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Objective: To provide a frame to estimate the systemic impact (side/adverse events) of
(novel) therapeutic targets by taking into consideration drugs potential on the numerous
districts involved in rheumatoid arthritis (RA) from the inflammatory and immune response
to the gut-intestinal (GI) microbiome.

Methods: We curated the collection of molecules from high-throughput screens of
diverse (multi-omic) biochemical origin, experimentally associated to RA. Starting from
such collection we generated RA-related protein-protein interaction (PPI) networks
(interactomes) based on experimental PPI data. Pharmacological treatment simulation,
topological and functional analyses were further run to gain insight into the proteins most
affected by therapy and by multi-omic modeling.

Results: Simulation on the administration of MTX results in the activation of expected
(apoptosis) and adverse (nitrogenous metabolism alteration) effects. Growth factor
receptor-bound protein 2 (GRB2) and Interleukin-1 Receptor Associated Kinase-4 (IRAK4,
already an RA target) emerge as relevant nodes. The former controls the activation of
inflammatory, proliferative and degenerative pathways in host and pathogens. The latter
controls immune alterations and blocks innate response to pathogens.

Conclusions: This multi-omic map properly recollects in a single analytical picture known,
yet complex, information like the adverse/side effects of MTX, and provides a reliable
platform for in silico hypothesis testing or recommendation on novel therapies. These
results can support the development of RA translational research in the design of validation
experiments and clinical trials, as such we identify GRB2 as a robust potential new target
for RA for its ability to control both synovial degeneracy and dysbiosis, and, conversely,
warn on the usage of IRAK4-inhibitors recently promoted, as this involves potential
adverse effects in the form of impaired innate response to pathogens.

Keywords: rheumatoid arthritis, multi-omic data integration, host-microbiome interface, protein-protein

interaction, network topology

INTRODUCTION
Rheumatoid arthritis (RA) is a multifaceted autoimmune,
chronic and inflammatory disease with, to date, unclear etiology.
As a consequence of its complexity, the definition of efficient and
effective therapies remains a remarkable challenge due to the dif-
ficulties in controlling side effects and adverse events in relation
to known (like genetic susceptibility, Stahl et al., 2010) and emer-
gent (epigenomic factors, Nakano et al., 2012, dysbiosis, Scher
and Abramson, 2011) RA-associated con-causes.

Recently, translational research has welcomed into medicine
a number of novel perspectives. Among these, sequencing tech-
nologies (omic screens) and computational intensive approaches
(systems biology) now coagulate into a practice where tech-
nology and mathematical modeling serve basic research in the
production of selected hypotheses, which testing in vitro, in vivo
and ultimately in clinical studies can support medical research

and practice (Okada et al., 2014; You et al., 2014). The recent
acknowledgment of the importance and complexity of the gut
intestinal (GI) microbiome in the onset, progression and regres-
sion of RA (Scher and Abramson, 2011; Scher et al., 2012,
2013) and other autoimmune diseases, requires to incorpo-
rate the effects on the GI microbiome for any novel therapy.
While protocols and medical best practice recommendations
become mature in this direction, we propose the use of net-
work approaches and omics from diverse origins (i.e., different
biochemical districts/compartments/layers) including genomics,
epigenomics, transcriptomics, post-transcriptomics, proteomics,
and host-microbiome interface to GI metagenomics, to appropri-
ately monitor the complexity of the disease. The novelty of the
present work, therefore, lies not only in its application to RA, but
also in the number of omic layers we have used, from genomic to
proteomic and including the host-microbiome interface. These
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novelties allow to draw a single analytical picture of the frag-
mented molecular information available to date on RA, an easily
consultable and extendable reference map for the researchers in
the field, and—importantly—a systemic evaluation on the impact
of a recently proposed RA therapeutic target (IRAK4), valuable
per se and as an exemplar application of this approach. Overall,
this work contributes to the general debate about data integra-
tion by offering details on our methodology, and to the area of
complex inflammatory diseases, by providing specific examples
of data choice and operational results.

METHODS
MAP CONSTRUCTION
The datasets used to construct the map are gathered from 13
different sources from databases and literature (Table 1). We
included molecules experimentally associated to RA from man-
ual curation of literature sources (core dataset, CD, 377 pro-
teins, Data Sheet 1, Tables S1–S6), and additional molecules and
pathways strongly yet not explicitly associated to RA (extended
dataset, ED, 4709 proteins, Data Sheet 1, Tables S3A–E, S7–S13).
A summary of all datasets and proteins’ Uniprot IDs is pro-
vided in Data Sheet 1, Table S14. While the core set constitutes
a more specific RA map, its extension offers a more systemic
and practically usable map, notably in terms of the significance
of the statistics that can be run on the extended map. The map
presented here assembles genomic, epigenomic, transcriptomic,
post-transcriptomic, proteomic, and host-microbiome interface
data related to RA, as detailed below, and integrates such infor-
mation at the functional level of protein-protein interactions
(PPIs). The PPI framework is an assessed integrative approach
(Hodgman, 2007; Dittrich et al., 2008; Jin et al., 2008; Kim

et al., 2010; Iskar et al., 2012) that has already been used
in computational biology to understand diseases’ pathogenesis
(Huang et al., 2009b); to implement tools for the interpretation of
inferred gene and protein lists (Berger et al., 2007; Antonov et al.,
2009); to prioritize cancer-associated genes (Wu et al., 2012); to
predict functional linkages among genes (Lehner and Lee, 2008);
to show the implication of protein networks topology in genetics,
personal genomics, and therapy (Lee et al., 2013); to implement
data integration workflows showcased in obstructive nephropathy
in children (Moulos et al., 2011).

CORE DATASET
The CD is composed of 377 proteins retrieved from six data
sources (Data Sheet 1, Tables S1–S6):

1) RA genome-wide association studies (GWAS) gathered and
integrated from five different databases (BioGPS (Wu et al.,
2009), HuGE (Yu et al., 2008), NHGRI, OMIM, PharmGKB
(Klein et al., 2001); see Data Sheet 1, Table S1 for the specific
query processes);

2) RA-associated proteins from the Universal Protein Resource
(Uniprot) (Consortium, 2010), retrieved using as search
parameters “rheumatoid arthritis” and “human” and then
manually screened (Data Sheet 1, Table S2);

3) Genes and proteins retrieved from a comprehensive review of
the literature, in particular genes appearing in Tables 1, 2 of
Review (Mcinnes and Schett, 2011) and cited references (Data
Sheet 1, Table S3);

4) Genes that show epigenetic changes in relation to RA, as speci-
fied in Trenkmann et al. (2010); Karouzakis et al. (2011) (Data
Sheet 1, Table S4);

Table 1 | Data sources, subsets and number of elements of the RA map.

Subset

Id.

Source of subset Main

dataset

destination

No. of proteins in

subset

Total no. of

proteins in main

dataset

No. of proteins

(and PPIs) in the

interactome map

No. of proteins (and

PPIs) in the interactome

map: main cluster

1 GWAS Core 223

2 UNIPROT Core 49

3 Literature review Core 53
377 303 (597) 161 (542)

4 Methylation Core 37

5 Exp. valid. micriob. interface Core 54

6 NF-κB consensus Core 16

3A T cell activation pathways Extended 1248

3B Other pathways Extended 283

3C Cytokines Extended 1536

3D Growth and differentiation Extended 472

3E Intracell signaling and TFs Extended 1837

7 Transcriptional RA map Extended 212

8 RA-miRNA reg. proteins Extended 1652 4709 3783 (24457) 3466 (24364)

9A Downreg. genes in RA Extended 451

9B Upreg. genes in RA Extended 210

10 Inflammasomes Extended 152

11 Adenosine receptors Extended 569

12 GPCRs Extended 364

13 Microbiome interface Extended 171
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5) Proteins that are at the interface between the host and the
oral microbiome, in particular proteins experimentally known
to be differentially expressed in presence of Porphyromonas
Gingivalis (Zhou and Amar, 2006), a periodontitis-causing
bacterium that has been strongly linked to the insurgence of
RA (Mikuls et al., 2012; Scher et al., 2012; Smit et al., 2012;
Bingham and Moni, 2013; Ogrendik, 2013; Okada et al., 2013)
(Data Sheet 1, Table S5);

6) The key elements of the NF-κB system, the master regulator of
inflammation (Oeckinghaus et al., 2011; Smale, 2011; Hayden
and Ghosh, 2012) at the center of a complex regulatory inter-
actome (Tieri et al., 2012) prominently implicated in the
onset and development of RA (Miagkov et al., 1998; Makarov,
2001; Feldmann et al., 2002; Okamoto, 2006; Roman-Blas
and Jimenez, 2006, 2008; Simmonds and Foxwell, 2008; Van
Loo and Beyaert, 2011): we included 16 “consensus” proteins
that appear at the intersection of the three main NF-κB-
related datasets described in Tieri et al. (2012) (Data Sheet 1,
Table S6).

EXTENDED DATASET
The extended dataset (ED, that includes CD) is composed of
4709 proteins, which are involved in a broader sense in the
onset and development of RA, such as proteins participating in
signaling pathways or cascades of recognized importance for RA.
This extension provides a more general setting for the molecular
framing of RA, and offers a larger network to operate on, with
more relevant statistics and analyses, giving account for contribu-
tions coming from entities that may have been neglected or that
are not experimentally related to RA, but that participate to the
inception of the disease. In addition to the proteins of the core
dataset, we added eight main subsets, as follows (Data Sheet 1,
Tables S3A–E, S7–S13):

3A-B-C-D-E) in retrieving data from Mcinnes and Schett
(2011) and references cited there, we considered that
some of the key proteins can be “hidden” inside the
signaling pathways involved in the disease. In order to
take into account such potentially important and usu-
ally neglected elements, we expanded subset 3 of CD by
a pathway enrichment analysis process, using the genes
listed in Mcinnes and Schett (2011) Tables 1, 2. To popu-
late these five subsets, the selected genes have been input
in the pathway over-representation analysis (ORA) tool
of InnateDB, one of the most comprehensive sources of
pathways data available (Lynn et al., 2008; Breuer et al.,
2013). Pathway ORA has been performed on InnateDB
using hypergeometric distribution for p-value compu-
tation and Benjamini–Hochberg correction method for
multiple hypothesis testing. All the proteins participating
to such over-represented pathways were then included.
We retrieved respectively: 39 enriched pathways account-
ing for 1248 proteins (subset 3A), 14 pathways and 283
proteins (3B), 46 pathways and 1536 proteins (3C), 5 path-
ways and 472 proteins (3D), and 92 pathways and 1837
proteins (3E), all collected in Data Sheet 1, Tables S3A–E;

7) Genes derived from the transcriptional RA map in Wu
et al. (2010) (Data Sheet 1, Table S7);

8) RA-related miRNA-regulated genes: experimentally vali-
dated target genes of all miRNAs that are associated to
RA in the database miRWalk (Dweep et al., 2011) (search
mode: holistic view of validated disease-miRNA interac-
tions; web reference: http://www.umm.uni-heidelberg.de/
apps/zmf/mirwalk/disease.html; query keywords: Arthritis
AND Rheumatic diseases) (Data Sheet 1, Table S8);

9A,B) gene expression profiles of RA patients and healthy con-
trols were searched on Gene Expression Omnibus (GEO,
(Barrett et al., 2011) http://www.ncbi.nlm.nih.gov/geo/)
with the query [“rheumatoid arthritis” AND “(synovi∗ OR
blood)”] (i.e., in synovial tissue and/or blood). In order
to include only highly consistent information, datasets
without pre-treatment samples, with no details about
the therapy and no raw data were filtered out. Human
PBMCs collected and processed by Affymetrix technology
were selected, leaving only one dataset out of the initial
61, GSE7524, which contains transcriptomic profiles of
2 healthy controls, 2 before and 2 after anti-TNFα treat-
ment samples. Affymetrix Human Genome U133A Array
was used to measure the expression levels of ∼14,500
well-characterized human genes. The raw data were pre-
processed using affy package (Gautier et al., 2004) in
R (http://www.r-project.org/), normalized using robust
multi-array average (rma) (Irizarry et al., 2003) and for
multiple probes corresponding to the same gene, the probe
with the highest standard variation across all samples was
used to represent the gene. Differentially expressed genes
[fold-change (Murie et al., 2009) =2] were identified with
the comparison between the 2 healthy controls and the
2 before anti-TNFα treatment samples resulting in 646
genes differentially expressed, among which 440 genes
(451 proteins) were down-regulated and 206 genes (210
proteins) were up-regulated (Data Sheet 1, Tables S9A,B);

10) Proteins related to the inflammasome, a multiprotein
oligomer responsible for activation of inflammatory pro-
cesses proteins, which is also known to be activated from
the bacterium P. Gingivalis, among others, and recognized
to play a relevant role in RA (Sidiropoulos et al., 2008;
Kolly et al., 2010; Farquharson et al., 2012; Mathews et al.,
2013) (Data Sheet 1, Table S10). This set was retrieved
using ORA as described in 3A-B-C-D-E;

11) Adenosine receptors and related proteins, known to be
involved in RA (Varani et al., 2010, 2011; Vincenzi et al.,
2013) and possibly at the basis of the mechanism of action
of methotrexate, first-line therapy for the treatment of RA
(Stamp et al., 2012) (Data Sheet 1, Table S11). This set was
retrieved using ORA as in 3A-B-C-D-E and 10;

12) The large family of G Protein Coupled Receptors (GPCRs)
(Hutchings et al., 2010; Lozupone et al., 2012; Maynard
et al., 2012; Tremaroli and Backhed, 2012), pertain-
ing to host-microbiome interface proteins (grouped
in a separate set from 13 due to their numerosity),
retrieved from http://www.iuphar-db.org/DATABASE/
ReceptorFamiliesForward?type=GPCR (Sharman et al.,
2013) (Data Sheet 1, Table S12);

13) The set of host-microbiome interacting proteins, manu-
ally curated from recent reviews (Lozupone et al., 2012;
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Maynard et al., 2012; Tremaroli and Backhed, 2012), to
describe the bridge between innate immunity (altered in
RA) and the GI microbiome [known to be involved in
immune diseases in general and in RA in particular (Scher
and Abramson, 2011)]. Globally this dataset accounts for
the Toll-like Receptor family (TLRs), the mucin proteins
family, selected Immunoglobulins (Ig) and their receptors,
among others (Data Sheet 1, Table S13).

Datasets are integrated at the PPI level as peers to avoid
introducing any bias a priori in the network construction
and to warrant that these data are connected in a biologi-
cally meaningful way. Protein-protein interactions were retrieved
in Cytoscape from the Agile Protein Interaction DataAnalyzer
database (APID, Prieto and De Las Rivas, 2006) that includes
all known experimentally validated protein-protein interactions
from BIND, BioGRID, DIP, HPRD, IntAct and MINT databases,
accessed via the APID2NET (Hernandez-Toro et al., 2007) plu-
gin. This process lead to the definitions of, respectively, the
core interactome (CI, 303 proteins, 597 interactions, high reso-
lution Image S1) and the extended interactome (EI, 3783 pro-
teins, 24457 interactions, high resolution Image S2). Discussion
on caveats and choices of original sources can be found in
Tieri and Nardini (2013).

TOPOLOGICAL ANALYSIS
Topological analysis was run separately on the main connected
component of each interactome (i.e., excluding the proteins for
which no PPI was retrieved, i.e., that remained isolated) to eval-
uate a number of network parameters (Assenov et al., 2008):
degree, or connectivity, i.e., the number of nodes linked to the
node of interest (number of edges); and betweenness centrality
(BC), a measure of the amount of control that a node exerts
over the interactions of other nodes in the network. This measure
favors nodes that join communities such as dense subnetworks,
rather than nodes that lie inside a community, and has been
shown to characterize essential proteins (Platzer et al., 2007). All
calculated network parameters and rankings are listed in Data
Sheet 2, Tables S15, S16 or can be recalculated from the Cytoscape
CI_EI.cys (Data Sheet 3) file available at http://www.picb.ac.cn/
ClinicalGenomicNTW/RAmultiomic.html.

PHARMACOLOGICAL TREATMENT SIMULATION
To simulate the pharmacological treatment, a virtual node knock-
out experiment has been performed by controlling (manual
removal of the nodes and Cytoscape plugin Interference (Scardoni
et al., 2014) 20 MTX controlled targets identified in literature
(Cutolo et al., 2001; Chan and Cronstein, 2002) present in EI
(Data Sheet 2, Table S17). Betweenness centrality (and, to add
robustness to the analysis, stress, S, i.e., an alternative central-
ity functional form) were then re-calculated to assess the impact
of such therapy on the topology and hence the functionality of
the network. Manual node removal and pharmacological sim-
ulation plugin present overlapping results (betweenness: 95.9%,
stress: 98.2%, Data Sheet 2, Table S17). The p-values, corrected
for multiple testing (threshold 0.05), have been calculated after
constructing null betweenness centrality distributions by 1000
random deletions of 20 nodes, as many as the MTX targets (Efron

and Tibshirani, 1993). Functional clustering analysis has been
then performed (Data Sheet 2, Table S18).

COMPARATIVE ANALYSIS
We further run a comparative analysis between our newly con-
structed multi-omic map, EI, and TR, that represent an earlier
transcriptional-only version (Wu et al., 2010), to highlight the
biological mechanisms that have been better emphasized from the
usage of multilayer omic data.

Degree was evaluated as the number of edges attached to a
node for the undirected networks as EI (and CI) are (i.e., con-
nections among nodes do not indicate directional cause-effect nor
temporal relationship). For TR (directed network) proteins and
their modified instances (such as MAPKs and phosphorylated-
MAPKs) were first considered as one (complex) node, then
in-degrees (edges to the node) and out-degrees (edges from the
node) of the components (MAPK and phosphorylated-MAPK)
were summed up to obtain the undirected degree, after subtract-
ing the number of edges connecting the members of the complex
node. To complete the compatibility of the degree defined for
undirected maps (and namely EI), given the different sizes of
EI and TR, the percentrank of the degree was also computed.
The nodes which degree rank was modified by more than 10%
between the two networks, were considered as nodes undergo-
ing a transition. A node was defined as accomplished when its %
rank degree was preserved, loser when the ranking reduced from
TR to EI, climber when it increased from TR to EI (Data Sheet 2,
Table S19). From a strictly topological point of view, the thresh-
old that defines a node as accomplished can be set to zero, and
hence this definition identifies only the nodes with the same exact
degree. From a biological standpoint, and for an informative bio-
logical interpretation of the results, it is not necessary to impose
the exact matching of the ranking. For this reason we relaxed the
threshold and defined as accomplished the nodes that present the
same, higher or lower % rank of the degree with ±10% tolerance,
as a reasonable compromise.

Biological meaning for climbers and accomplished nodes in the
transition TR to EI was assessed by enrichment analysis Enrichr
(Chen et al., 2013) see Data Sheet 2, Table S20.

RESULTS AND DISCUSSION
After curating all molecular information (Table 1) we inferred
the network from the reconstructed lists with the PPI approach,
which consists of connecting nodes (molecules) based on their
interactions at the protein level, a broadly assessed approach in
computational biology, and already used for RA in both already
cited (Okada et al., 2014; You et al., 2014). All following results
pertain to the analysis on the extended interactome (EI), more
informative for its larger size.

To validate the ability of our network to model the biomolec-
ular aspects of RA, we first simulated a therapeutic approach
with MTX (see methods) and compared the results with the
major known effects reported in literature (Figure 1A). As a
result of the control on 20 MTX targets removal, the network
changes its topology (Figure 1B; Data Sheet 2, Table S17), and
the functional analysis indicates that 32 molecules which BC sig-
nificantly altered (Data Sheet 2, Table S17, col. 2) pertain to
two main functions [Data Sheet 2, Table S18, DAVID (Huang
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Table 2 | RA-associated proteins significantly modified upon MTX therapy release and functional annotation clustering in DAVID.

GO:0042981: reg. of apoptosis

GO:0043067: reg. of progr. cell

death

GO:0010941: reg. of cell death

GO:0031328: positive reg. cellular

biosynth. process

GO:0009891: positive reg. biosynth.

process

GO:0051173: positive reg.

nitrogen compound

metabolic process

GO:0010557: positive

regulation macromolec.

biosynth. process

BC S BC S BC S BC S

ABL1 ↑ ↑
BRCA1 ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
CREBBP ↑ ↑ ↑ ↑ ↑ ↑
CTNNB1 ↑ ↓ ↑ ↓ ↑ ↓
EGFR ↑ ↓ ↑ ↓ ↑ ↓
EP300 ↑ ↑ ↑ ↑ ↑ ↑
ESR1 ↑ ↓
HSP90AA1, 2 ↑ ↓ ↑ ↓
LCK ↑ ↓
MAPK1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
MYC ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
PRKCA ↑ ↑
SMAD3 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
SRC ↑ ↑
STAT3 ↑ ↓ ↑ ↓ ↑ ↓
TP53 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
TRAF6 ↑ ↑ ↑ ↑ ↑ ↑
VHL ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
YWHAZ ↑ ↓

Thirty-two proteins were identified to be significantly changed by the 20 MTX target proteins’ deletion (1000 permutations, adjusted p-value = 0.01). The topological

measures of betweenness and stress centrality were shown to be significantly altered increased (black arrow ↑) or decreased (red arrow ↓) after knocking out the

MTX target proteins. Among the listed proteins, enriched for the shown GO categories, STAT3 was found to belong to the host-microbiome interface as defined

in Methods. The top 2 functional annotation clusters run on the changed proteins identified enrichment for cell death and biosynthetic process as well as nitrogen

compound metabolic process (Functional Annotation Clustering Classification stringency: high, see Supplementary Data Sheet 2, Table S18; BC, betweenness

centrality; S, stress centrality).

et al., 2009a)]: regulation of programmed cell death, a known
effect of MTX (Spurlock et al., 2011); and metabolic and biosyn-
thetic processes, an alteration known to constitute a side effect
of the treatment (Phillips et al., 2003), as well as an area of
synergy between host and microbiome (Tremaroli and Backhed,
2012; Devaraj et al., 2013; Winter et al., 2013). Moving down to
the gene level, as illustrated in Table 2, Signal Transducers and
Activators of Transcription 3 (STAT3) deserves particular atten-
tion, as it is a crucial player in the JAK/STAT signaling cascade, at
the basis of the signal transduction mechanism for many cytokine
receptors, highly activated in RA (Paunovic et al., 2008), and an
important member of the host-microbiome interface (Zhou and
Amar, 2006), being involved in the host susceptibility/defense
against intestinal infections at the mucosal level (Miettinen et al.,
2000).

From a topological point of view, STAT3 presents enhanced
betweenness and reduced stress centralities after virtual MTX treat-
ment. This is an unusual topological condition—since there is
commonly correlation between stress and betweenness—where,
upon perturbation (MTX) a higher fraction of shortest paths con-
verges on STAT3 (gain in betweenness centrality) despite a decrease
in their absolute number (loss of stress centrality). This indicates
that the networks shrinks and STAT3 becomes more important,

a fact that can be translated in biological terms as the com-
pensatory mechanisms induced by the loss of some molecules’
presence/activity (MTX targets), which globally force STAT3 to
become the molecule through which more numerous (higher
betweenness) but less efficient molecular reactions (longer paths,
lower stress) occur.

Overall, STAT3, which is already considered a crucial target
in RA for its critical role in the T regulatory/helper 17 lymphoid
cells [Treg/Th17 balance overabundant in RA (Leipe et al., 2010)]
is coherently shown as an indirectly controlled target by MTX
explaining the ability of the therapy to rebalance Th17/IL17 ratio
(Li et al., 2012).

In conclusion, our map is able to recollect known and yet
complex information about the effects of MTX, this represents
an important validation of our frame for further simulations.
Additionally, our map indicates a clear link between MTX and
dysbiosis, which to date has not been explicitly unrevealed,
although enterocolitis is a known toxic effect of MTX, linked to
the induced nitroxidative stress (Kolli et al., 2008, 2013). This
is a critical fact as the known adverse effects of MTX, gener-
ally described as immunodepressive, appear to be composed not
only by the known oxidative organ stress, but also by an added
dysbiosis, possibly mediated by an overload on STAT3.
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FIGURE 1 | (A) Snapshot of the extended interactome (EI) with nodes
highlighted by betweenness centrality (BC), high resolution browsable
figure provided in Supplementary Files (Image S2). (B) Zoom on the top
ranking BC node (GRB2) and its closer interactome. Pathways relevant in
the indication of GRB2 as an RA target, able to control inflammation
TGF-β (TGFB1-3), TNF-α (TNF, TNFRS10C), MAPK (MAP4K1, MAPK3),
degeneracy EMT (TWIST1-2, CDH1), and dysbiosis (TRL4) are also
highlighted. (C) Visual summary of the influence of GRB2 on the
RA-affected districts highlight a homeostatic (blue) influence on

inflammation, GI microbiome, growth, differentiation. The pie-chart slices’
size is proportional to the number of molecules considered in each
district. Districts were merged from the total 13 datasets according to
biochemical homogeneity in the following 8 categories: Genomic (DNA,
Dataset 1); Epigenomic (mDNA, Dataset 4); Transcriptomic (mRNA,
Datasets 7, 9A, 9B); Post-transcriptomic (miRNA, Dataset 8); Proteomic
(proteins, Dataset 2); Microbiome (Host-microbiome proteins interface,
Oral microbiome Datasets 5, 10, 12, 13); Inflammation (6, 3A, 3B, 3C);
Others, i.e., Growth, Differentiation (Datasets 3, 11, 3D, 3E).

The topological analysis highlights the striking relevance of
Growth factor receptor-bound protein 2 (GRB2) with values of
BC more than two-fold (Data Sheet 2, Table S16) compared to
the second in rank, the Epidermal growth factor receptor (EGFR).
Based on literature, GRB2 is an effective target (Phase I clin-
ical trial, http://www.biopathholdings.com/) for Acute Myeloid
Leukemia (AML), Chronic myelogenous leukemia (CML) and
Myelodysplastic syndromes (MDS); an important mediator of the
oncogenic activities of TGF-β, via epithelial mesenchymal tran-
sition (EMT) (Galliher-Beckley and Schiemann, 2008); a crucial
player in the host-microbiome interaction of Helicobacter pylori,
able to induce host cell scattering and proliferation via the acti-
vation of the Ras/MEK/ERK pathway (Mimuro et al., 2002); a
marker of RA in synoviocites (Huh et al., 2003). GRB2 is addi-
tionally activated by leptin (Pai et al., 2005), abundant in RA

(Bokarewa et al., 2003) and able to increase Prevotella intermedia
LPS-induced TNF-α production (Kim, 2010). Moreover, another
member of the Prevotella genus (P. copri) has recently been liaised
to RA (Scher et al., 2013), as a specific marker of GI micro-
biome dysbiosis associated to the disease. When observed from
the network perspective this apparently scattered information
fits in a connected map (Figure 1B) and hence builds a robust
rationale for considering GRB2 as a target for RA. The activa-
tion of proliferative and inflammatory pathways as well as EMT,
are hallmarks of RA (You et al., 2014) suggesting that the con-
trol on GRB2 as a regulator of such mechanisms is appropriate.
Additionally, the control on GRB2 exerted by H. pylori [already
proposed in relation to RA (Melby et al., 1999)] and by P. inter-
media in the presence of leptin indicate that targeting of GRB2
is not only of relevance to control the phenotypic symptoms of
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RA (joints degeneracy) but also the recently highlighted dysbio-
sis that accompany the disease, via the control of the disruptive
mechanisms by which pathogens can exert their action on the
host (Figure 1C).

Given the relevance of RA as a paradigmatic autoimmune dis-
ease, a variety of in silico modeling approaches have been devised
(Okada et al., 2014; You et al., 2014), and, among those, an early
transcriptional only map (hereinafter TR, 302 nodes; Wu et al.,
2010). The previous compilation of this simplified version put us
in the relatively unique position to be able to quantify the benefit,
in terms of information content, of expanding from transcrip-
tional to multi-omic the network modeling of RA. The molecules
that gain importance (i.e., have a higher degree) in the multi-
omic map versus the TR (climbers, see Methods and Figure 2A)
pertain mostly to the MAPK Signaling Pathway (Figure 2B and
Data Sheet 2, Table S19). This category is also highly enriched
for accomplished nodes, thus validating the importance of this

pathway in the disease. However, climbers, all representing genes
shared between TR and EI, include molecules known to belong
also to the GI interface (SFR, MAP2K4, MAP3K8), absent in
the accomplished, implying the importance of the involvement
of the host-microbiome interface, not taken into account in the
TR map. In particular, Interleukin-1 Receptor Associated Kinase-
4 (IRAK4, climber) is known to play a critical role in initiating
response to foreign pathogens (Hofman and Vouret-Craviari,
2012) and was recently presented to the American College of
Rheumatology (ACR), based on promising results on the con-
trol of B-cell-like diffuse large B-cell lymphoma (DLBCL), as a
potential treatment for RA (Chaudahry and Al, 2012). In the net-
work perspective, this choice calls for words of cautions. Indeed,
while correlating with regression of some aspects of the disease,
the control on IRAK4 affects the response to pathogens, and
in particular IRAK4 inhibitors impacts on pDCs in RA patients
(Chiang et al., 2011), therefore limiting the appropriate and

FIGURE 2 | (A) Multi-omic map (EI) nodes highlighted according to their
role in comparison with a transcriptional-only map (TR). In orange, nodes
that maintain their role and importance in both EI and TR (accomplished );
in red, nodes that gain importance in the multi-omic context, (climbers).
(B) Functional analysis of the climber hubs, which highlight the striking
significance of MAPK signals. Panel (C) is built in the same way of
Figure 1C to permit easy comparison of the two targets. It represents the

summary of the influence of IRAK4 on the RA-affected districts, and
highlights a homeostatic (blue) influence on inflammation, growth,
differentiation as well as transcriptomic and post-transcriptomic districts.
However, the microbiome interface response is impaired by IRAK4
inhibition of the innate immune response to pathogens. The pie-chart
slices’ size is proportional to the number of molecules considered in each
district (as in Figure 1).
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immediate innate host response in case of bacterial infections
(Figure 2C).

CONCLUSION
The aim of the designed framework is to draw hypotheses that can
support basic research and further clinical practice. In particular,
we here highlight two major areas of application: support in the
identification of novel drug targets (exemplified by GRB2); sup-
port in the identification of potential contraindication to novel
therapies, i.e., support in the design of robust clinical trials (exem-
plified by IRAK4-inhibitors). While the former application joins
other efforts in different clinical areas [such as on diabetes (Liu
et al., 2007; Santiago and Potashkin, 2013), in cancer (Hwang
et al., 2013), and on glioblastoma (Junhua et al., 2012)], the latter
descends from the inclusion of numerous data types, including
for the first time to our knowledge, the GI microbiome inter-
face. The results discussed in this article are the output of the
knowledge distilled from ∼4000 selected molecules and ∼15
public databases, a humongous amount of information carefully
and often redundantly peer-reviewed by the scientific commu-
nity. Future and ongoing research and the resulting discoveries
will impact on the breadth and possibly on the topology of our
map. To take into account these expected (and desirable) events,
our map was drawn using open source programs and pathway
molecules’ standards to allow full map usability, editing and
updating by the whole scientific community.
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