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The acquisition of myoblast commitment to the myogenic linage requires rises in
intracellular free Ca®* concentration ([Ca®*]). Putative cell membrane pathways involved
in these [Ca?*]; increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or
pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively,
which are known to permeate Ca?t. Reserve cells (RCs) are uncommitted myoblasts
obtained from differentiated CoCqo cell cultures, which acquire commitment upon
replating. Regarding these cells, we found that extracellular ATP increases the [Ca?T];
via P2Rs. Moreover, ATP increases the plasma membrane permeability to small
molecules and a non-selective membrane current, both of which were inhibited by
Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline
solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance
membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover,
ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate
Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment
and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown
of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were
inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires
a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs.

Keywords: calcium signal, membrane permeability, MyoD, ATP, purinergic receptors, pannexons, myogenesis

Introduction

During skeletal muscle ontogeny and regeneration, pluripotential mesodermal or satellite cells
acquire myogenic commitment, which involves the expression of myogenic determination factors
such as MyoD, Myf-5, and myogenin, transforming these cells into proliferative myoblasts (Charge
and Rudnicki, 2004).

The acquisition of myogenic commitment requires increases in intracellular free Ca’"
concentration ([Ca?*];), which promote the activation of calcineurin (a Ca2+—dependent
protein phosphatase) that, in turn, induces the expression of the Myf5 transcription
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factor (Friday and Pavlath, 2001). Increases in [Ca2t]; could
result from the activation of purinergic P2 receptors (P2Rs) with
ATP/ADP, which are divided into two receptor families, namely
ionotropic P2X and metabotropic P2Y receptors (P2YRs and
P2XRs) (North, 2002; Araya et al., 2004). P2XRs are members
of a family of ligand-gated non-selective cationic channels called
P2X;_; and are permeable to cations, including Nat, KT,
and Ca?t (North, 2002; Araya et al.,, 2004). Furthermore, the
activation of P2XRs 2, 4, and 7 has been shown to increase cell
membrane permeability to small molecules, including Lucifer
yellow, ethidium (Etd™) and YO-PRO-1 in diverse cell types such
as myoblasts and macrophages (North, 2002; Araya et al., 2004;
Pelegrin and Surprenant, 2006). However, increase of plasma
membrane permeability to dyes induced by P2X7R activation is
absent in cells lacking pannexinl (Panx1) expression (Pelegrin
and Surprenant, 2006; Locovei et al., 2007), suggesting that
channels composed of Panxl mediate dye uptake induced by
P2X7R activation. Moreover, activation of Panx1 channels (Panx1
Chs) can also be promoted via P2YRs (Locovei et al., 2006).
In addition to Panxs, most cells also express connexins (Cxs),
which have been shown to form connexons, also known as
Cx hemichannels (Cx HChs). A connexon takes up half of
a gap junction channel (GJC) and can be found on the cell
surface communicating the intra and extracellular compartments
(Séez et al., 2010) just like Panx Chs do. Panxl Chs and Cx43
HChs are permeable to Ca’™ and small molecules, including
signaling molecules such as ATP (Bao et al., 2004; Vanden Abeele
et al,, 2006; Kang et al., 2008; Schalper et al., 2010). Diverse
stimuli can increase the open probability of Cx HChs, including
membrane depolarization to positive values, pro-inflammatory
conditions, reduced extracellular Ca>* concentration and rises in
intracellular [Ca®t];, among others (Saez and Leybaert, 2014).

L6 cells constitute a cell line derived from rat myoblasts.
Treating these cells with B-glycyrrhetinic acid, which blocks Cx
based GJCs and HChs as well as Panxl Chs (Schalper et al.,
2008a), has been shown to inhibit the expression of myogenin
and MRF4, two transcription factors that promote myogenesis
and inhibits the cellular fusion process that leads to myotubes
formation (Proulx et al., 1997). However, treatment with octanol,
which is a blocker of Cx GJCs and HChs, but not Panxl
HChs (Bruzzone et al., 2003; Pelegrin and Surprenant, 2006),
does not affect myogenesis as evaluated through the expression
of the pro-myogenic transcription factor Myf5 (Proulx et al,
1997). These findings suggest that Cx GJCs and HChs are
not involved in the acquisition of myogenic commitment.
Accordingly, it was recently reported that Panx1 channels favor
the differentiation of skeletal muscles, since inhibition of Panx1
Chs drastically reduces differentiation, whereas overexpression
of Panx1 enhances muscle differentiation (Langlois et al., 2014).
Muscle differentiation is a high-order process involving several
steps that begin with the acquisition of myogenic commitment
and the identification of the specific step affected by Panx1 Chs
remains to be elucidated.

The roles of Panx1 Chs and Cx HChs in numerous biological
responses in the absence of GJCs (e.g., lack of GJC expression
or low density cultures that prevent GJC formation) can be
distinguished by using pharmacological approaches. Panx Chs

are relatively insensitive to several Cx HCh blockers, including
octanol, heptanol, flufenamic acid, and La** (Bruzzone et al,,
2003; Pelegrin and Surprenant, 2006). Moreover, Panxl Ch
activity is insensitive to reductions in extracellular [CaZt]
(Bruzzone et al., 2003; Locovei et al., 2006; Ma et al., 2009),
while Cx HChs are activated in cells bathed with saline solutions
containing low extracellular concentrations of divalent cations
(Ca** and Mg?*) (Schalper et al., 2008a).

In C,Cj; cell cultures, the fusion process reaches its maximum
at around day 6 post-induction of differentiation. At that time,
these cultures contain fused myoblasts called myotubes and
undifferentiated mononuclear cells, called reserve cells (RCs),
with undetectable levels of MyoD and Myf5 (Yoshida et al., 1998).
In differentiated cultures containing myotubes and RCs, the
extracellular activity of a-sarcoglycan, which is an ectoATPase,
is also high and is likely to explain the low extracellular ATP
levels present in the extracellular solution (Sandona et al., 2004).
C,Cy2 RCs isolated by controlled trypsinization and re-plating
with serum-rich medium have been shown to acquire myogenic
commitment (Yoshida et al., 1998).

The present work was mainly undertaken to demonstrate the
possible role of extracellular ATP, P2 receptors, Cx HChs and
Panx1 Chs during the acquisition of myogenic commitment in
C,Cy2 RCs. This molecular trilogy was found to play a critical
role in skeletal muscle commitment acquisition by C,Cj2 RCs.

Materials and Methods

Reagents

An affinity purified polyclonal anti-Panx1 serum developed in
chicken was purchased from Diateva (Roma, Italy). Polyclonal
antibody directed against the whole MyoD molecule was
acquired from Santa Cruz Biotechnology (Santa Cruz, CA,
USA), and monoclonal antibodies anti-LAP2 was purchased
from Transduction Laboratories (Louisville, KY, USA). The
adenosine 5'-triphosphate bioluminescence assay, ethidium
bromide (Etd"), suramin, oleamide, oxidized ATP (oATP),
carbenoxolone (CBX), 18 B-glycyrrhetinic acid (8-GA), FITC-
conjugated goat anti-rabbit IgGs, and TRITC conjugated goat
anti-mouse IgGs were obtained from Sigma (St. Louis, MO,
USA). Enhanced chemiluminescence (ECL) reagents were
from Pierce Biotechnology (Piscataway, NJ, USA). MRS2179
was obtained from TOCRIS (Park Elisville, MO, USA) and
pyridoxalphosphate-6-azophenyl-2,5 -disulphonate (iso-
PPADS) was purchased from Cookson (Southampton, UK).
Panxl siRNA and its control (FlexiTube GeneSolution, cat
n° ID: 2120593) were obtained from Qiagen (Germantown,
MD, USA). Lipofectamine LTX and PLUS Reagent (cat n°
15338100) and Opti-MEM (cat n° 31985-070) were from
Life Technologies (Carlsbad, CA, USA). pEGFP-NI1 vector
was obtained from Clontech Laboratories (Mountain View,
CA, USA).

Cell Lines, Culture of C2C45 Cells, and Isolation
of RCs

The C,Cyy cell line derived from mouse skeletal muscle
(ATCC, Manassas, VA, USA) was grown as described by
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Araya et al. (2004). Briefly, cells (22 x 10%) were seeded on
tissue culture dishes of 100-mm diameter (CORNING, Garden
Glove, CA, USA) containing growth medium (GM: DMEM/F12
supplemented with 10% FBS, and 100 U/ml penicillin, 100 p.g/ml
streptomycin). After 3 days in GM, cell differentiation was
triggered by replacing GM with differentiation medium (DM:
DMEM/F12 medium supplemented with 5% horse serum,
100 U/ml of penicillin, and 100 ug/ml streptomycin). Cell
cultures were fed every 48h with DM. At day 10 of culture
in DM, RCs were isolated as described by Yoshida et al.
(1998). At that time period cell cultures were subjected to
controlled trypsinization and released cells were seeded, 1h
after which they were washed three times and fed with GM in
which RCs become myoblasts indicating acquisition of myogenic
commitment (Yoshida et al., 1998).

Transfection

C,Cyy cells were transfected with Panxl siRNA at final
concentration of 100 nM using Lipofectamine LTX and PLUS
Reagents as described for the 35 mm dish format according to
the manufacturer’s instructions. The transfection was performed
24 h before isolation of RCs. After 28-30h of transfection cells
were used for MyoD detection or Etd™ uptake experiments. Also
the cells were transfected with pEGFP-N1 vector to control the
transfection efficiency.

Electrophysiology

Electrophysiological measurements were carried out in
subconfluent cell cultures plated on glass coverslips (#1)
containing numerous single cells. Two hours after plating,
coverlips containing cells were transferred to an experimental
chamber mounted on the stage of an inverted microscope
(Olympus IX-51, Olympus Optical Co, NY). For whole-cell
experiments the bath solution contained (in mM) 140 NaCl,
5.4KCl, 1MgCl,, 1.8CaCl,, 2 BaCl,, 10 Hepes, pH 7.4 and
the pipette solution contained (in mM) 130 CsCl, 10 AspNa,
0.26 CaCl,, 1 MgCl,, 2 EGTA, 7 TEA-CI, 5 Hepes, pH 7.2. Patch
pipettes were made from borosilicate glass capillaries using a
flaming/brown micropipette puller (P-87, Sutter Instruments
CO, Union City, CA, USA). The tip resistance was 5-10
M2 when filled with pipette solution. Whole-cell currents were
recorded by using either voltage ramps or voltage steps increasing
in 20 mV from —80 to +80 mV, as described previously (Schalper
et al., 2008b). Currents were filtered at 1kHz and sampled at
5kHz. Then, records were filtered with a digital low-pass filter
of 0.5kHz. Data acquisition and analysis were performed with
pClamp 9 (Axon Instruments, Novato, CA, USA).

Dye Uptake and [Ca2t]; Measurements

For dye uptake measurements, RCs were plated onto glass
coverslips and after 2h they were washed twice with Krebs—
Ringer buffered saline solution (in mM: 145 NaCl, 5 KCl, 1 CaCl,,
1 MgCl,, 5.6 glucose, 10 HEPES-Na, pH 7.4) containing 5puM
Etd™, and fluorescence was recorded at regions of interest in
different cells with a water immersion Olympus 51W1I upright
microscope. Images were captured with a Q Imaging model
Retiga 13001 fast-cooled monochromatic digital camera (12-
bit) (Qimaging, Burnaby, BC, Canada) every 30s (exposure

time = 30 ms, gain = 0.5) and image processing was performed
off-line with Image]J software (NIH, Bethesda, USA).

The Ca®t/Mg2*-free saline contained (in mM) 145NaCl,
5KCl, 0.5 EGTA, 5.6 glucose, 10 HEPES-Na, pH 7.4. Cells
seeded on glass coverslips were placed in a 1ml chamber
located on the stage of an inverted microscope equipped with
epifluorescence illumination (Olympus T041, New Hyde Park,
NY, USA), where recordings were performed. After excitation
with a 488-nm wavelength with a Xenon arc lamp and filter
system, the fluorescence sequences of 80 images were collected
every 4.5 s at 200-ms exposure. Data were acquired with a CCD
cooled camera (MCD600, Spectra Source Instruments, West lake
Village, CA, USA) connected to a microscope side port; the full
or partial image acquisition was computer-controlled through
macros that operate the software provided by the manufacturer.
Image processing was done off-line with the public domain
ImageJ software. The collected data were illustrated as folds of
basal fluorescence vs. the difference of initial fluorescence and
fluorescence at the time of interest (AF/Fy) - (AF/Fy)b, corrected
with respect to basal fluorescence in order to reduce the photo
bleaching artifact of Fluo-3.

Western Blot and Indirect Imnmunofluorescence
Analysis

Cells were washed twice with ice-cold PBS (pH 7.4) and then
harvested by scraping with a rubber policeman in 1 ml lysis buffer
(PBS containing protease inhibitors: 2 mM phenylmethylsulfonyl
fluoride, 200 Lg soybean trypsin protease inhibitor, 1 mg/ml
benzamidine, 1mg/ml e-aminocaproic acid, and 500 pg/ml
leupeptin, and phosphatase inhibitors: 20 mM NasP,07 and
100 mM NaF) and then sonicated. Western blot analyses were
performed as described previously (Schalper et al., 2008b). Blots
were incubated overnight with polyclonal rabbit immunopurified
anti-MyoD antibodies diluted with 5% non-fat milk in PBS.
Then, they were rinsed with PBS and incubated for 1h at room
temperature with horse radish peroxidase-conjugated goat anti-
rabbit IgG antibodies at appropriated dilution in PBS with 5%
non-fat milk in PBS. After repeated rinses, immunoreactive
proteins were detected using ECL reagents (Pierce biotechnology,
Rockford, IL) according to the manufacturer’s instructions.

Cells grown on glass coverslips were washed three times with
PBS, pH 7.4, fixed with 4% formaldehyde for 5min at room
temperature and then incubated in blocking solution (PBS-1%
BSA, pH 7.4) for 30 min at room temperature. Samples were
incubated overnight at 4°C with appropriately diluted rabbit
anti-MyoD antibody. Then, samples were processed as previously
described (Araya et al, 2004). Immunoreactive sites were
detected with FITC-conjugated goat anti-rabbit IgG secondary
antibodies. Cells were rinsed and mounted with fluoromount
G (Electron Microscopy Sciences, Hatfield, PA, USA) on glass
slides and observed under a Nikon Labophot-2 microscope
equipped with epifluorescent illumination and photographed.
Immunolocalization of MyoD was carried out in coverslips
and mounted in Vectashield (Vector Laboratories) for confocal
microscopy and representative images were acquired (Carl Zeiss
Axiovert 135, LSM Microsystems). Only secondary antibodies
were added for negative controls.
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Data Analysis and Statistics

For each data group, results are expressed as mean & SEM, and n
refers to the number of independent experiments. For statistical
analysis, each treatment was compared to its respective control,
and significance was determined by using a One-Way ANOVA
followed by a Tukey post-hoc test. Differences were considered
significant at p < 0.05. Statistics were performed with Microsoft
Excel (2007) and Graph Pad Prism 4 (2003).

Results

Extracellular ATP Activates Ca2* Signal in
Uncommitted RCs via Purinergic Receptors and
Panx Channels

In other cell types, extracellular ATP increases the [Ca2t);
through activation of P2X or P2Y receptors (Illes and
Alexandre Ribeiro, 2004). Moreover, activation of P2Rs has
been demonstrated to be required for skeletal muscle terminal
differentiation (Araya et al., 2004). Here, we evaluated whether
P2Rs are present and participate in commitment acquisition,
which is an earlier stage of skeletal muscle ontogeny. To address
this issue, uncommitted RCs (Yoshida et al., 1998) were obtained
from differentiated cultures of C,Cy, cells. They were loaded
with the free Ca?T indicator Fluo-3 and stimulated with a bath
application of ATP, while the (AF/Fy) - (AF/Fy)b (hereinafter
called Ca®* signal) was monitored.

After the application of 150 WM ATP, the Ca’* signal in all
cells remained unchanged for a brief period of time (<10s) and
then showed a rapid increase followed by a plateau phase well-
above the basal value (Figure 1A). To determine the contribution
of P2Rs, RCs were pretreated for 5min with 200 uM suramin,
which is a concentration that blocks P2XRs and P2YRs, and
then treated with 150 WM ATP, resulting in absence of Ca?*
signal response (Figure 1A). Then, the possible contribution of
ionotropic P2XRs and metabotropic P2Y;R in the Ca** signal
triggered by ATP was evaluated. Cells were pre-treated for 5 min
with 100 wM iso-PPDAS, a general P2XR blocker (Araya et al,
2004) or 10 uM MRS2179, a specific P2Y R blocker (Baurand
and Gachet, 2003). The inhibition of P2XRs drastically reduced
the amplitude and raise phase of the transient Ca** signal peak;
the response showed only ~34% amplitude and ~24% area under
the curve as compared to control (Figure 1B), while these two
parameters were not significantly affected by P2Y;R inhibition
(Figure 1B). Notably, the plateau phase that followed the
transient peak of Ca?* signal promoted by extracellular 150 uM
ATP was completely abrogated by the inhibition of P2XRs or
P2Y;Rs (Figure 1B), suggesting that iso-PPDAS-sensitive P2XRs
and MRS2179-sensitive P2Y|Rs are partially responsible for
activating the mechanism that drives the plateau phase of the
Ca** signal. In cells pretreated with 150 WM 0ATP, another P2XR
blocker, the Ca?™ signal elicited by 150 WM ATP was comparable
to that of cells pretreated with iso-PPDAS (not shown).

In order to study the possible involvement of Panxl Chs
in Ca?" signaling promoted by extracellular 150 uM ATP, RCs
were first treated for 5min with 200puM !°Panx1 peptide
or 10wM carbenoxolone, which are two Panxl Ch blockers
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FIGURE 1 | Activation of P2Rs with extracellular ATP elevates
intracellular Ca2+ levels in C5C45 RCs. Time course of relative fluorescence
changes induced by bath application of 150 wM ATP (arrow) in C»C+» RCs
loaded with Fluo-3. (A) Cells were stimulated with 150 wM ATP alone or
preincubated (5 min) with 200 uM suramin (a P2Y and P2X receptor antagonist)
and then treated with ATP. (B) RCs were preincubated (5 min) with 10 uM
MRS2179 or 100 uM iso-PPADS followed by stimulation with 150 .M ATP. (C)
RCs preincubated (5 min) with 10panx1 peptide or 10 uM carbenoxolone (CBX)
and then stimulated with ATP. Each point corresponds to the mean + SEM,

n = 3 experiments. At least 10 cells were recorded per experiment.

(Bruzzone et al., 2005; Pelegrin and Surprenant, 2006). Under
these conditions, the Ca?* signal elicited by RCs was fast and
transient but was not followed by a persistent plateau phase
(Figure 1C), suggesting a critical involvement of Panx1 Chs in
the establishment of this feature of the ATP-promoted Ca’*
signal in RCs.
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RCs Present Membrane Panx Channels Activated
by Extracellular ATP

Extracellular ATP also increases membrane permeability to small
molecules mainly through activation of Panx1 Chs (Locovei et al.,
2006; Pelegrin and Surprenant, 2006; Nishida et al., 2008). In the
present study, ATP increased [Ca2t]; in C,C12 RCs (Figure 1),
but it remained unknown whether RCs exhibit active Cx HChs
or Panx Chs at the cell surface.

To demonstrate the presence of Panx Chs activated by
extracellular ATP via P2Rs in C,C3RCs, we evaluated changes
in membrane permeability to Etd™, which has been used as a
permeability probe in time lapse measurements (Schalper et al.,
2008a,b). Treatment with 150 uM ATP for 15min induced
a heterogeneous Etd' uptake response of RCs (Figure 2Aa).
To determine if the ATP-induced response was mediated
by P2XRs, RCs were simultaneously treated for 15min with
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FIGURE 2 | C,C42 RCs express functional P2X receptors and After 10 or 8min of recording under control conditions 150 .M oATP (B)
pannexin channels. CoC1, RCs seeded onto glass cover slips were or 100 uM oleamide (C) was applied (arrow). In (B), the continuous line
maintained for 1h in growth medium so they could attach. Then, cells represents the mean + SEM of three experiments in cells treated only
were washed three times and after 0.5h they were exposed to with ATP. (D) Bar graph showing the Etdt uptake rate of cells treated as
Krebs-Ringer saline solution containing 5uM Ethidium (Etd™). Thereafter, in (B) and (C). Each number corresponds to the average + SEM (n =3
cells were treated with 150 WM ATP and Etd+ uptake was evaluated. experiments); 8-15 cells were recorded per experiment. In addition, cells
(Aa) Microphotograph taken 15min after 150 WM ATP application. (Ac) were exposed to saline solution without Ca2* and MgQJr (DCFS), known
co-application of 150 uM oATP blocked dye uptake induced by 150 uM to induce Cx HC opening. (E) Etdt uptake rate in RCs treated with ATP
ATP. (Ab, Ad) Phase contrast views of fields shown in Aa and Ac, or in HelLa-Panx1 cells treated with mechanical stress (M.S.) to induce
respectively. (B) Time-lapse measurements of Etd™ uptake in several cells opening of Panx1 channels. In both cell types the effect of blockade of
(8 in B and 14 in C) under control conditions (5 or 2min, respectively) P2Y{R (80 uM MRS2179), P2XRs (50 uM iso-PPADS) or P2X7R (10 uM
and after the application of 150 uM ATP (B, C), indicated with the arrow. A740003) on the Etdt uptake rate was evaluated. **p < 0.001.
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150 uM oATP and 150 uM ATP. Under this condition, no
Etd™ uptake was detected in ~90% of the cells (Figure 2Ac).
Then, the ATP-induced Etd™ uptake was quantified over
time. Etd™ uptake was very low during the first 2-4 min of
recording under control conditions (Figures2B,C). However,
at about 4min after treatment with 150 uM ATP, a rapid
increase in Etd™ uptake occurred (Figures 2B,C) and either the
acute application of 150 uM oATP (Figures 2B,D) or 100 puM
oleamide (Figures 2C,D) drastically reduced Etd™ uptake,
thus reaching values close to those measured under control
conditions. Treatment of RCs with 150 uM ATP induced Etd*
uptake as described above and the acute application of selective
a P2Y;R (MRS2179) (Baurand and Gachet, 2003), P2XRs
(iso-PPADS) or P2X7R (A740003) (Honore et al., 2006) blocker
drastically reduced Etd™ uptake (Figure 2E), suggesting that
simultaneous ATP-induced activation of P2Y and P2X receptors
would be required for opening of Panx1 Chs in RCs. Moreover,
we tested whether P2Y ;R and P2X7R blockers affect the activity
of open Panxl Chs. To this end, HeLa cells transfected with
Panx1l were mechanically stressed with eight drops of saline
solution falling from about 10cm high to induce Panxl Ch
opening. During recordings of Etd* uptake, cells were treated

with MRS2179, iso-PPADS or A740003, which did not affect the
Etd™ uptake rate (Figure 2E), indicating that these compounds
do not block Panx1 Chs.

Divalent cation free solution (DCFS), known to increase the
open probability of Cx HChs, did not promote Etd™ uptake in
RCs (Figure 2D), suggesting that Cx HChs are not involved in
ATP induced Etd™ uptake.

To further demonstrate the presence of Panx Chs in cell
membranes of RCs, we characterized the membrane current
responses induced by transmembrane voltages under resting
conditions and after applying extracellular ATP in the absence
and presence of Cx HCh/Panx1 Ch blockers, which only blocked
Panx Chs in this preparation because we did not detect Cx HChs
(see above).

Two hours after plating, total RC membrane current was
evaluated by means of whole-cell patch clamp and applying
voltage steps (~4s and 20mV changes) or ramps between
—80 and +80mV of 5s duration. Under this condition, the
membrane currents generated at all voltages were very small
(Figures 3A-C) and increased linearly passing through zero at
0mV (Figures 3B,C). In less than 10s treatment with 150 uM
ATP, the currents generated with different voltage commands

Time (s)

FIGURE 3 | Extracellular ATP enhances the membrane current
mediated by Panx1 channels. Representative I/V curve of total membrane
current recorded in freshly seeded RCs evaluated under voltage clamp by
using the whole cell patch clamp configuration. Rectangular voltage steps or
voltage ramp between -80 and +80 mV were applied during ~4 or 205,
respectively. (A) Top traces correspond to the protocol of voltage commands
(Vm) applied and the other traces correspond to a representative set of
currents recorded under control conditions, after treatment with 300 uM ATP
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or simultaneous treatment with 100 uM oleamide and 300 uM ATP. (B,C)
The membrane current promoted by voltage ramp under resting conditions
(Basal), followed by the application of 150 wM ATP and then, the application
of (A) 100 uM oleamide or (B) 50 .M B-GA. (D) Bar graph showing the
percentage with respect to control conditions of the slope of membrane
currents, in the presence (+) or absence (-) of ATP, 100 uM oleamide, 50 uM
B-GA as described above or 150 uM o0ATP in the absence or presence of
150 WM ATP. The digit above each bar indicates the number of experiments.
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were much more robust and the I/V curves showed an
increase in total current as compared to control conditions
(Figures 3A-C). In addition, after treatment with 100 pM
oleamide (Figures 3A,B) or 50 M fB-GA (Figure 3C) total
current drastically decreased to values close to or even below
those recorded under basal conditions.

After 150 WM ATP treatment, the slope of the membrane
current trace was 617 £ 207% above that of control conditions
(Figure 3D). In the same RC treatment the application of
100 M oleamide reduced ATP-induced current to 224 =+
86% above control conditions (Figure 3D). Similarly and in
separate experiments, the slope of the ATP-induced membrane
current was reduced to 172 £+ 71% above control conditions
in RCs treated with 50 wM B-GA (Figure 3D). Surprisingly, the
application of 150 uM oATP, which is a P2XR blocker (Araya
et al, 2004), reduced the current slope to 50 £+ 1% below
that of RCs under control conditions (not treated with ATP)
(Figure 3D), suggesting the involvement of functional P2XRs
under basal activations. Moreover, the application of 150 puM
0ATP immediately reduced the slope of the ATP-induced current
to 53 & 2% below control values (Figure 3D).

Acquisition of Myogenic Commitment Requires
Activation of P2X Receptors and Functional
Panx1 Channels

MyoD levels increase in C,Cjp RCs cultured in GM, hence
revealing the acquisition of myogenic commitment (Yoshida
et al, 1998). To determine the role of P2Rs in this process,
immunofluorescence and Western blot analyses of MyoD in
RCs treated with different P2R and Panx1 Ch inhibitors were
performed (Figure4). Since primary cultures of RCs were
contaminated with differentiated myotubes that express MyoD,
the possible role of P2 receptors on MyoD expression by
RCs was first evaluated by immunofluorescence detection in
isolated mononuclear cells at different time periods after plating.
MyoD was not detected in any of the mononuclear cells
at 0.5h after plating, indicating that they were uncommitted
RCs (Figure 4Aa). However, after 24h all RCs showed MyoD
reactivity (Figures 4Ab,Ag) and the increased expression of
MyoD was completely prevented in all RCs bathed in
GM containing 150 WM oATP (Figure 4Ac), 200 uM 'Panx1
(Figure 4Ah) or 1 mM probenecid (Figure 4Ai).

As seen through Western blot analyses, MyoD levels in
cells treated with 300 uM ATP were ~2.5 fold higher than in
control cells (basal MyoD levels found in total cell homogenates
could be explained by the contaminating myotubes mentioned
above and were considered as basal levels in normalization).
Additionally, MyoD levels in RC cultures treated with 300 uM
0ATP were even lower than in control cultures (Figure 4B).
Since the P2XR blocker drastically reduced ATP-induced dye
uptake (Figure 2B), it was possible to infer that oATP blocked
ATP release, and thus, the extracellular ATP concentration
necessary to effectively activate P2Rs was not attained. To test
this possibility, RCs were treated simultaneously with 300 uM
0ATP and exogenous 300 uM ATP. Under these conditions, the
effect of 0oATP predominated over the effect of endogenous ATP
(Figure 4B), indicating the absolute requirement of functional
P2XRs in order to transduce the action of extracellular ATP
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FIGURE 4 | C5,C45 RCs require functional P2X receptors and Panx1
channels for myogenic commitment acquisition. (A) Immunofluorescence
detection of MyoD in C»>C1» RCs cultured for 0.5 h (Aa) and 24 h in (Ab) the
absence or (Ac) presence of 150 MM oATP. Ad-Af are contrast phase views
of fluorescent fields shown in Aa-Ac, respectively. Bar = 20 nm. Ag-Ai show
the presence of MyoD (green) in nuclei, marked by LAP2 (red), a nuclear
membrane marker, at 24 h of RC cultures, in normal (Ag), siPanx1 (Ah), and
probenecid (Ai, 1 mM) treated cells. (B) Two consolidates of at least three
Western blot analyses of CoC1o RCs under control conditions (24 h) or after
treatment for 24 h with 300 wM ATP, 150 uM oATP, 30 uM MRS2179, 200 uM
brilliant blue G (BBG), 50 uM iso-PPADS, 200 uM suramin or HC blockers
added simultaneously: 50 uM b-GA, 100 pM oleamide in the absence or
presence of 300 wuM ATP. All values were normalized to the control value of
each experiment. *p < 0.05 and **p < 0.01.

in controlling MyoD levels. Since ATP can be released to the
extracellular milieu through Panx1 Chs, the effects of oleamide
and B-GA (two Panxl Ch blockers) were tested in relation to
increases in MyoD levels induced by exogenous ATP. MyoD
levels in RCs treated with 100 wM oleamide or 50 WM B-GA were
lower than in control cells (Figure 4B), suggesting that Panx Chs
play a relevant role in this process. However, the presence of Panx
Ch blockers did not significantly affect the increase in MyoD
levels induced by exogenous ATP (Figure 4B), suggesting that
the release of endogenous ATP via Panx Chs was overcame by the
added ATP. Moreover, inhibition of P2Y;R (MRS2179), Panx1
Chs (oleamide), P2Xs and Panx1 Chs (BBG), P2XRs (iso-PPADS
or oATP) and P2YRs/P2XRs (suramin) reduced MyoD levels to
values below those found in RCs cultured in GM (Figure 4B).
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To further demonstrate the importance of Panxl Chs
in myogenesis, we studied whether Panxl turndown affects
MyoD activation by using immunofluorescence and confocal
microscopy. After 48h of induced the acquisition of myogenic
commitment with GM, all control cells presented MyoD
reactivity in the nucleus underlined with Lap2, which is a
nuclear membrane marker (Figure5A). However, ~75% of
the cells transfected with siRNA for Panxl did not present
MyoD reactivity in the nucleus (Figure 5A). The efficiency of
transfection was tested with the same transfection protocol
and a vector carrying the cDNA for a fluorescent protein
(pEGFP) corresponded to ~75% (not shown). In addition,
ATP-induced Etd™ uptake of cells transfected with siRNA for
Panx1 was drastically reduced as compared to untransfected cells
(Figure 5B).

Acquisition of Myogenic Commitment Occurs in
the Absence of Connexin Gap Junctions

Since gap junction channels have been proposed to play a
relevant role in the late stages of myogenic differentiation

Control siPanx1
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FIGURE 5 | Panx1 is required for ATP-induced myogenic commitment
of RCs. Reserve cells (RCs) were isolated from 7 days in differentiated C»>C1o
cultures and placed on cover slips. For siPanx1 experiments, CoC1o
differentiated cultures were transfected with siPanx1 in lipofectamine solution
at 24 h before isolation of RCs. After 24 h of isolation of RCs (48 h of siPanx1
transfection) Panx1 reactivity (Green, top panels) was reduced (Top right) as
compared to control condition (top left). The MyoD nuclear distribution was
analyzed (A, green) by co-immunofluorescence with LAP2 (red signal), which is
a nuclear membrane marker. In parallel experiments, hemichannel activity was
monitored in ethidium (Etd*) uptake assays (B), where Etd* uptake was
induced with ATP (150 uM) and inhibited with oleamide (100 wM).

(Araya et al., 2004), we decided to study whether gap junctional
communication is required for an early steps such as toward
the myogenic commitment response. This possibility was tested
in RCs cultured in low density to avoid the formation of cell-
cell contacts where gap junction channels can be formed. Under
these conditions, mononucleated cells without physical contact
with neighboring cells cultured for 24 in GM medium presented
MyoD reactivity in the nucleus (Figures 6A,B). In contrast, cells
cultured in GM containing 100 uM oleamide (to block Panx1
Chs) did not present MyoD reactivity (Figures 6C,D).

Discussion

In this report, we observed that extracellular ATP increases
the Ca®* signal via P2Rs as well as membrane current and
permeability to Etd™ mediated by Panxl Chs and expression
levels of MyoD in C,Cj, RCs. Moreover, we showed that RCs
do not express functional Cx HChs on their surface, but express
Panx1 Chs that possibly serve to release ATP to the extracellular
milieu. Therefore, we propose that the acquisition of myogenic
commitment in RCs requires a feed forward mechanism that
includes Panx Ch-dependent ATP release and activation of P2Rs.

We found that only a few seconds (<10s) after ATP
application RCs showed a rise in Ca?* signal and an increase in
total membrane current sensitive to Cx HCh/Panx Ch blockers.
The rapid and transient rise in Ca?* signal was mediated by
P2Y and P2X receptors, since it was only partly prevented by
the inhibition of P2XRs with iso-PPDAS and oATP (two P2XR

Oleamide 24 h

FIGURE 6 | Panx1 channels, but not gap junction channels, are needed
for myogenic commitment acquisition of RCs. Sparse reserve cells (RCs),
to avoid gap junction formation, were cultured under control conditions (A) or
in the presence of 100 M oleamide (C), which is a Panx1 channel blocker.
After 24 h of culture, cells were fixed and processed for MyoD detection by
immunofluorescence. Panels (B) and (D) are phase contrast views of the
fluorescent fields shown in (A) and (C), respectively.
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blockers) or MRS2179 (P2Y;R blocker), and was completely
prevented by suramin, which is a non-selective blocker of both
P2YRs and P2XRs (Illes and Alexandre Ribeiro, 2004). On the
other hand, the late increase in Ca’* levels induced by ATP
was not prevented by either of the two P2 receptor blockers
used, but further studies would be required to elucidate the
mechanism involved. Moreover, freshly seeded RCs treated with
ATP showed a rapid (<10s) increase in total membrane current
mediated by Panx Chs, since it was reduced by oleamide and
B-GA and Cx HCh activity was not detected in DCEFS. This is
in agreement with previous results indicating that octanol, a Cx
based channel blocker, does not affect myogenesis (Proulx et al.,
1997). However, Cx43-based channels have been observed in
transgenic mice with an inducible CRE-lox (p) system to abrogate
the expression of Cx43flox/flox (Araya et al,, 2003, 2005). In this
system, the regeneration of skeletal muscle after injury is delayed
with respect to wild type animals by about 14 days, suggesting
that myoblasts require cellular coordination via Cx43 membrane
channels for a normal timing of regeneration.

A fraction of the ATP-induced membrane current appears to
be mediated by P2XRs, since the current slope was smaller in RCs
treated with oATP alone than in RCs under resting conditions.
Moreover, an important part of the ATP-induced current increase
(>63%) was mediated by HCs, since both oleamide and B-GA
reduced the total membrane current slope to a value about
twice of that recorded in control cells and three times lower
than that measured after treatment with ATP alone. Similar
activation of Panx Chs via P2XRs has been demonstrated in other
cell types (Locovei et al., 2006, 2007; Pelegrin and Surprenant,
2006). P2XRs belong to an ionotropic membrane receptor family
(North, 2002). If P2X7Rs were the only P2XRs expressed by
RCs, the heterogeneity of the Etd* uptake response elicited by
ATP might be explained by the heterogeneous P2X;R abundance.
Moreover, the P2YR type expressed by RCs is likely to be P2Y R,
since MRS2179, which is a selective P2Y;R blocker (Baurand
and Gachet, 2003), reduced or inhibited several RC responses
described herein.

With regard to the possible molecular composition of HCs
involved in both ATP-induced increases in membrane current
and membrane permeability to Etd™, RCs did not express
functional Cx HChs as indicated by the lack of dye uptake
after exposure to DCFS, which is known to activate Cx HChs
and not Panx Chs (Schalper et al, 2008a; Ma et al, 2009).
An alternative explanation for the inhibitory effect of Cx HCh
blockers on the effects of ATP described herein would be the
existence of Panx Chs. Whether RCs express other members of
the Panx family remains unknown, and therefore, demonstration
of monomeric or heteromeric Panx Chs in RCs would require
further investigation.

Previous studies have demonstrated the autocrine/paracrine
role of ATP during skeletal muscle differentiation (Ryten et al.,
2002; Araya et al., 2004) and ATP release through Panx1 Chs was
shown to elicit Ca>* signals involved in gene expression in rat
myotubes (Buvinic et al., 2009). The present study found that
RCs release ATP to the extracellular milieu, which most likely
occurred via Panx1 Chs because channel blockers or the Panx1
knockdown drastically reduced the acquisition of myogenic
commitment.

During skeletal muscle embryogenesis, somites express
transcription factors that control different processes,
including migration and myogenic transcription factors
that regulate terminal differentiation such as MyoD, Myf-
5, and myogenin (Charge and Rudnicki, 2004). Moreover,
the role of P2X receptors play a role in proliferation and/or
differentiation of skeletal muscles (Burnstock et al., 2013).
In agreement with this interpretation, blockade of P2XRs
with 0ATP, even when co-added with ATP, prevented the
increase of MyoD levels, suggesting that it is required for
the acquisition of myogenic commitment. In line with this
notion, oleamide and B-GA prevented the rise of MyoD
levels. However, this inhibition was totally reversed with
the addition of ATP, showing that these Cx HCh/Panx
Ch blockers are not toxic and do not block purinergic
pathways.

The results described in the present work might contribute to
explaining findings in other preparations. For instance, treatment
of primary myoblasts with a-GA inhibits the increase of MyoD
and increases levels of adiposity markers PPARy and C/EBPa,
both of which are transcription factors required for adipose
differentiation (Yamanouchi et al, 2007), suggesting that Cx
and/or Panx HCs play relevant roles during those events. In
support of this possibility, Panx3 has been proposed to form GJCs
between osteoblasts and to contribute to the differentiation of
C,Cy; cells into osteoblasts (Ishikawa et al., 2011).

Despite the absence of Panx1 in knockout mice, these animals
have no apparent phenotype due to deficient skeletal muscle
myogenesis. A possible explanation might be that in absence of
Panx1 (a Ca’" channel) myocytes express other Ca>*-permeable
channel as a compensatory mechanism. In this sense, it has
been established that a compensatory increase of P2X;R (ie.,
a Ca’™ channel) expression occurs in lymphocytes from Panxl
knockout mice (Shoji et al., 2014), which also might occur in
skeletal muscles. However, there are still some physiological
issues regarding skeletal muscles from Panx1 knockout animals.
For instance, these muscles do not produce potentiation of
muscular contraction (Riquelme et al, 2013). Furthermore,
additional problems in these mice have been published, such
as uncompleted abolishment (70%) of Panx] mRNA in some
tissues like trigeminal ganglia, bladder and spleen (Hanstein et al.,
2013). Additionally, it has been established in different systems
that Panxl Ch activation requires functional P2X or P2YR
upstream Panx1 Ch activation, but in this case it was necessary to
simultaneously stimulate both P2 receptor types, which could be
explained by two manners of Panx1 Ch activation. The first one
is mediated by activation of Ca?* inflow from the extracellular
space through P2XRs and the other is mediated by G-protein
signaling and Ca?* from intracellular stores induced by P2YR
activation. This possibility implies that activation of both P2
receptors leads to an optimal [Ca®*]; for Panx1 HC activation,
but neither P2XR nor P2Y;R alone would be sufficient.

Finally, we propose that purinergic P2Rs and Panxl Chs
are part of a positive feedback system present in C,Cj, RCs.
Activation of P2XRs by extracellular ATP, released through
Panx Chs activated via P2Rs. Moreover, activated P2XRs and
Panx Chs are permeable to Ca?t (Vanden Abeele et al., 2006)
and, thus, they might contribute to the rises in Ca’>" signals

Frontiers in Cell and Developmental Biology | www.frontiersin.org

May 2015 | Volume 3 | Article 25


http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

Riquelme et al.

Panx1 and P2XRs in myogenesis

observed in ATP-treated RCs. As a result of the latter, Panx1
Chs could be activated via a cytoplasmic factor (i.e., PKC
and/or calmodulin/Ca2+—dependent kinase) (Barbe et al., 2006),
allowing for more ATP release. The positive loop may be
inhibited in differentiated cultures of C,C;,, which could provide
a possible explication for the reduction of MyoD levels in
mononucleated cells, since the extracellular medium is known
to contain high levels of phosphatase activity (Sandona et al.,
2004). The latter is directly related to the expression of a-
sarcoglycan, which is a proteoglycan with ATP binding domains
and phosphatase activity (Sandona et al., 2004). In this way, both
the ATP tone and MyoD levels could be diminished. In support of
this putative mechanism, replated RCs with low levels of myotube
contamination, and consequently, low levels of phosphatases,

References

Araya, R, Eckardt, D., Maxeiner, S., Kruger, O., Theis, M., Willecke, K., et al.
(2005). Expression of connexins during differentiation and regeneration of
skeletal muscle: functional relevance of connexin43. J. Cell. Sci. 118, 27-37. doi:
10.1242/jcs.01553

Araya, R, Eckardt, D., Riquelme, M. A., Willecke, K., and Saez, J. C. (2003).
Presence and importance of connexin43 during myogenesis. Cell. Commun.
Adhes. 10, 451-456. doi: 10.1080/cac.10.4-6.451.456

Araya, R., Riquelme, M. A., Brandan, E., and Saez, ]J. C. (2004). The
formation of skeletal muscle myotubes requires functional membrane receptors
activated by extracellular ATP. Brain. Res. Brain Res. Rev. 47, 174-188. doi:
10.1016/j.brainresrev.2004.06.003

Bao, L., Locovei, S., and Dahl, G. (2004). Pannexin membrane channels
are mechanosensitive conduits for ATP. FEBS Lett. 572, 65-68. doi:
10.1016/j.febslet.2004.07.009

Barbe, M. T., Monyer, H., and Bruzzone, R. (2006). Cell-cell communication
beyond connexins: the pannexin channels. Physiology 21, 103-114. doi:
10.1152/physiol.00048.2005

Baurand, A., and Gachet, C. (2003). The P2Y1
new antithrombotic drugs: a review of the
2179. Cardiovasc. Drug Rev. 21, 67-76. doi:
tb00106.x

Bruzzone, R., Barbe, M. T., Jakob, N. J., and Monyer, H. (2005). Pharmacological
properties of homomeric and heteromeric pannexin hemichannels expressed
in Xenopus oocytes. . Neurochem. 92, 1033-1043. doi: 10.1111/j.1471-
4159.2004.02947 .x

Bruzzone, R., Hormuzdi, S. G., Barbe, M. T., Herb, A., and Monyer, H. (2003).
Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl.
Acad. Sci. U.S.A. 100, 13644-13649. doi: 10.1073/pnas.2233464100

Burnstock, G., Arnett, T. R,, and Orriss, 1. R. (2013). Purinergic signalling in the
musculoskeletal system. Purinergic Signal. 9, 541-572. doi: 10.1007/s11302-
013-9381-4

Buvinic, S., Almarza, G., Bustamante, M., Casas, M., Lopez, J., Riquelme, M.,
et al. (2009). ATP released by electrical stimuli elicits calcium transients and
gene expression in skeletal muscle. J. Biol. Chem. 284, 34490-34505. doi:
10.1074/jbc.M109.057315

Charge, S. B., and Rudnicki, M. A. (2004).
regulation of muscle regeneration. Physiol.
10.1152/physrev.00019.2003

Friday, B. B., and Pavlath, G. K. (2001). A calcineurin- and NFAT-dependent
pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J. Cell.
Sci. 114, 303-310.

Hanstein, R., Negoro, H., Patel, N. K., Charollais, A., Meda, P., Spray, D. C,,
etal. (2013). Promises and pitfalls of a Pannexin1 transgenic mouse line. Front.
Pharmacol. 4:61. doi: 10.3389/fphar.2013.00061

Honore, P., Donnelly-Roberts, D., Namovic, M. T., Hsieh, G., Zhu, C. Z,
Mikusa, J. P., et al. (2006). A-740003 [N-(1-[cyanoimino)(5-quinolinylamino)

receptor as a target for
P.2Y1 antagonist MRS-
10.1111/j.1527-3466.2003.

Cellular and molecular
Rev. 84, 209-238. doi:

would allow for ATP accumulation in the extracellular medium,
which would induce the acquisition of myogenic commitment.

Acknowledgments

The authors have no conflicting financial interests. This work
was partially supported by Fondo Nacional de Desarrollo
Cientifico y Tecnolégico (FONDECYT-1111033 and -1150291
to JCS and 11130013 to JLV), ICM-Economia P09-022-F Centro
Interdisciplinario de Neurociencias de Valparaiso (to JS) and the
Doctoral thesis support fellowship AT 23070155 to MR. The data
of this paper are form a thesis submitted in partial fulfillment
of the requirements for the degree of Doctor in Physiological
Sciences (MR) at the Pontificia Universidad Catolica de Chile.

methyl] amino-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide],
a novel and selective P2X7 receptor antagonist, dose-dependent reduces
neuropathic pain in the rat. J. Pharmacol. Exp. Ther. 319, 1376-1385. doi:
10.1124/jpet.106.111559

Illes, P., and Alexandre Ribeiro, J. (2004). Molecular physiology of P2
receptors in the central nervous system. Eur. J. Pharmacol. 483, 5-17. doi:
10.1016/j.¢jphar.2003.10.030

Ishikawa, M., Iwamoto, T., Nakamura, T., Doyle, A., Fukumoto, S., and Yamada,
Y. (2011). Pannexin 3 functions as an ER Ca?* channel, hemichannel, and gap
junction to promote osteoblast differentiation. J. Cell. Biol. 193, 1257-1274. doi:
10.1083/jcb.201101050

Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., et al. (2008). Connexin
43 hemichannels are permeable to ATP. J. Neurosci. 28, 4702-4711. doi:
10.1523/JNEUROSCI.5048-07.2008

Langlois, S., Xiang, X., Young, K., Cowan, B. J., Penuela, S., and Cowan, K.
N. (2014). Pannexin 1 and pannexin 3 channels regulate skeletal muscle
myoblast proliferation and differentiation. J. Biol. Chem. 289, 30717-30731. doi:
10.1074/jbc.M114.572131

Locovei, S., Scemes, E., Qiu, F., Spray, D. C., and Dahl, G. (2007). Pannexin1 is part
of the pore forming unit of the P2X7 receptor death complex. FEBS Lett. 581,
483-488. doi: 10.1016/j.febslet.2006.12.056

Locovei, S., Wang, J., and Dahl, G. (2006). Activation of pannexin 1 channels
by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580,
239-244. doi: 10.1016/j.febslet.2005.12.004

Ma, W., Hui, H., Pelegrin, P., and Surprenant, A. (2009). Pharmacological
characterization of pannexin-1 currents expressed in mammalian cells.
J. Pharmacol. Exp. Ther. 328, 409-418. doi: 10.1124/jpet.108.146365

Nishida, M., Sato, Y., Uemura, A., Narita, Y., Tozaki-Saitoh, H., and Nakaya,
M. (2008). P2Y6 receptor-Galphal2/13 signalling in cardiomyocytes triggers
pressure overload-induced cardiac fibrosis. EMBO. J. 27, 3104-3115. doi:
10.1038/emboj.2008.237

North, R. A. (2002). Molecular physiology of P2X receptors. Physiol. Rev. 82,
1013-1067. doi: 10.1152/physrev.00015.2002

Pelegrin, P., and Surprenant, A. (2006). Pannexin-1 mediates large pore formation
and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO. J. 25,
5071-5082. doi: 10.1038/sj.emboj.7601378

Proulx, A. A, Lin, Z. X, and Naus, C. C. (1997).
rhabdomyosarcoma cells with connexin43 induces myogenic differentiation.
Cell Growth Differ. 8, 533-540.

Riquelme, M. A,, Cea, L. A,, Vega, J. L., Boric, M. P., Monyer, H., Bennett, M.
V., et al. (2013). The extracellular ATP required for potentiation of the adult
skeletal muscle contraction is released through pannexin 1 based channels.
Neuropharmacology 75, 594-603. doi: 10.1016/j.neuropharm.2013.03.022

Ryten, M., Dunn, P. M., Neary, J. T., and Burnstock, G. (2002). ATP regulates the
differentiation of mammalian skeletal muscle by activation of a P2X5 receptor
on satellite cells. J. Cell. Biol. 158, 345-355. doi: 10.1083/jcb.200202025

Séez, J. C., and Leybaert, L. (2014). Hunting for hemichannels. FEBS Lett. 588,
1205-1211. doi: 10.1016/j.febslet.2014.03.004

Transfection of

Frontiers in Cell and Developmental Biology | www.frontiersin.org

10

May 2015 | Volume 3 | Article 25


http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

Riquelme et al.

Panx1 and P2XRs in myogenesis

Séez, J. C., Schalper, K. A., Retamal, M. A,, Orellana, J. A., Shoji, K. F., and
Bennett, M. V. L. (2010). Cell membrane permeabilization via connexin-
hemichannels in living and dying cells. Exp. Cell. Res. 316, 2377-2389. doi:
10.1016/j.yexcr.2010.05.026

Sandona, D., Gastaldello, S., Martinello, T., and Betto, R. (2004). Characterization
of the ATP-hydrolysing activity of alpha-sarcoglycan. Biochem. J. 381,105-112.
doi: 10.1042/BJ20031644

Schalper, K. A., Lee, S. C., Altenberg, G. A., Nathanson, M. H., and Saez,
J. C. (2010). Connexin 43 is a pH-gated plasma membrane calcium
channel. Am. J. Physiol. 299, C1504-C1515. doi: 10.1152/ajpcell.00015.
2010

Schalper, K. A., Palacios-Prado, N., Orellana, J. A, and Siez, J. C.
(2008a). Currently used methods for identification and characterization
of hemichannels. Cell. ~Commun. Adhes. 15, 207-218. doi:
10.1080/15419060802014198

Schalper, K. A., Palacios-Prado, N., Retamal, M. A., Shoji, K. F., Martinez,
A. D., and Sdez, J. C. (2008b). Connexin hemichannel composition
determines the FGF-1-induced membrane permeability and free [Ca?t];
responses. Mol. Biol. Cell. 19, 3501-3513. doi: 10.1091/mbc.E07-
12-1240

Shoji, K. F., Sdez, P. J., Harcha, P. A., Aguila, H. L., and Séez, J. C. (2014). Pannexin1l
channels act downstream of P2X 7 receptors in ATP-induced murine T-cell
death. Channels 8, 142-156. doi: 10.4161/chan.28122

Vanden Abeele, F., Bidaux, G., Gordienko, D., Beck, B., Panchin, Y. V,,
Baranova, A. V,, et al. (2006). Functional implications of calcium permeability
of the channel formed by pannexin 1. J. Cell. Biol. 174, 535-546. doi:
10.1083/jcb.200601115

Yamanouchi, K., Yada, K., Ishiguro, N., and Nishihara, M. (2007). 18a-
Glycyrrhetinic acid induces phenotypic changes of skeletal muscle cells to
enter adipogenesis. Cell. Physiol. Biochem. 20, 781-790. doi: 10.1159/000
110438

Yoshida, N., Yoshida, S., Koishi, K., Masuda, K., and Nabeshima, Y. (1998). Cell
heterogeneity upon myogenic differentiation: down-regulation of MyoD and
Myf-5 generates ‘reserve cells.” J. Cell. Sci. 111, 769-779.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Riquelme, Cea, Vega, Puebla, Vargas, Shoji, Subiabre and Sdez.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

11

May 2015 | Volume 3 | Article 25


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

	Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation
	Introduction
	Materials and Methods
	Reagents
	Cell Lines, Culture of C2C12 Cells, and Isolation of RCs
	Transfection
	Electrophysiology
	Dye Uptake and [Ca2+]i Measurements
	Western Blot and Indirect Immunofluorescence Analysis
	Data Analysis and Statistics

	Results
	Extracellular ATP Activates Ca2+ Signal in Uncommitted RCs via Purinergic Receptors and Panx Channels
	RCs Present Membrane Panx Channels Activated by Extracellular ATP
	Acquisition of Myogenic Commitment Requires Activation of P2X Receptors and Functional Panx1 Channels
	Acquisition of Myogenic Commitment Occurs in the Absence of Connexin Gap Junctions

	Discussion
	Acknowledgments
	References


