type of damage in
human patients it is difficult to find a single strategy for the treat-
ment of SCI: in most cases the current therapeutic algorithm
includes early surgery consisting of decompression of the spinal
cord and stabilization of the spine in indicated cases. As soon as
the patient’s injuries (often multiple) become stable, the patient
is transferred to a specialized rehabilitation center. Nonetheless,
there is no treatment available today that can lead to the repair
of the damaged spinal cord tissue. The current standard ther-
apy consists of the administration of methylprednisolone sodium
succinate (MPSS) to reduce SCI damage by decreasing lipid per-
oxidation and free radical production, and preventing edema
taking place during ischemia and re-perfusion.

Epilepsy

Epilepsy, also known as seizure disorder, is a pathological con-
dition that brings about seizures and affects a range of mental
and physical functions (Mattson, 2003). Seizures are caused by a
malfunction of the electrical system of the brain, with an uncon-
trolled discharge that makes the brain cells keep firing. This
results in a flux of energy through the brain, causing muscle con-
tractions and unconsciousness. When a person has at least two
seizures without another known cause, they are considered to
have epilepsy.

There are various kinds of seizures, which the experts divide
into generalized seizures (absence, atonic, tonic-clonic and
myoclonic), partial (simple and complex) and status epilepticus
(Mattson, 2003; Beydoun and D’souza, 2012).

In many cases—about 70%—no cause can be found. In other
cases, the epilepsy can be due to head injuries or lack of oxygen

during parturition, which may alter the delicate electrical sys-
tem in the brain, genetic conditions (such as tuberous sclerosis),
lead poisoning, brain tumors, problems in the development of the
brain before birth and infections like meningitis or encephalitis.

Anti-epileptic drugs vary in structure and function, and in
many cases their clinical activity is not understood. The anti-
epileptics have three main intended effects: membrane stabi-
lization, reduction of neurotransmitter release and increase of
GABA-mediated inhibition (Leppik et al., 2006; Howard et al.,
2011).

TRANSPLANTATION METHODS
Transplanting cells involves different sets of questions that need
to be taken into account in preclinical and clinical trials.

Disease

The first one is whether the pathology induces the death of brain
cells or rather initiates a change in the interactions between cells.
The second concerns the possibility—which exists only when it is
known that the blood brain barrier (BBB) is open—of systemic
transplantation. A further one, with regard to the disease itself,
is whether the pathology induces an inflammatory response, in
which case the role of the transplanted cells should be not only
substitutional but also anti-inflammatory. These are all relevant
concerns needing to be taken into account in the case of almost
all the cells that have been used in clinical trials.

Stem cell use
Given the foregoing, the choice of the cells to be transplanted can
be very wide.

Many different types of stem cells have a potential therapeutic
role in the treatment of neurological diseases (Table 2). We can
divide the approach into two large sections, according to the role
that the transplanted cells are supposed to play: substitutional and
trophic.

In the early days of stem cell transplantation in neurological
diseases the substitutional role was the focus of hypotheses and
much optimism. Many scientific works in animal models have
shown that transplanted cells lodging in the nervous tissue were
not sufficient to exert any effect or to bring about any physio-
logical outcome (Pluchino et al., 2003, 2009; Bottai et al., 2008;
Cusimano et al., 2012; Nizzardo et al., 2013).

If the therapeutical approach is adopted when the neurological
impairment is already substantial it is very difficult to recon-
stitute the tissue and, therefore, to rebuild the damaged neural
circuits. Indeed, injury to the spinal cord involves the loss of

Table 2 | Stem cells used for the transplantation in neurological diseases.

Stem cell type Origin

References

Embryonic stem cells

Induced pluripotent stem cells
Mesenchymal stem cells (including Amniotic
fluid stem cells)

Neural stem cells Human fetus

Muscle stem cells Skeletal muscle

Inner cell mass of the blastocys

Reprogrammed adult tissue cells

Many different tissues: bone, fat, cartilage, stromal
cells of the bone marrow, and fetal appendages

Evans and Kaufman, 1981; Thomson et al., 1998
Takahashi and Yamanaka, 2006

De Coppi et al., 2007; Nagai et al., 2007; Bottai
et al., 2012; Frenette et al., 2013

Weiss et al., 1996; Vescovi et al., 1999b

Cooper et al., 2006
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motor-neurons with long axons that are surrounded by myelin
sheets. In these cases the transplanted cells have to reconstitute
not only the neurons but also the glia; moreover, they need to be
able to extend their processes in the right direction in order to
exert their therapeutic action.

With current knowledge it is unlikely that this task could be
achieved but the combination of transplanting therapies and bio-
engineering (constructing scaffolds) could be a new avenue for
transplantation research in finely structured tissues.

DIFFERENT TYPES OF STEM CELLS USED FOR THE
TREATMENT OF NEUROLOGICAL DISEASES

From a physiological point of view we can divide stem cells
into embryonic, fetal and adult cells (Table2). The differ-
ences between them are in their origins, their proliferation and
differentiation capabilities and their telomere stability.

EMBRYONIC STEM CELLS (ESCs) AND INDUCED PLURIPOTENT STEM
CELLS (iPS)

Since the early 1980’s (Evans and Kaufman, 1981) it has been
well known that ESCs possess high proliferation and differen-
tiation capabilities and were able to generate a whole mouse
(Nagy et al., 1993). In the late nineties the possibility of produc-
ing human ESCs was also demonstrated (Thomson et al., 1998).
Unlike normal somatic cells, ESCs do not face senescence and
can be grown in virtually unlimited quantities, retaining high
telomerase activity and normal cell cycle signaling.

ESCs have been used for many years in different models of
neurodegenerative diseases. For instance, in 2002 Isacson demon-
strated that mouse undifferentiated ESCs transplanted into the
striatum of a rat model of PD resulted in the differentiation
of Dopaminergic (DA) neurons and caused sustained behav-
ioral restoration of motor asymmetry (Bjorklund et al., 2002).
A few years later, two groups demonstrated that primate ESCs
differentiated in vitro were able to induce a partial recovery in
parkinsonian monkeys (Takagi et al., 2005) and rats (Ferrari
et al., 2006) and were able to integrate in the striatum, generating
Tyrosine Hydroxylase (TH)+ neurons. Also SCI has been treated
using the transplantation of ESCs either using differentiated ESCs
(such as oligodendrocytes precursors) (Liu et al., 2000), where the
cells migrate and differentiate in mature oligodendrocytes capable
of myelinating axons or undifferentiated cells (Bottai et al., 2010)
where they have mainly a trophic role, reducing the inflammation
and preserving the myelin of the ventral columns.

Retinoic acid pretreated ESCs were also successfully used in
ischemic rat models (Wei et al., 2005) where they enhanced func-
tional recovery on neurological and behavioral tests. Moreover,
motor neuron differentiated ESCs were able to induce a motor
improvement in a genetic rat model of ALS (Lopez-Gonzalez
et al.,, 2009), and multipotent neural precursors (NPs) reduced
the clinical signs of MS in a mouse model of experimental
autoimmune encephalomyelitis by means of the attenuation of
the inflammatory process (Aharonowiz et al., 2008).

Regardless of their potentiality the use of undifferentiated
ESCs raises considerable numbers of concerns about the forma-
tion of tumors and teratomas, although such a risk decreases
with their progressive cellular differentiation (i.e., reduced

multipotency); in addition to these factors, we must not forget
that there are many ethical concerns around ESCs.

In 2006 a new frontier was opened up by Yamanaka (Takahashi
and Yamanaka, 2006). The production of embryonic-like stem
cells originating from adult cells (mostly fibroblasts) put an end
to the ethical concerns around the use of pluripotent stem cells.
These induced pluripotent stem cells, obtained by the introduc-
tion of four genes Oct3/4, Sox2, c-Myc, and Klf4, which have a
transcriptional factor activity in the early phases of their develop-
ment, have physiological and molecular characteristics similar to
ES with respect to their proliferation and differentiation poten-
tiality. Moreover, in vivo iPS induction in mice demonstrated that
in experimental conditions the iPS have an unexpected capacity to
form embryo-like structures including the three germ layers and
the extra-embryonic structures, indicating that induction in vivo
can achieve an even earlier stage of development than the ESCs
(Abad et al., 2013).

The affinity of iPS with the ESCs makes these cells suitable for
a similar application in animal models of neurological pathology.
Indeed, it has been demonstrated that human iPS differenti-
ate into DA progenitor cells and transplanted into a chemically
induced PD rat survive long term and develop into DA neu-
rons and integrate into the brain parenchyma. However, some
cells produced tumour-like nestin positive cells, raising some con-
cern about the safety of these cells (Cai et al., 2010); indeed, in
another study, in order to minimize the risk of tumour formation
the dopaminergic derived iPS cells were separated from con-
taminating pluripotent cells by means of fluorescence-activated
cell sorting (Wernig et al., 2008). Protein-based iPS differenti-
ated to the terminally-matured DA neurons as the ESCs did,
but had higher levels of DA neuron-specific markers’ expression
than ES cells, indicating that iPS were a suitable source for PD
patient-specific treatment (Kwon et al., 2014).

Similarly, neuroepithelial-like stem cells from human iPS cells
were used to treat SCI in mouse. In this model they were able
to differentiate into neural lineage and cause a recovery of motor
function (Fujimoto et al., 2012; Kobayashi et al., 2012).

Ischemia induced by middle cerebral artery occlusion was
treated by means of astroglial- and neuron-like differentiated iPS
using a fibrin glue support. iPS cells were able to improve the
motor function, attenuate inflammation, reduce infarct size and
mediate neuroprotection in this model (Chen et al., 2010).

Concerning the fetal and adult stem cells obtained from dif-
ferentiated tissue in the fetus and in mature organisms, many
different types of cells can be described that have some (at least
preclinical) applications.

NEURAL STEM CELLS

The telencephalon and the diencephalon of the human fetus
between the 9.5 and the 12th weeks of gestation possess cells
with all the characteristics of stem cells. They proliferate at a ratio
that could allow transplantation into human patients to treat var-
ious pathologies and can differentiate into neurons (that have
physiological electrical activity), astrocytes and oligodendrocytes
(Vescovi et al., 1999a) in a similar way to how neural stem cells
obtained from rodents do so (Gritti et al., 1999; Bottai et al.,
2003).
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Neural stem cells have been successfully applied to many dif-
ferent animal models of neurological diseases. They were used in
an MS mouse model and induced either a substitutional effect,
especially at the level of the oligodendrocytes, which were able to
reconstitute the myelin sheets, or a trophic effect by means of the
production of different cytokines (Pluchino et al., 2003).

The same cells were also intravenously transplanted into a
mouse model of SCI and they had no capacity to rebuild the dam-
aged tissue but they were able to reduce the inflammation through
the production of neurotrophic factors (Bottai et al., 2008), indi-
cating that the response of the same cells differs according to the
pathology. Analogous results were obtained via intraspinal trans-
plantation of neural stem cells, and in this case an immunomod-
ulation was also obtained (Cusimano et al., 2012). On the other
hand, human neural stem cells transplanted into an SODI rat
model of ALS by means of multiple segments in the spinal cord
injection have been shown to ameliorate the disease, delaying
the onset and prolonging survival (Xu et al., 2011). In addition,
human neural stem cells were used for the treatment of ischemia
in adult rats, where they migrate and differentiate in the rat brain
with focal ischemia and improve functional recovery (Chu et al.,
2004b).

MESENCHYMAL STEM CELLS (MSCs)

Mesenchymal stem cells can be retrieved from various adult tis-
sues such as fat, cartilage, stromal cells of the bone marrow,
dental pulp, skin, and from fetal appendages (De Coppi et al.,
2007; Bottai et al., 2012; Moroni and Fornasari, 2013). MSCs have
many disadvantages (relative to ESCs or iPS) such as insufficient
numbers of stem cells, reduced proliferation and differentiation
capacity with age in vitro and after stem cell transplantation
in vivo (Rao and Mattson, 2001). However, to date, no evidence
of spontaneous transformation have been described; as a matter
of fact a study which reported such an event published in 2005
(Rubio et al., 2005) was retracted in 2010 (De La Fuente et al.,
2010).

These data prompted researchers to find other sources of MSC,
and the search was directed to fetal tissues and in particular fetal
appendages such as cord blood (Malgieri et al., 2010), amniotic
fluid (De Coppi et al., 2007; Bottai et al., 2012) and placenta
(Zhu et al., 2013). Results of flow cytometry revealed that cells
isolated from human umbilical cords, amniotic fluid and pla-
centa expressed CD29, CD44, CD73, CD90, and CD105, but
not hematopoietic- or endothelial-specific antigens CD14, CD34,
CD45, CD 106, CD 133, or HLA-DR (MHC-II) (De Coppi et al.,
2007; Bottai et al., 2012; Zhu et al., 2013).

These cells can probably not have a substitutional role in neu-
rological diseases; indeed, in many examples their contribution
is mainly one of immunomodulation. The work performed by
Uccelli’s group is enlightening. This author has described in many
papers the roles of MSCs in two neurological pathologies: MS
and ALS (Lanza et al., 2009; Morando et al., 2012; Uccelli et al.,
2012). The main outcome of these paper was that MSCs exert
their effects by means of antioxidant and neuroprotective activ-
ity. Similar results were described in a mouse model of SCI where
systemic treatment with Amniotic Fluid Stem cells (AFCs) was
able to induce some recovery of motor function and partial spinal

cord tissue preservation through an anti inflammatory mecha-
nism which involved the production of the hepatocyte growth
factor (Bottai et al., 2014).

HOW EFFICIENTLY CAN TRANSPLANTATION IN ANIMAL
MODELS BE TRANSLATED INTO USE IN TREATING HUMAN
DISEASES?

One major issue common to all types of disease is the valid-
ity of any single model or group of models (McGonigle, 2013).
One attempt to provide a rigorous mode of assessment was the
set of criteria proposed by Willner (1984) for use in the evalu-
ation of an animal model for CNS disorders. In order to study
a human pathology the choice of an appropriate animal model
for preclinical study is required since it will allow a more feasi-
ble translation to clinical study. An ideal animal model, will have
many attributes: a comparable anatomy and physiology; a sim-
ilar genetic basis; close pathological response(s) and underlying
mechanism(s); a phenotypic final stage similar to clinical studies;
responsiveness to known drugs with clinical efficacy and predic-
tiveness of clinical efficacy. Even when the animal model fulfills
all of these criteria, in many cases translation into human trials
results in difficulties or poor success rates. An understanding of
the reasons why this transposition is unproductive is therefore
necessary but unfortunately it has to be adapted model by model
and pathology by pathology.

When a new chemical entity (NCE) is introduced for the
treatment of a pathology an appropriate study of the pharma-
codynamic/pharmacokinetic (PD/PK) relationships is necessary
(Fan and De Lannoy, 2013). These steps are already difficult
with conventional drugs since in many cases the animal model
has significantly different pharmacokinetics; moreover, in many
cases the pathology is not present in nature for the animal
model so there can be also significant differences in the phar-
macodynamics, especially in the case of transgenic and knock-
down models. All these points are exponentially magnified when
we are faced with a cellular approach to the pharmacologic
treatment.

VARIATIONS IN THE TRANSPLANTATION APPROACH

The first issue to be taken into account in the animal model used
for the pathology is of course that it has to be as close as possi-
ble to the human counterpart, but there are pathologies that do
not exist in animals in nature. One example is that SMA is not
present in the mouse, which has only one smnl gene and when
this is missing or is mutated this condition is not compatible with
life; another example is that, monkeys have many copies of Smn1
and if one is not functional there is no appreciable effect on the
animals (Bottai and Adami, 2013). So the use of these models by
scientists has to be evaluated very carefully.

Another important point concerns the type of cells that should
be used in the pathology. If, for example, the aim is to assess the
efficacy of stem cell treatment in a mouse model of SCI, it would
be wise to use mouse stem cells in order to avoid the need for
immuno suppression treatment. In this case the translation to
clinical trial will necessitate verification of the characteristics of
the human cells, and, in many cases, their use in preclinical studies
before starting phase 1 of clinical trial.

Frontiers in Cell and Developmental Biology | Stem Cell Treatments

May 2014 | Volume 2 | Article 17 | 6


http://www.frontiersin.org/Stem_Cell_Treatments
http://www.frontiersin.org/Stem_Cell_Treatments
http://www.frontiersin.org/Stem_Cell_Treatments/archive

Adami et al.

Neurological diseases from animal to human

In view of this, it seems necessary to use human stem cells
from a range of sources in animal models of neurodegenerative
pathology. Consequently in many situations the animal model
of the human pathology needs to be treated with immunosup-
pressive agents in order to avoid the rejection of the transplanted
cells; thus, implicitly, a new variable is introduced into the exper-
iment and the analysis will be much more convoluted. On the
other hand, some types of cells such as MSC are able to exert
immunomodulatory effects and could be transplanted without
immunosuppressive treatment of the animal (Dazzi et al., 2012).

DIFFERENCES IN THE PREPARATION OF THE CELLS

Initiating the clinical study brings the need to work according to
Good Manufacturing Practice conditions (GMP). At this stage a
large number of new culturing and transplanting settings must be
introduced, which will include the appropriate laboratory facil-
ities and the appropriate materials that are needed to achieve
“human standard.”

Such steps result in a very large increase in the costs of the
clinical trial but they are necessary to ensure the safety of the
treatments in humans. Moreover these changes in mode of prepa-
ration can, in some situations, interfere with the properties of the
cells and reduce their usefulness for transplantation.

Another factor that needs to be taken in account is the
mode of transplantation adopted, for instance, whether it is per-
formed locally, regionally or systemically. This decision involves
many different questions, such as how many transplantations
could be performed, how many cells need to be transplanted
and, consequently, how many cells must be cultivated. This last
question—the number of cells needed—is of particular interest
when considering the step between the preclinical and the clinical
trial. While, for instance, we use 10 neural stem cells to trans-
plant a spinal cord injured mice (transplantation in the tail vein)
(Bottai et al., 2008), for a human we will need many more cells
due to the human’s body weight being roughly 2000 times greater.
This is quite apart from the different pharmacokinetic proper-
ties of the human organism relative to the animal; indeed, the
metabolism of the mouse is much higher than the human’s. For
these reasons a more regional transplantation is desirable.

STANDARD PROCEDURES FOR TRANSPLANTATION APPROACHES

In summary, the choice of cells and the mode of transplantation
adopted are both crucial for the successful outcome of the treat-
ment. The diagram in Figure 1 shows a flow chart that could be
followed in order to make appropriate decisions for the choice of
stem cells and the method of transplantation.

In this scenario, a quality control step is needed: cells must
be GMP grade; however, the analysis of their safety vis-a-vis the
stability of the culture is mandatory. A karyotype, or-better- an
expression panel of the cells is needed before transplantation in
order to check whether the culture is stable after various passages
in vitro. Moreover, in order to clarify the choice of strategy, we
need to evaluate whether the cells are able to differentiate and
substituted the damaged cells (if we plan to have a substitutional
approach), or if they can produce growth factors (if we believe
that the best approach for the pathology is a trophic intervention).
In some cases, localized damage could be treated in a systemic

Pathology

Localized
in situ transplantation
(appropriate stereotaxy apparatus
and appropriate system for injection

Spread

systemic or regonal
(if the BBB is closed)
transplantation

Scaffold
containing
predifferentiated

TN
N

Substitutional Trophic
effect effect

—

Proliferation capability
that can sustain the production
of the appropriate number of
cells for transplantation

Anti-inflammatory
cytokines,
Neurotropic factors

Proliferation,
Selfmantaining,

Stable karyoype,

Stable expression pattern,
Differentiation in vitro,
immuno compatibility

Physiological _ g;cmiess
Characteristics

Stem Cells
GMP grade

FIGURE 1 | Flow chart of the appropriate decisions for the choice of
stem cells and the method of transplantation.

fashion as was demonstrated in an SCI animal model (Bottai et al.,
2008, 2010, 2014) where the role of the cells is mostly trophic. A
third option of the transplantation strategy is the use of support
scaffolds that could sustain an appropriate growth of pre differ-
entiated stem cells if the damage is localized such as in the SCI.
In this case the scaffold needs to be able to support controlled
proliferation, differentiation and maturation.

Regarding the pathology, we first need to decide whether the
intervention will be localized with an in situ transplantation
or it will be systemic or regional. In an in situ delivery of the
cells an appropriate stereotaxy apparatus will be needed (such
as computed tomography (CT—) or Magnetic resonance imag-
ing (MRI)-guided stereotaxic neurosurgery Brundin et al., 2000)
in order to perform an injection in the correct three dimen-
sional position, as is required for instance in transplantation in
PD patients or in spinal cord injured people. On the other hand,
if the pathology has affected many different sections of the CNS,
a systemic or (if the BBB is not open) regional intervention could
be appropriate.

STEM CELL PROTOCOLS
As mentioned above many factors need to be taken into account
in dealing with the transplantation of stem cells in a pathology
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and in particular in a neurodegerative disease. The following sec-
tion offers a description of the parameters that we need follow
when stem cells are prepared before the transplantation, with
MSCs being used as a representative example. Meanwhile we
have to keep in mind that, as pharmaceutical tools stem cells
are very stringently regulated: in Europe is ruled by the reg-
ulation (EC) No. 1394/2007 on Advanced Therapy Medicinal
Products (ATMPs), which lays down specific guidelines concern-
ing supervision, pharmacovigilance and centralized authorization
(Martins et al., 2014).

ISOLATION OF MSCs
Because MSC:s are spread widely through the human body, several
different procedures can be adopted for their isolation.

Mesenchymal stem cells can be isolated from many different
tissues such as fat, cartilage, stromal cells of the bone marrow,
dental pulp and skin and from fetal appendages (De Girolamo
et al., 2013; Moroni and Fornasari, 2013; Ikebe and Suzuki,
2014); and different strategies must be used to extract the MSCs
according to which tissue is used.

For instance, the ATMPs certification is required in order to
meet the guideline criteria of the International Society for Cellular
Therapy (ISCT), so a specific isolation protocol for umbilical cord
tissue was patented.

The procedure for bone marrow MSCs preparation comprises
three steps: (a) Cells undergo an initial decontamination step
using an efficient antibiotic/antimycotic, (b) All the enzymes
used are clinical grade and fetal bovine serum is substituted
by non-animal materials, and (c) the absence of mycoplasma-
and endotoxins absences is ensured by using appropriate sam-
ple handling materials and cell culture reagents (Martins et al.,
2014).

Additional, tissue dependent, steps are necessary; for example,
the amounts of enzymes and cofactors needed for the dissoci-
ation of the tissue must be optimized. The first seeding steps
will be performed in a non-animal free serum condition and in
a static horizontal monolayer in order to allow the elimination,
the following day, of the non-adherent cells, which are discarded
and the medium changed. When the ATMP-adapted protocols is
required the first step will be the use of plastic disposable ware
and all sample handling material and cell culture materials need
to be certified as mycoplasma-free and as having an acceptable low
endotoxin level. Moreover, the culture must to be monitored on
a regular basis for the visible detection of bacterial or fungal con-
taminations and for mycoplasma and endotoxin contamination
using the appropriate detection kit. The ATMP cultures need to
be compared with those produced under standard non GMP pro-
tocols in order to verify that their characteristics are maintained
in these new conditions; for this purpose an Affymetrix GeneChip
analysis on 47,000 human transcripts is desirable (Martins et al.,
2014).

Another important aspect that needs attention during the
preparation of cultures of ATMP grade is the flow cytometer
immune phenotypic analyses. For cord blood MSC cells, the
surface markers used are CD44; CD73; CD90; CD14; CD45;
CD31; CD34; CD19; HLA-DR, and CD105 (Martins et al.,
2014).

Two further keys points in testing of the ATMP grade of the
cells are the evaluations of their differentiation capability and
of their teratoma-forming potential. Adipogenic, chondrogenic
and osteogenic differentiations are performed in a standardized
fashion following already established protocols (Santos et al.,
2013). The teratoma assay formation is performed in immunode-
ficient male, C.B.-17/GbmsTac-scid-bgDF N7 mice (6 weeks old),
using the candidate MSCs and the ESCs H9 as positive control,
implanting 1 x 10* cells beneath the testicular capsule; the ter-
atoma growth is analyzed 6.5-8.5 weeks post implantation after
the sacrifice of the animal (Martins et al., 2014).

A final issue which needs particular attention for the handling
of MSC cells from cord blood, but which is also relevant to all
stem cells, is cryopreservation.

This procedure usually involves slow cooling in the presence of
a cryoprotectant to avoid the damaging effects of intracellular ice
formation. 1-2°C/min and rapid thawing is considered standard,
whereas the passive cooling devices which employ mechanical
refrigerators, generally at —80°C, do not offer sufficient repro-
ducibility for the ATMP-grade cells.

Dimethyl sulphoxide (DMSO), is the most widely used cry-
oprotectant, but it is known to be toxic at certain temperatures,
times, and concentrations to stem cells and tissue, especially if
the transplanted cells are not cleaned of it before transplanta-
tion. For these reasons polyvinylpyrrolidone (PVP) has been used
in order to reduce the concentration of DMSO (Hunt, 2011). In
this context, the response in terms of the maintenance of stem
cell characteristics depends on the type of stem cells. For exam-
ple hESCs are more sensitive to conventional cooling than MSCs,
with a lower recovery (16% of viable cells after freezing and thaw-
ing) relative to MSCs and with a lower size of colonies and a
significant degree of differentiation relative to the cells that had
not undergone cryopreservation (Hunt, 2011).

For the cryopreservation of MSCs from bone marrow in par-
ticular the standardized number of stored cells per vial is normally
3 x 10°. These cells have to be centrifuged at appropriate speed,
then resuspended in the AMTP appropriate cryobuffer (such as
UCX®-ATMP in Biofreeze (Biochrome) and frozen by means of
a Controlled Rate Freezer (CRF) (IceCubel4S, Sylab) (Martins
et al., 2014). The maintenance of the cell can be pursued in N2
fumes at the temperature of —135°C and a specific freezing profile
(Freimark et al., 2011).

A note on speeds: 200 g is optimal for cord blood stem cells but
for different kinds of cells the speed needs to be determined, for
instance NSCs that are grown in suspension as neurospheres need
a lower centrifugal force to be pelleted.

Finally, a new procedure for cryopreservation is vitrification.
During conventional slow cooling, ice formation and an increase
of solute concentration are responsible for damage to the cells.
DMSO is able to reduce such damage by reducing of the amount
of ice formed. In vitrification the cryoprotectants are at a con-
centration that completely avoids the formation of ice crystals.
This is achieved by the high concentrations of solutes and/or
by rapid cooling. While cooling continues, viscosity increases
until all molecular motion comes to halt and the solution
becomes a glass, displaying the properties of a solid but retain
the molecular structure of a liquid (Hunt, 2011). This method
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is particularly suitable for hESCs, allowing them to conserve their
properties.

USE OF STEM CELL TYPES IN THE ANIMAL MODEL AND IN
THE HUMAN

EXAMPLE 1: PARKINSON'S DISEASE

In term of complexity the damage present at the level of the sub-
stantia nigra is in some respects relatively low compared with
other neurological disorders; indeed, a substitutional role can be
hypothesized for the transplanted cells in this context. The trans-
plantation of cells and stem cells in animal models of PD has been
performed for many years. Moreover, a transplantation approach
in humans affected with PD has been pursued using fetal tissue
from the 5 to the 9th week post conception (Lindvall et al., 1994;
Brundin et al., 2000; Kefalopoulou et al., 2014). Although these
cells cannot be considered stem cells per se since they were not
cultivated in vitro, the tissue of origin is rich in neural stem cells,
so these experiments can be considered to be the precursors of
stem cells transplantation in PD.

At the moment at least nine clinical trials are listed in the
ClinicalTrials.gov site (U.S. National Institutes of Health), see
Table 3. These trials make use of the knowledge gained in ani-
mal models, mostly rats (Park et al., 2008; Shetty et al., 2009;
Glavaski-Joksimovic et al., 2010; Somoza et al., 2010; Blesa et al.,
2012) (Table 3). The PD animal models can be divided into those
using environmental or synthetic neurotoxins and those using
the in vivo expression of PD-related mutations discovered in
human patients (genetic). Within the neurotoxic models, com-
pounds that produce both reversible and irreversible outcomes
have been used effectively; reserpine is in the former category and
the latter category there are 6-hydroxydopamine (6-OHDA), MG-
132 (Chung et al., 2007), MPTP (Tieu, 2011), and paraquat and
rotenone which were only recently introduced (Blesa et al., 2012).
However, recent studies have focused mostly on irreversible toxins
to develop PD-related pathology and symptomatology. A typical
property of all toxins for PD induction is their capacity to pro-
duce an oxidative stress which is most likely responsible for death
in dopaminergic neuronal populations which reflects what is seen
in PD. Although there are some discrepancies between the time
factor in these models and the time factor in the human condi-
tion, the value of neurotoxin-based animal models in the study of
PD is undeniable (Blesa et al., 2012).

The recent identification of different genetic mutations such
as parkin,a -synuclein and others has led to the development of
genetic models of PD (Dawson et al., 2010); however, it is impor-
tant to remember that, at most, only 10% of PD cases are due
to genetic mutations (Dauer and Przedborski, 2003), while the
majority of PD cases arise from unknown origins.

Other trials, meanwhile, were dedicated to the study of the
properties of cells obtained from PD patients (as well as from
other pathologies and healthy patients) (Orkin, 2000; Wei et al.,
2000; Lemischka, 2001; Yu et al., 2007; Arias-Carrion and Yuan,
2009) (Table 3). These preliminary in vitro studies will allow us—
in the near future, we hope—to depict the molecular mechanisms
of the pathology.

The effectiveness of these trials is not yet known since the
results are not yet published (Table 3).

EXAMPLE 2: AMYOTROPHIC LATERAL SCLEROSIS

The complexity of ALS make this motor neuron disease very dif-
ficult to treat, as is confirmed by the large failure rate of clinical
trials: indeed to date more than 30 clinical trials (of conven-
tional drugs) have ended in disappointment. Increasing the odds
of success for future clinical trials requires improvements in the
preclinical tests. New technical advancements which allow the
visualization of sick motor neurons, can bring novel insights. The
development of new genetic models has brought new data about
ALS and its relationship with other pathologies.

Within the mutations implicated as causative of the Familiar
(F) ALS those involving the gene encoding superoxide dismutase
1 (SOD1) deserve a particular mention since they are responsible
for about 20% of FALS cases (Carri et al., 2006). Indeed, many
different SOD1 mouse and rat models were created, with different
characteristics in terms of disease progression (onset and death),
and motor performance (Carri et al., 2006). Other mutants of
genes that seem to be involved in ALS have been developed, such
Vegf 8/3 and Alsin k/oas, and there have been spontaneous muta-
tions such as Dynein (Loa, Cral) and Wobbler (which arose as
the result of a spontaneous mutation at the Institute of Animal
Genetics in Edinburgh) (Carri et al., 2006). Recently, mice were
developed with the mutation in the genes encoding the TAR
DNA-binding protein 43 (Wegorzewska et al., 2009) and FUS/TLS
(Hicks et al., 2000).

Very recently, a mouse model was established to research both
the COORF72 disease mechanism and the possible therapy. When
it is available for the scientific community this model will speed
up the research on ALS.

Most of the clinical trials ongoing or already concluded make
use of the preclinical trials data obtained from animal models (Yu
et al., 2007; Dimos et al., 2008; Cho et al., 2010a; Choi et al.,
2010b; Karussis et al., 2010; Kim et al., 2010; Blanquer et al., 2012;
Koh et al., 2012a,b; Kwon et al., 2012; Robberecht and Philips,
2013) (Table 4). These studies, though, demonstrate that, so far,
translation to the human ALS patient is poor. To date, from the
18 clinical trials only two publications have been produced (Glass
etal., 2012; Gropp et al., 2012) and only the former really applied
to the human patient, while the second concerned the prepara-
tion of iPS from cells obtained from patients (Table 4). Feldman
and coworkers (Glass et al., 2012) demonstrated the safety of the
treatment with Human Spinal Cord Derived Neural Stem Cells
obtained from the spinal cord of a 8-week-old fetus, and included
testing against many different variables. They have many adverse
effects—transient encephalopathy, pulmonary emboli, CSF leak,
wound dehiscence, bronchitis/pneumonia, dyspnea, atrial fibril-
lation, vomiting, basal cell carcinoma—which were most likely
related to the injection procedure itself. No rejection markers
were detected in the transplanted individuals. On the basis of
these results the trial was considered “successful.” Hitherto, since
the stated aim of studies was to test safety in an ALS popula-
tion, very little could be said about effectiveness (Glass et al.,
2012). In the work led by Reubinoff (Gropp et al., 2012) a rig-
orous method of teratoma assay was set up in order to analyze the
pluripotency of human ES cells and the biosafety of their differ-
entiated progeny in such a way as to allow a safer translation to
humans.
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There are probably many reasons why the translation between
ALS preclinical-trials and clinical trials is inefficient. The first of
these is the timetable of intervention, since in many cases the risks
of transplantation (with multiple injections at the spinal cord or
brain level) are high and it can only be performed in a patient
who is at the later stages of the disease. On this view, an earlier
intervention could be more advantageous. A second reason is the
type and number of cells that need to be transplanted and here the
issue of safety is primary: indeed almost all the trials conducted
for ALS included a phase 1.

EXAMPLE 3: SPINAL CORD INJURY

Spinal cord injury is a pathological state that consists of at least of
two phases: acute and chronic. Although the closest animal model
to human SCI is represented by primates their use is limited in
many countries, so the most frequently models are rodents: rats
and mice. In these models the injury can be performed by, for
instance, aortic occlusion (Lang-Lazdunski et al., 2000) or by clip
compression (Von Euler et al., 1997). On the other hand, a very
widely used model of SCI is the contusive approach where the
laminectonize spinal cord is struck, in earlier studies, by a weight
(weight drop) (Gale et al., 1985) and in later studies by a cylinder
whose dimensions vary according to the type of animal and the
region of the spinal cord under study, and with strength, speed
and displacement-controlled (Scheff et al., 2003). The injured
animal can be studied with regards to behavioral, sensorial and
immunobhistological factors. An early intervention could avoid
the damage caused by the immune-system which is responsible
for many detrimental effects, while a late intervention could be
indicated if the intention is substitution. Within the 16 clinical
trials reported in Table 5, six were dedicated to chronic patients
(NCT01393977, NCT01772810, NCT01676441, NCT01873547,
NCT01186679, and NCT00816803). The literature used for the
submission of these trials includes preclinical studies on mice and
rats but also takes note of previous clinical trials (Moviglia et al.,
2006; Zurita and Vaquero, 2006; Parr et al., 2007; Geffner et al.,
2008; Sheth et al., 2008; Cho et al., 2009; Pal et al., 2009; Paul et al.,
2009; Hu et al., 2010; Osaka et al., 2010; Hernandez et al., 2011;
Ra et al., 2011; Park et al., 2012). As reported for other patholo-
gies (see Tables 3, 4) very few published works were produced;
the only example we are aware of is the work obtained from
trial NCT00816803 (El-Kheir et al., 2013). The main outcome
of this work was that, in the group of the patients treated with
cells, 17 out of 50 managed to show an improvement as measured
by the American Spinal Injury Association (ASIA) Impairment
Scale (AIS) (for more details see http://www.asia-spinalinjury.
org/elearning/ISNCSCI_Exam_Sheet_r4.pdf.), whereas none of
20 controls not treated with cells managed to show any
improvement.

Within the cell therapy subgroup of 15 patients with a baseline
AIS A (complete lack of motor and sensory function below the
level of injury, including the anal area), 2 patients converted to
AIS C (some muscle movement is spared below the site of injury,
but 50 percent of the muscles caudally to the level of injury cannot
move against gravity) and 6 patients improved to AIS B (Some
sensation below the level of the injury, including anal sensation).
Similarly, within the cell therapy subgroup of 35 patients with a

baseline AIS B, 9 patients converted to AIS C. In addition, out of
50 patients treated with cell therapy (AIS A and B), 23 patients
had their ASIA motor score increased by >10 points. The authors
were encouraged by these results and they predicted that a greater
number of transplantations and cells per transplantation could
perhaps improve the already promising results.

EXAMPLE 4: EPILEPSY

Animal models for this pathology can be divided into two main
groups: induced and genetic. The genetic models include animals
with spontaneous recurrent seizure: mice or rats, epileptic dogs,
transgenic mice, and animals with reflex seizure such as DBA/2
mice, gerbils and photosensitive baboons, while the induced
seizure models include the electrically induced and the chemically
induced (Loscher, 2011).

Only one trial with the use of stem cells in epileptic patients
is indicated as ongoing in clinical trial.gov (Table6). In this
work Bone Marrow Stem Cells are used, and it builds on stud-
ies performed on animal models, mostly rats, where different
kinds of stem cells—human neural fetal stem cells and neural
or embryonic mouse stem cells—were used (Chu et al., 2004a;
Ruschenschmidt et al., 2005). In this trial the authors used bone
marrow stem cells because of their high availability and their
potential role in re-establishing the normal interaction between
nerve cells; no data about the effectiveness of the procedure are
available yet for this trial. This approach probably does not have
any substitutional role vis-a-vis the damaged or malfunctioning
cells.

EXAMPLE 5: STROKE

Stroke results either from the rupture of a cerebral blood vessel
or from the occlusion of a cerebral artery. As described for other
pathologies, rodents such as mice and rats have been extensively
used as animal models of stroke, although rabbits, pigs and pri-
mates have also been utilized. These models can be divided into
two categories: those in which stroke occurs spontaneously and
those in which the pathology is induced by the researcher, and
this latter type can be either global or focal ischemia.

Global ischemia mimics the cerebral damage that takes place
after cardiac arrest and its significance is due to the fact that the
incidence of cognitive deficits in all patients that survive sudden
cardiac arrest is as high as 50% (Lim et al., 2004). An interesting,
widely used model of stroke is middle cerebral artery occlusion
(MCAO), produced surgically (Tamura et al., 1981) or by throm-
boembolic agents that mimic the most common cause of ischemic
stroke in humans (Kilic et al., 1998). MCAO in rodents can
induce long-term sensorimotor and cognitive deficits and postu-
ral and sensory reflexes (Bouet et al., 2007; Freret et al., 2009).
Transitory MCAO permits the investigation not only of brain
injury associated with ischemia, but also of the cerebral outcomes
of reperfusion.

Models of sub-arachnoid hemorrhage (SAH) produce
intracranial bleeds in the subarachnoid space between the
arachnoid membrane and the pia mater and cause rupture
of intracranial vessels that reflects the clinical condition of
aneurysmal SAH in humans (Bederson et al., 1995; Veelken et al.,
1995). Intracerebral hemorrhage (ICH) can be induced in an
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provided/no publications
associated to the trial

Secondary: adverse effects,

hippocampal volume,

safety/efficacy study
Primary purpose:

treatment

autologous bone marrow
mononuclear stem cells
by selective posterior
cerebral artery
angiography

participants

cells transplantation in patients
with temporal lobe epilepsy

Brazil/NCT00916266

cognitive performance

Rows as in Table 3.

animal model by means of the intracerebral injection of bacterial
collagenase, which disrupts the basal lamina of blood vessels,
causing spontaneous bleeding into the surrounding brain tissue
(Maclellan et al., 2008).

Spontaneous stroke models [Spontaneously Hypertensive
Stroke-Prone Rat (SHRSP)] were produced as a sub strain of
the spontaneously hypertensive rat (SHR). SHRSP rats develop
increasing levels of blood pressure from 6 weeks of age, and stroke
symptoms by 20 weeks (Bailey et al., 2011). Some transgenic ani-
mals (mostly mice) can allow the study of rare forms of stroke as
a result of single gene mutations (Markus, 2011).

A variety of cellular approaches have been used for the treat-
ment of stroke. In the nineties, fetal neocortical grafts (Grabowski
etal., 1992) and fetal porcine striatal cells (Savitz et al., 2002) were
used in transplantation experiments for stroke.

Several types of MSC, ESC, and NSC (Neural progenitors (NP)
of human origin) have been used for the treatment of stroke in
preclinical trials. For instance, it was demonstrated that human
NP were able to induce behavioral improvement 5 weeks after
transplantation (Jeong et al., 2003).

Many preclinical treatments of stroke induced by means
of MCA occlusion were performed using Human Umbilical
Cord Blood (UCB) cells, Bone Marrow Stem Cells (BM-SC)
(Borlongan et al., 2011) and MSCs. These reports described var-
ious rates of survival and differentiation of the cells, mostly
surrounding the ischemic boundary zone (Chen et al., 2001).
Better results were obtained by permeabilizing the blood brain
barrier (BBB) by means of mannitol in rats subjected to MCA
with reduced infarct size, indicating that a permeable BBB is nec-
essary for the mobilization of cells into the brain (Borlongan et al.,
2004). This treatment is able to induce a behavioral recovery 2
months after intravenous transplantation (Park et al., 2009), but
the mechanism involved is still not clear and it is possible that
cell protection is a result of a trophic effect rather than of cell
replacement or integration (Chen et al., 2001).

Extensive studies of the therapeutic potential of ES cells
for transplantation in stroke indicated that predifferentiate ES
cells showed very low contralateral migration and survival
(Buhnemann et al., 2006), whereas immature ES cells migrated
extensively after contralateral transplantation in a focal ischemic
rat model (Hoehn et al., 2002).

More than 60 trials are ongoing or are completed on a stem
cell approach for stroke: the completed trials are presented in
Table 7. Most of them made use of the data from the previously
described preclinical studies. On the basis of these results, many
different trials have been carried out, mostly making use of studies
of UCB cells, peripheral blood stem cells and MSCs (Mackie and
Losordo, 2011). Six trials on stroke patients were accomplished
before the start of 2014. Trial NCT00950521 demonstrated that
peripheral blood stem cells did not cause serious adverse events
during the study period and induced an improvement in three
different score tests (Chen et al., 2014). Trial NCT00761982
conducted in Spain demonstrated that Autologous BM-SC trans-
plantation, done between 5 and 9 days after stroke onset, did not
cause stroke recurrence or tumor formation during follow-up,
but 2 patients had one partial seizure. Unfortunately this treat-
ment did not induce any behavioral improvements 180 days after
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transplantation (Moniche et al., 2012). Trial NCT01501773 has
not yet been summarized in a scientific paper. It is a large study
which enrolled 120 patients and attempted to describe the efficacy
of the Intravenous transplantation of Autologous Bone Marrow-
derived Stem Cells. A pilot study by the same group demonstrated
that these cells were safe, but their efficacy cannot yet be estab-
lished as the study was small and lacked a control group (Prasad
etal., 2012).

In a Brazilian study (NCT00473057) completed in May 2011,
it was shown that bone marrow cells transplanted into patients a
few months after stroke did not induce signs of worsening in the
neurological condition. The treatment induced an improvement
trend in the National Institutes of Health Stroke Scale score for all
the patients but further studies are required to better evaluate the
efficacy of this therapy (Battistella et al., 2011; Rosado-De-Castro
et al., 2013).

CONCLUDING REMARKS

The translation from preclinical experiments in animal models
of human neurological pathologies to the treatment of humans
is subject to many great difficulties because of the variability of
human pathologies. When we consider the use of stem cells for
treatment, the level of complexity is further increased by the
extreme physiological heterogeneity of these cells and by their
responses to the environment.

Since the characteristics of the pathologies cannot be changed,
a major advance in stem cell therapy could be achieved by stan-
dardizing the preparation, handling and transplantation of these
cells. Such improvements are indispensable to an understand-
ing of the potential for effective translation of preclinical trials,
and would significantly reduce the variability of the outcomes of
clinical trials.
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